
Introduction

MCSD Training Guide: Visual Basic 6 Exams is designed
for developers with the goal of certification as a
Microsoft Certified Solutions Developer (MCSD).
It covers both the Designing and Implementing
Distributed Applications with Microsoft Visual Basic
6.0 exam (70-175) and the Designing and
Implementing Desktop Applications with Microsoft
Visual Basic 6.0 exam (70-176). These exams measure
your ability to design and implement distributed and
desktop application solutions by using Microsoft Visual
Basic version 6.0.

This book is your one-stop shop. Everything you need
to know to pass the exams is in here, and Microsoft has
approved it as study material. You do not have to take a
class in addition to buying this book to pass the exam.
However, depending on your personal study habits or
learning style, you may benefit from buying this book
and taking a class.

This book also can help advanced users and administra-
tors who are not studying for the exam but are looking
for a single-volume reference on Microsoft’s TCP/IP
implementation.

HOW THIS BOOK HELPS YOU

This book conducts you on a self-guided tour of all the
areas covered by the VB6 Distributed Applications
exam and the VB6 Desktop Applications exam and
teaches you the specific skills you need to achieve your
MCSD certification. You’ll also find helpful hints, tips,
real-world examples, exercises, and references to addi-
tional study materials. Specifically, this book is set up to
help you in the following ways:

á Organization. This book is organized by individual
exam objectives. Every objective you need to know
for the VB6 Distributed Applications exam and the
VB6 Desktop Applications exam is covered in this
book. The objectives are not covered in exactly the
same order as they are listed by Microsoft, but we
have attempted to organize the topics in the most
logical and accessible fashion to make it as easy as
possible for you to learn the information. We have
also attempted to make the information accessible
in the following ways:

• The full list of exam topics and objectives is
included in this introduction.

• Each chapter begins with a list of the objectives
to be covered. Each objective is also identified as
one that applies to the Distributed Applications
exam, the Desktop Applications exam, or both.

• Each chapter also begins with an outline that pro-
vides you with an overview of the material and
the page numbers where particular topics can be
found.

• We also repeat objectives before where the mater-
ial most directly relevant to it is covered (unless
the whole chapter addresses a single
objective).

• Information on where the objectives are covered
is also conveniently condensed on the tear card
at the front of this book.

á Instructional Features. This book has been designed
to provide you with multiple ways to learn and rein-
force the exam material. Following are some of the
helpful methods:

02 002-8 Intro 3/1/99 7:45 AM Page 1

2 MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

• Objective Explanations. As mentioned previ-
ously, each chapter begins with a list of the
objectives covered in the chapter. In addition,
immediately following each objective is an
explanation in a context that defines it more
meaningfully.

• Study Strategies. The beginning of the chapter
also includes strategies for approaching the
studying and retaining of the material in
the chapter, particularly as it is addressed
on the exam.

• Exam Tips. Exam tips appear in the margin to
provide specific exam-related advice. Such tips
may address what material is covered (or not
covered) on the exam, how it is covered,
mnemonic devices, or particular quirks of
that exam.

• Review Breaks and Summaries. Crucial infor-
mation is summarized at various points in the
book in lists or tables. Each chapter ends with
a summary as well.

• Key Terms. A list of key terms appears at the
end of each chapter.

• Notes. These appear in the margin and contain
various kinds of useful information such as
tips on technology or administrative practices,
historical background on terms and technolo-
gies, or side commentary on industry issues.

• Warnings. When using sophisticated informa-
tion technology, there is always the potential
for mistakes or even catastrophes that occur
because of improper application of the tech-
nology. Warnings appear in the margin to
alert you to such potential problems.

• In-depths. These more extensive discussions
cover material that may not be directly relevant
to the exam but which is useful as reference
material or in everyday practice. In-depths may
also provide useful background or contextual
information necessary for understanding the
larger topic under consideration.

• Step by Steps. These are hands-on, tutorial
instructions that lead you through a particular
task or function relevant to the exam
objectives.

• Exercises. Found at the end of the chapters in
the “Apply Your Knowledge” section, exercises
may include additional tutorial material as
well as other types of problems and questions.

• Case Studies. Presented throughout the book,
case studies provide you with a more concep-
tual opportunity to apply and reinforce the
knowledge you are developing. They include a
description of a scenario, the essence of the
case, and an extended analysis section. They
also reflect the real-world experiences of the
authors in ways that prepare you not only for
the exam but for actual network administra-
tion as well.

á Extensive practice test options. The book pro-
vides numerous opportunities for you to assess
your knowledge and practice for the exam. The
practice options include the following:

• Review Questions. These open-ended questions
appear in the “Apply Your Knowledge” section
at the end of each chapter. They allow you to
quickly assess your comprehension of what
you just read in the chapter. Answers to the
questions are provided later in the section.

02 002-8 Intro 3/1/99 7:45 AM Page 2

INTRODUCTION 3

• Exam Questions. These questions also appear
in the “Apply your Knowledge” section. They
reflect the kinds of multiple-choice questions
that appear on the Microsoft exams. Use
them to practice for the exam and to help
you determine what you know and what you
need to review or study further. Answers and
explanations for them are provided.

• Practice Exam. A Practice Exam is included in
the “Final Review” section. The Final Review
section and the Practice Exam are discussed
below.

• Top Score. The Top Score software included
on the CD-ROM provides further practice
questions.

It also provides you with valuable exam-day
tips and information on new exam/question
formats such as adaptive tests and simulation-
based questions.

• Practice Exam. A full practice test for each of
the exams is included. Questions are written
in the styles used on the actual exams. Use it
to assess your readiness for the real thing.

The book includes several valuable appendices as well,
including a glossary (Appendix A), an overview of the
Microsoft certification program (Appendix B), and a
description of what is on the CD-ROM (Appendix C).

The Microsoft VB exams assume an elementary knowl-
edge of VB but do not specify this knowledge in the
exam objectives. For that reason, this book includes
Appendix E, “Visual Basic Basics” that provides you
with an overview of the elementary VB knowledge and
skills that are not specified as objectives but that you
will need to know in order to pass the exam.

Finally, Appendix F provides you with a list of
“Suggested Readings and Resources” that provides you
with useful information on Visual Basic 6.

These and all the other book features mentioned previ-
ously will provide you with thorough preparation for
the exam.

For more information about the exam or the certifica-
tion process, contact Microsoft:

Microsoft Education: 800-636-7544

Internet: ftp://ftp.microsoft.com/Services/MSEdCert

World Wide Web: http://www.microsoft.com/train_cert

CompuServe Forum: GO MSEDCERT

N
O

T
E For a complete description of the New

Riders Top Score test engine, please
see Appendix D, “Using the Top Score
Software.”

á Final Review. This part of the book provides
you with three valuable tools for preparing for
the exam.

• Fast Facts. This condensed version of the
information contained in the book will prove
extremely useful for last-minute review.

• Study and Exam Tips. Read this section
early on to help you develop study strategies.

02 002-8 Intro 3/1/99 7:46 AM Page 3

4 MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

WHAT THE DESIGNING AND
IMPLEMENTING DISTRIBUTED
APPLICATIONS WITH
MICROSOFT VISUAL BASIC 6.0
EXAM (70-175) COVERS

The Designing and Implementing Distributed
Applications with Microsoft Visual Basic 6.0 Exam
(70-175) covers the nine main topic areas represented
by the conceptual groupings of the test objectives:
Developing the Conceptual and Logical Design,
Deriving the Physical Design, Establishing the
Development Environment, Creating User Services,
Creating and Managing COM Components, Creating
Data Services, Testing the Solution, Deploying the
Application, and Maintaining and Supporting an
Application. Each of these main topic areas is covered
in one or more chapters. The exam objectives are listed
by topic area in the following sections.

Developing the Conceptual and
Logical Design
Given a conceptual design, apply the principles of
modular design to derive the components and services
of the logical design.

Deriving the Physical Design
Assess the potential impact of the logical design on per-
formance, maintainability, extensibility, scalability,
availability, and security.

Design Visual Basic components to access data from a
database in a multitier application.

Design the properties, methods, and events of
components.

Establishing the Development
Environment
Establish the environment for source-code version
control.

Install and configure Visual Basic for developing
distributed applications.

Configure a server computer to run Microsoft
Transaction Server (MTS).

á Install MTS.

á Set up security on a system package.

Configure a client computer to use an MTS
component.

á Create packages that install or update MTS
components on a client computer.

Creating User Services
Implement navigational design.

á Dynamically modify the appearance of a menu.

á Add a pop-up menu to an application.

á Create an application that adds and deletes
menus at runtime.

á Add controls to forms.

á Set properties for controls.

á Assign code to a control to respond to an event.

02 002-8 Intro 3/1/99 7:46 AM Page 4

INTRODUCTION 5

Create data input forms and dialog boxes.

á Display and manipulate data by using custom
controls. Controls include TreeView, ListView,
ImageList, Toolbar, and StatusBar.

á Create an application that adds and deletes
controls at runtime.

á Use the Controls collection to manipulate
controls at runtime.

á Use the Forms collection to manipulate forms at
runtime.

Write code that validates user input.

á Create an application that verifies data entered at
the field level and the form level by a user.

á Create an application that enables or disables
controls based on input in fields.

Write code that processes data entered on a form.

á Given a scenario, add code to the appropriate
form event. Events include Initialize,
Terminate, Load, Unload, QueryUnload, Activate,
and DeActivate.

Add an ActiveX control to the toolbox.

Create dynamic Web pages by using Active Server
Pages (ASP) and Web classes.

Create a Web page by using the DHTML Page
Designer to dynamically change attributes of elements,
change content, change styles, and position elements.

Use data binding to display and manipulate data from
a data source.

Instantiate and invoke a COM component.

á Create a Visual Basic client application that uses
a COM component.

á Create a Visual Basic application that handles
events from a COM component.

Create callback procedures to enable asynchronous pro-
cessing between COM components and Visual Basic
client applications.

Implement online user assistance in a distributed appli-
cation.

á Set appropriate properties to enable user assis-
tance. Help properties include HelpFile,
HelpContextID, and WhatsThisHelp.

á Create HTML Help for an application.

á Implement messages from a server component to
a user interface.

Implement error handling for the user interface in dis-
tributed applications.

á Identify and trap runtime errors.

á Handle inline errors.

á Determine how to send error information from a
COM component to a client computer.

Use an active document to present information within
a Web browser.

Creating and Managing COM
Components
Create a COM component that implements business
rules or logic. Components include DLLs, ActiveX
controls, and active documents.

Create ActiveX controls.

á Create an ActiveX control that exposes properties.

á Use control events to save and load persistent
properties.

02 002-8 Intro 3/1/99 7:46 AM Page 5

6 MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

á Test and debug an ActiveX control.

á Create and enable property pages for an ActiveX
control.

á Enable the data-binding capabilities of an
ActiveX control.

á Create an ActiveX control that is a data source.

Create an active document.

á Use code within an active document to interact
with a container application.

á Navigate to other active documents.

Design and create components that will be used
with MTS.

Debug Visual Basic code that uses objects from a COM
component.

Choose the appropriate threading model for a COM
component.

Create a package by using the MTS Explorer.

á Use the Package and Deployment Wizard to
create a package.

á Import existing packages.

á Assign names to packages.

á Assign security to packages.

Add components to an MTS package.

á Set transactional properties of components.

á Set security properties of components.

Use role-based security to limit use of an MTS package
to specific users.

á Create roles.

á Assign roles to components or component
interfaces.

á Add users to roles.

Compile a project with class modules into a COM
component.

á Implement an object model within a COM
component.

á Set properties to control the instancing of a class
within a COM component.

Use Visual Component Manager to manage
components.

Register and unregister a COM component.

Creating Data Services
Access and manipulate a data source by using ADO
and the ADO Data control.

Access and manipulate data by using the Execute
Direct model.

Access and manipulate data by using the
Prepare/Execute model.

Access and manipulate data by using the Stored
Procedures model.

á Use a stored procedure to execute a statement on
a database.

á Use a stored procedure to return records to a
Visual Basic application.

Retrieve and manipulate data by using different cursor
locations. Cursor locations include client-side and server-
side.

Retrieve and manipulate data by using different cursor
types. Cursor types include forward-only, static,
dynamic, and keyset.

Use the ADO Errors collection to handle database
errors.

02 002-8 Intro 3/1/99 7:46 AM Page 6

INTRODUCTION 7

Manage database transactions to ensure data consis-
tency and recoverability.

Write SQL statements that retrieve and modify data.

Write SQL statements that use joins to combine data
from multiple tables.

Use appropriate locking strategies to ensure data
integrity. Locking strategies include read-only, pes-
simistic, optimistic, and batch optimistic.

Testing the Solution
Given a scenario, select the appropriate compiler options.

Control an application by using conditional compilation.

Set Watch expressions during program execution.

Monitor the values of expressions and variables by
using the Immediate window.

á Use the Immediate window to check or change
values.

á Use the Locals window to check or change values.

Implement project groups to support the development
and debugging processes.

á Debug DLLs in process.

á Test and debug a control in process.

Given a scenario, define the scope of a watch variable.

Deploying an Application
Use the Package and Deployment Wizard to create a
setup program that installs a distributed application,
registers the COM components, and allows for unin-
stall.

Register a component that implements DCOM.

Configure DCOM on a client computer and on a
server computer.

Plan and implement floppy disk-based deployment or
compact disc-based deployment for a distributed appli-
cation.

Plan and implement Web-based deployment for a dis-
tributed application.

Plan and implement network-based deployment for a
distributed application.

Maintaining and Supporting an
Application
Implement load balancing.

Fix errors and take measures to prevent future errors.

Deploy application updates for distributed applications.

WHAT THE DESIGNING AND
IMPLEMENTING DESKTOP
APPLICATIONS WITH
MICROSOFT VISUAL BASIC
6.0 EXAM (70-176)
COVERS

The Designing and Implementing Distributed
Applications with Microsoft Visual Basic 6.0 Exam
(70-176) covers the nine main topic areas represented
by the conceptual groupings of the test objectives:
Developing the Conceptual and Logical Design,
Deriving the Physical Design, Establishing the
Development Environment, Creating User Services,

02 002-8 Intro 3/1/99 7:46 AM Page 7

8 MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

Creating and Managing COM Components, Creating
Data Services, Testing the Solution, Deploying the
Application, and Maintaining and Supporting an
Application. Each of these main topic areas is covered
in one or more chapters. The exam objectives are listed
by topic area in the following sections.

Deriving the Physical Design
Assess the potential impact of the logical design on per-
formance, maintainability, extensibility, and availability.

Design Visual Basic components to access data from a
database.

Design the properties, methods, and events of com-
ponents.

Establishing the Development
Environment
Establish the environment for source-code version control.

Install and configure Visual Basic for developing desk-
top applications.

Creating User Services
Implement navigational design.

á Dynamically modify the appearance of a menu.

á Add a pop-up menu to an application.

á Create an application that adds and deletes
menus at runtime.

á Add controls to forms.

á Set properties for controls.

á Assign code to a control to respond to an event.

Create data input forms and dialog boxes.

á Display and manipulate data by using custom
controls. Controls include TreeView, ListView,
ImageList, Toolbar, and StatusBar.

á Create an application that adds and deletes
controls at runtime.

á Use the Controls collection to manipulate
controls at runtime.

á Use the Forms collection to manipulate forms at
runtime.

Write code that validates user input.

á Create an application that verifies data entered at
the field level and the form level by a user.

á Create an application that enables or disables
controls based on input in fields.

Write code that processes data entered on a form.

á Given a scenario, add code to the appropriate
form event. Events include Initialize,
Terminate, Load, Unload, QueryUnload, Activate,
and DeActivate.

Add an ActiveX control to the toolbox.

Create a Web page by using the DHTML Page
Designer to dynamically change attributes of elements,
change content, change styles, and position elements.

Use data binding to display and manipulate data from
a data source.

Instantiate and invoke a COM component.

á Create a Visual Basic client application that uses
a COM component.

á Create a Visual Basic application that handles
events from a COM component.

02 002-8 Intro 3/1/99 7:46 AM Page 8

INTRODUCTION 9

Create callback procedures to enable asynchronous
processing between COM components and Visual
Basic client applications.

Implement online user assistance in a desktop
application.

á Set appropriate properties to enable user assis-
tance. Help properties include HelpFile,
HelpContextID, and WhatsThisHelp.

á Create HTML Help for an application.

á Implement messages from a server component
to a user interface.

Implement error handling for the user interface in
desktop applications.

á Identify and trap runtime errors.

á Handle inline errors.

Creating and Managing COM
Components
Create a COM component that implements business
rules or logic. Components include DLLs, ActiveX
controls, and active documents.

Create ActiveX controls.

á Create an ActiveX control that exposes prop-
erties.

á Use control events to save and load persistent
properties.

á Test and debug an ActiveX control.

á Create and enable Property Pages for an ActiveX
control.

á Enable the data-binding capabilities of an
ActiveX control.

á Create an ActiveX control that is a data source.

Create an active document.

á Use code within an active document to interact
with a container application.

á Navigate to other active documents.

Debug a COM client written in Visual Basic.

Compile a project with class modules into a COM
component.

á Implement an object model within a COM
component.

á Set properties to control the instancing of a class
within a COM component.

Use Visual Component Manager to manage
components.

Register and unregister a COM component.

Creating Data Services
Access and manipulate a data source by using ADO
and the ADO Data control.

Testing the Solution
Given a scenario, select the appropriate compiler
options.

Control an application by using conditional com-
pilation.

Set Watch expressions during program execution.

Monitor the values of expressions and variables by
using the Immediate window.

á Use the Immediate window to check or change
values.

á Use the Locals window to check or change values.

02 002-8 Intro 3/1/99 7:46 AM Page 9

10 MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

Implement project groups to support the development
and debugging processes.

á Debug DLLs in process.

á Test and debug a control in process.

Given a scenario, define the scope of a watch variable.

Deploying an Application
Use the Package and Deployment Wizard to create a
setup program that installs a desktop application, regis-
ters the COM components, and allows for uninstall.

Plan and implement floppy disk-based deployment or
compact disc-based deployment for a desktop appli-
cation.

Plan and implement Web-based deployment for a desk-
top application.

Plan and implement network-based deployment for a
desktop application.

Maintaining and Supporting an
Application
Fix errors and take measures to prevent future errors.

Deploy application updates for desktop applications.

HARDWARE AND SOFTWARE
YOU’LL NEED

A self-paced study guide, this book was designed with
the expectation that you will use VB 6.0 Enterprise
Edition as you follow along through the exercises
while you learn. However, almost all the exercises
can also be completed with the Professional Edition.

If you only have the Learning Edition, you’ll be able
to do some of the exercises and examples, but many
sections will not be directly accessible to you.

Your computer should meet the following criteria:

á On the Microsoft Hardware Compatibility List

á 486DX2 66Mhz (or better) processor

á 340MB (or larger) hard disk

á 3.5-inch 1.44MB floppy drive

á VGA (or Super VGA) video adapter

á VGA (or Super VGA) monitor

á Mouse or equivalent pointing device

á Double-speed (or faster) CD-ROM drive
(optional)

á Network Interface Card (NIC)

á Presence on an existing network, or use of a 2-port
(or more) miniport hub to create a test network

á Any version of Microsoft Windows capable of
running Visual Studio 6.0

á Internet access with Internet Explorer
(not necessary for all sections)

It is easier to obtain access to the necessary computer
hardware and software in a corporate business environ-
ment. It can be difficult, however, to allocate enough
time within the busy workday to complete a self-study
program. Most of your study time will occur after nor-
mal working hours, away from the everyday interrup-
tions and pressures of your regular job.

ADVICE ON TAKING THE EXAM

More extensive tips are found in the Final Review sec-
tion titled “Study and Exam Prep Tips,” but keep this
advice in mind as you study:

02 002-8 Intro 3/1/99 7:46 AM Page 10

INTRODUCTION 11

á Read all the material. Microsoft has been
known to include material not expressly specified
in the objectives. This book has included addi-
tional information not reflected in the objectives
in an effort to give you the best possible prepara-
tion for the examination—and for the real-world
network experiences to come.

á Do the Step by Steps and complete the
Exercises in each chapter. They will help you
gain experience using the Microsoft product. All
Microsoft exams are task- and experienced-based
and require you to have experience using the
Microsoft product in a real networking environ-
ment.

á Use the questions to assess your knowledge.
Don’t just read the chapter content; use the ques-
tions to find out what you know and what you
don’t. Study some more, review, then assess your
knowledge again.

á Review the exam objectives. Develop your own
questions and examples for each topic listed. If
you can develop and answer several questions for
each topic, you should not find it difficult to
pass the exam.

Remember, the primary object is not to pass the
exam—it is to understand the material. After you
understand the material, passing the exam should be
simple. Knowledge is a pyramid; to build upward, you
need a solid foundation. This book and the Microsoft
Certified Professional programs are designed to ensure
that you have that solid foundation.

Good luck!

NEW RIDERS PUBLISHING

The staff of New Riders Publishing is committed to
bringing you the very best in computer reference mate-
rial. Each New Riders book is the result of months of
work by authors and staff who research and refine the
information contained within its covers.

As part of this commitment to you, the NRP reader,
New Riders invites your input. Please let us know if
you enjoy this book, if you have trouble with the infor-
mation or examples presented, or if you have a sugges-
tion for the next edition.

N
O

T
E Exam-taking advice Although this

book is designed to prepare you to
take and pass the Designing and
Implementing Distributed Applications
with Microsoft Visual Basic 6.0
(70-175) and the Designing and
Implementing Desktop Applications
with Microsoft Visual Basic 6.0
(70-176) certification exams, there
are no guarantees. Read this book,
work through the questions and exer-
cises, and when you feel confident,
take the Practice Exam and additional
exams using the Top Score test
engine. This should tell you whether
you are ready for the real thing.

When taking the actual certification
exam, make sure you answer all the
questions before your time limit
expires. Do not spend too much time
on any one question. If you are
unsure, answer it as best as you can;
then mark it for review when you have
finished the rest of the questions.

02 002-8 Intro 3/1/99 7:46 AM Page 11

12 MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

Please note, however, that New Riders staff cannot serve
as a technical resource during your preparation for the
Microsoft certification exams or for questions about
software- or hardware-related problems. Please refer
instead to the documentation that accompanies the
Microsoft products or to the applications’ Help systems.

If you have a question or comment about any New
Riders book, there are several ways to contact New
Riders Publishing. We will respond to as many readers
as we can. Your name, address, or phone number will
never become part of a mailing list or be used for any
purpose other than to help us continue to bring you
the best books possible. You can write to us at the fol-
lowing address:

New Riders Publishing
Attn: Mary Foote
201 W. 103rd Street
Indianapolis, IN 46290

If you prefer, you can fax New Riders Publishing at
317-817-7448.

You also can send email to New Riders at the following
Internet address:

certification@mcp.com

NRP is an imprint of Macmillan Computer Publishing.
To obtain a catalog or information, or to purchase any
Macmillan Computer Publishing book, call 800-428-
5331.

Thank you for selecting MCSD Training Guide: Visual
Basic 6 Exams !

02 002-8 Intro 3/1/99 7:46 AM Page 12

I
VISUAL BASIC 6 EXAM CONCEPTS

1 Developing the Conceptual and Logical Design and Deriving the
Physical Design

2 Establishing the Development Environment

3 Implementing Navigational Design

4 Creating Data Input Forms and Dialog Boxes

5 Writing Code that Validates User Input

6 Writing Code that Processes Data Entered on a Form

7 Implementing Online User Assistance in a Distributed Application

8 Creating Data Services: Part I

9 Creating Data Services: Part II

P A R T

03 002-8 Part 1 3/1/99 7:47 AM Page 13

10 Instantiating and Invoking a COM Component

11 Implementing Error-Handling Features in an Application

12 Creating a COM Component that Implements Business Rules
or Logic

13 Creating ActiveX Controls

14 Creating an Active Document

15 Understanding the MTS Development Environment

16 Developing MTS Applications

17 Internet Programming with IIS/Webclass and DHTML Applications

18 Using VB’s Debug/Watch Facilities

19 Implementing Project Groups to Support the Development and
Debugging Process

20 Compiling a VB Application

21 Using the Package and Deployment Wizard to Create a Setup
Program

03 002-8 Part 1 3/1/99 7:47 AM Page 14

Developing the Conceptual
and Logical Design and

Deriving the Physical Design

OBJECT IVES

1C H A P T E R

This chapter helps you prepare for the exam by cover-
ing the following objectives:

Given a conceptual design, apply the princi-
ples of modular design to derive the compo-
nents and services of the logical design
(70-175).

. Conceptual design has to do with a user-based
vision of the software solution. The exam objectives
don’t require you to know how to derive a concep-
tual design. The objectives do expect you to know
something about how conceptual design relates to
logical design. Logical design identifies the business
objects and underlying services required by the con-
ceptual design.

Assess the potential impact of the logical
design on performance, maintainability, exten-
sibility, scalability, availability, and security
(70-175 and 70-176).

. The logical design that you derive from the concep-
tual design will have consequences for the final
product. The logical design affects many of the
desired qualities of a good software solution, such
as those listed in this objective.

Design Visual Basic components to access
data from a database in a multitier application
(70-175 and 70-176).

. Multitier applications break the various functions of
an application into separate components that reside
in different physical locations. An important com-
ponent of almost any software solution is the com-
ponent that provides access to the application’s data.

04 002-8 CH 01 3/1/99 7:38 AM Page 15

OBJECT IVES

Design the properties, methods, and events of
components (70-175 and 70-176).

. The components that you design in a VB solution
will be implemented as objects with their own
members (properties, methods, and events).

Implement load balancing (70-175).

. The final objective listed in this chapter, load bal-
ancing, is out of sequence with Microsoft’s pub-
lished exam objectives. Load balancing is the
process by which workload is spread among two or
more physical servers to prevent bottlenecks on a
single machine. As such, the topic is closely tied to
design decisions that you will make when imple-
menting a solution. This chapter therefore discusses
the objective of load balancing because it logically
fits with the other general design objectives dis-
cussed here.

04 002-8 CH 01 3/1/99 7:38 AM Page 16

STUDY STRATEGIES

Overview of Microsoft Application
Development Concepts 18

The VB Enterprise Development Model 20

The Conceptual Design 20

Deriving the Logical Design From the
Conceptual Design 21

Deriving the Physical Design From the
Logical Design 22

Assessing the Logical Design’s Impact
on the Physical Design 23

Designing VB Data-Access Components
for a Multitier Application 29

Designing Properties, Methods, and
Events of Components 30

Designing Properties of Components 30

Designing Methods of Components 31

Designing Events of Components 31

Implementing Load Balancing 32

Chapter Summary 36

. Examine closely the sections on maintainability,
scalability, performance, extensibility, availability,
and security. Devise your own scenarios with
these criteria in mind.

. Examine the case study for this chapter.

OUTL INE

04 002-8 CH 01 3/1/99 7:38 AM Page 17

18 Par t I VISUAL BASIC 6 EXAM CONCEPTS

INTRODUCTION

The two VB6 certification exams are the first VB certification exams
to ask questions about design decisions.

Therefore it is important to pay close attention to the topics of this
chapter, even though you may be inclined to want to pay less atten-
tion to it in favor of “the good stuff,”—that is, the more programmer-
centric topics of the rest of this book.

In fact, you will find that strategic design considerations are closely
tied to most of the newest aspects of VB programming technology
such as COM components, newer features of database access, and
the new types of Internet programming available in VB.

OVERVIEW OF MICROSOFT
APPLICATION DEVELOPMENT
CONCEPTS

Microsoft’s latest framework for discussing application development
is known as the Enterprise Application Model. The EAM is really an
umbrella that covers the following six distinct ways, or “models,” of
looking at any development project:

á The Development Model has to do with the software
development process, including project management and testing.

á The Business Model concerns itself with business goal
definition, resource decisions about the project, and business
rules and policies affecting the project.

á The User Model takes up issues of user interface, training,
documentation, support, and configuration.

á The Logical Model deals with the logical structure and model-
ing of business objects and service interface definitions within
the project.

á The Technology Model attends to reusability of software
components, system and database platforms, and system
resource-management decisions.

N
O

T
E This Section Refers to the Latest MS

Concepts, but Exam Objectives Do
Not The concepts discussed in this
section relate to the Enterprise
Application Model and as such are
the more recently published concepts
that can be found in the documenta-
tion for Visual Studio 6 and VB6. The
concepts discussed in this section
are not part of the exam objectives.

Microsoft’s published exam objectives
talk about conceptual, logical, and
physical design. These concepts are
found in the documentation for VB5. If
you don’t own a copy of the VB5 docu-
mentation, try MSDN online at:

http://premium.microsoft.com
/msdn/library

You will probably be asked to register
before you can look at this site.

04 002-8 CH 01 3/1/99 7:38 AM Page 18

á The Physical Model the final product, encompasses the
architecture of developed components, their distribution, and
their interconnections.

Although all these models are important (each in its own way) to
the overall makeup of the Enterprise Application Model, the most
important of these models, and the one you will be mostly con-
cerned with as a VB programmer, is the Development Model.

The Development Model is important because Microsoft sees it as
the pivotal link that holds together the rest of the EAM. It provides
this glue in two ways:

á The Development Model is responsible for mediating between
the Business Model, on the one hand, and the User, Logical,
and Technology Models on the other.

á The Development Model is also responsible for mediating
between the User, Logical, and Technology Models, on the
one hand, and the Physical Model on the other.

Microsoft’s latest Visual Studio documentation also speaks of a scal-
able, team-centered approach to solution development. This team
model identifies six major roles:

á Product management

á Program management

á Development

á Test and quality assurance (QA)

á User education

á Logistics planning

The model is scalable because, according to the size and needs of the
project, all six roles can be distributed to six different teams, or among
fewer teams (with some teams performing multiple roles), or among
more than six teams (some roles will be performed by several teams).

In the most extreme case, one individual might perform the tasks of
all six teams.

Chapter 1 DEVELOPING THE CONCEPTUAL AND LOGICAL DESIGN AND DERIVING
THE PHYSICAL DESIGN 19

04 002-8 CH 01 3/1/99 7:38 AM Page 19

20 Par t I VISUAL BASIC 6 EXAM CONCEPTS

THE VB ENTERPRISE DEVELOPMENT
MODEL

The exam objectives speak of tying conceptual, logical, and physical
designs together. The idea of a conceptual design, a logical design,
and a physical design, as noted in the preceding section, belongs to
VB5 and Visual Studio 5 documentation; here it is referred to as the
VB Enterprise Development Model.

Brief descriptions of the three design phases follow:

á Conceptual design regards the system from the point of view of
the proposed system’s users.

á Logical design identifies the business objects and underlying
services required by the conceptual design.

á Physical design identifies the specific implementations of the
logical design, including the specific hardware and software
solutions.

Because the VB EDM is the focus of the exam objectives on this topic,
the following sections of this chapter deal with them more extensively.

The Conceptual Design
The exam subobjectives do not require the exam candidate to derive
a conceptual design, but just to derive a logical design from an
existing conceptual design. This discussion will therefore just
describe what a conceptual design is, as opposed to discussing how
to derive a conceptual design.

A conceptual design consists of three deliverable items:

á User profiles describe who the system users are and how they tie
into the system. For example, user profiles might describe vari-
ous functions in the system such as data entry clerk, credit
manager, and sales person, including the type of role each
plays with respect to the business process being modeled.

á Usage scenarios for the current system state (optional) describe
how users work with the current system. Examples for current
system usage scenarios would be similar to examples given for
proposed system usage scenarios.

04 002-8 CH 01 3/1/99 7:38 AM Page 20

á Usage scenarios for the proposed system state describe how users
will work with the new system to be developed. For example,
different usage scenarios might describe how sales people will
contact customers and take orders, how data entry clerks will
enter orders from sales people or by phone, and how credit
managers will check credit and approve or reject orders.

Deriving the Logical Design From the
Conceptual Design
. Given a conceptual design, apply the principles of modular

design to derive the components and services of the
logical design (70-175).

Microsoft lists the following steps to derive the logical design:

1. Identifying business objects and services

2. Defining interfaces

3. Identifying business object dependencies

4. Validating logical design

5. Revising and refining the logical design

For purposes of the certification exam, you can focus on the first step,
identifying business objects and services. It is this step where you
actually derive the initial logical design from the conceptual design.

Overview of Business Objects
In the context of software solutions, a business object is a logical
and physical entity that represents a physical or conceptual entity
connected with the business environment at hand.

Examples of business objects might include the following:

á Accounts

á Customers

á Purchase orders

á Invoices

Chapter 1 DEVELOPING THE CONCEPTUAL AND LOGICAL DESIGN AND DERIVING
THE PHYSICAL DESIGN 21

04 002-8 CH 01 3/1/99 7:38 AM Page 21

22 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Your software solution will implement representations of these busi-
ness objects. Each object has its own attributes (properties) and
actions (methods) and interacts with other objects through a system
of messages (events and callbacks).

As stated in the preceding section, one of the main tasks of logical
design (and the task that the certification exam tests) is to identify
business objects from the usage scenarios of the conceptual design.

The following section discusses how to derive business objects from
the conceptual design.

Identifying Business Objects
Essentially, you can make a first pass at identifying business objects
by identifying the major nouns in the usage scenarios.

You can identify the relations and interactions between the business
objects by identifying the significant verbs in the usage scenarios.

You can classify the relationships between objects into several main
relationship types:

á Own. Indicated by verbs such as “owns” or “has.”

á Use . Indicated by verbs such as “uses.”

á Contain. Indicated by verbs such as “holds,” “contains,” or
“consists of.”

á Generalize. Indicated by verb phrases such as “is an example
of” or “is a.”

Deriving the Physical Design From the
Logical Design
To derive the physical design from the logical design, you take the
following major steps:

1. Allocate services to components. Derive components from the
logical objects and determine whether each object is a user,
business, or data service object.

2. Deploy components across the network. Assign the components
to locations on the network.

04 002-8 CH 01 3/1/99 7:38 AM Page 22

3. Refine component packaging and distribution. Group
components according to the system’s needs.

4. Specify component interfaces. Define relations between
components.

5. Validate the physical design. Make sure that each component
corresponds to a service in the logical objects.

Once again, the VB6 certification exam does not require you to
know each of these steps in detail. Instead, as the subobjectives state,
you should concentrate on the following:

á Assessing the logical design’s impact on the physical design

á Designing VB data access components for a data access tier

á Designing properties, methods, and events of a component

The following sections discuss these three topics.

Assessing the Logical Design’s Impact
on the Physical Design
. Assess the potential impact of the logical design on

performance, maintainability, extensibility, scalability,
availability, and security (70-175 and 70-176).

The certification exam objectives list the following ways that a logi-
cal design can impact the physical system derived from it:

á Performance

á Maintainability

á Extensibility

á Scalability

á Availability

á Security

The following sections discuss each of these design considerations.

Chapter 1 DEVELOPING THE CONCEPTUAL AND LOGICAL DESIGN AND DERIVING
THE PHYSICAL DESIGN 23

04 002-8 CH 01 3/1/99 7:38 AM Page 23

24 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Performance
Performance considerations include the speed and efficiency with
which the system does its tasks. Performance needs to be evaluated
from two points of view:

á The timeliness of activities from the point of view of system
requirements.

á The timeliness of system activities from the users’ point of
view, both in terms of perceived speed (slow perceived speed
can be a frustration factor) and in terms of allowing them to
do their jobs appropriately. (You don’t want phone calls back-
ing up for an order entry clerk because the system takes too
long to approve the current order.)

You must often balance performance against some of the other con-
siderations, because the features that can give better performance
often degrade other desirable aspects of the system.

If users all have very powerful workstations and the server’s resources
are limited, for instance, performance might improve if more pro-
cessing were delegated to the server.

Putting more processing logic on the workstations might compro-
mise maintainability, however, because there would be more distrib-
ution problems when a change was needed, because it would be
likely that the elements needing maintenance would reside on the
users’ systems.

Improving performance may, however, have a positive effect on con-
siderations of scalability, as described in the section titled “Scalability.”

Maintainability
The two basic rules for better system maintainability may seem to
contradict each other:

á Centralize the location of services whenever possible so that
there are as few copies of the same software entity as possible
(preferably, only a single copy). This centralization means that,
if a component breaks, you have very few locations where you
need to replace it with the fixed version.

04 002-8 CH 01 3/1/99 7:38 AM Page 24

á Break services into smaller components that have completely
well-defined interfaces. Such modularization will keep prob-
lems isolated to very specific areas, making them easier to track
down and fix. With well-encapsulated, smaller modules, the
chances are smaller that a problem will affect a large area of the
application and that fixing it will have complex ramifications.

The apparent contradiction between these two rules can be resolved
by stating them together as a single, simpler rule:

á Break services into smaller, encapsulated components and put
them all in a centralized location.

This drive toward more encapsulated, more specialized components
has been part of the general movement away from the simple
client/server (two-tier) Enterprise Application Model toward a three-
tier and finally an n-tier model. The rationale for such multiplication
of tiers in terms of maintainability lies in the following reasoning:

If you want to centralize processing, you need to take more process-
ing away from the client (a “thin client”). This would imply at least
another tier (a “business services tier” in addition to the more tradi-
tional “data tier”) on the server.

If you want to break services down into a number of components,
once again you multiply the number of tiers as follows:

á The business tier might break up into several components.

á The data tier could split into a back-end data tier (representing
the database server itself, such as SQL Server) and a business
data-access tier (representing customized data access procedures
to be used by the data objects). The section titled “Designing
VB Data-Access Components for a Multitier Application” dis-
cusses data-access component design in more detail.

The method of deployment, or distribution, to users also affects
maintainability. If it is harder to get changes out to users, the solu-
tion is inherently more difficult to maintain.

Therefore, a solution that must be distributed to users on disks and
that depends on the users to run a setup routine will be less main-
tainable than a solution that is implemented as an Internet down-
load, because the Internet download happens automatically as soon
as a user connects to the application’s Web page.

Chapter 1 DEVELOPING THE CONCEPTUAL AND LOGICAL DESIGN AND DERIVING
THE PHYSICAL DESIGN 25

04 002-8 CH 01 3/1/99 7:38 AM Page 25

26 Par t I VISUAL BASIC 6 EXAM CONCEPTS

An even more maintainable solution is one that doesn’t depend on
any user action at all to effect changes. Such solutions would be con-
tained in tiers that reside entirely on a server. When developers need
to make changes, they just replace components on the server without
having to require any action from the users.

Extensibility
In the context of VB itself, extensibility means the capability to inte-
grate other applications (such as Visual SourceSafe, Component
Object Manager, Visual Data Manager, and many others) into the
development environment.

In the context of the VB certification exam objectives, however,
extensibility is best understood as the capability to use a core set of
application services for new purposes in the future, purposes which
the original developers may not have foreseen.

The following list details some of the ways that you might achieve
high extensibility in your design:

á Break services into smaller, encapsulated components and put
them all in a centralized location. Note that this particular
technique for extensibility is identical to the chief technique
for ensuring maintainability, as discussed earlier.

Smaller components, representing smaller units of functional-
ity, are more likely to be reusable as the building blocks in new
configurations. To make the components more flexible, they
should be highly parameterized so that their behavior can be
controlled more flexibly by client applications.

á COM components implemented through ActiveX on the
server always make for good extensibility, because COM com-
ponents can be programmed from many platforms. This leaves
your system more open to unforeseen uses in the future.

á If your solution is Web-based and you cannot predict the type
of browser that the users will employ, consider using the tech-
nology of IIS applications (WebClasses) as described in
Chapter 17. Because IIS applications prepare standard Web
pages server-side before transmitting them to the client, they
are independent of the type of browser used by the client.

04 002-8 CH 01 3/1/99 7:38 AM Page 26

Scalability
Scalability refers to the ease with which an application or set of ser-
vices can be moved into a larger or more demanding environment.

A client/server or n-tier application is said to scale well if any of the
following can happen with little impact on the system’s behavior or
performance:

á The number of users can increase.

á The amount of system traffic can increase.

á You can switch the back-end data services or other services
(usually in the direction of more powerful processing engines).

You can look at scalability as a specialized aspect of performance. It
should therefore come as no surprise that measures to improve per-
formance might also improve scalability, such as the following:

á Putting more business-rule processing in the user-interface tier
on local workstations. Of course, this measure is usually a bad
idea for other considerations (such as maintainability).

á Using a DHTML application, as described in Chapter 17.
This provides a more maintainable way to offload processing
to workstations. A DHTML application provides an ActiveX
DLL component that downloads to the user’s workstation
when the user opens a Web page with Internet Explorer. You
could include business rules in this ActiveX component and
thereby put less demand on server resources as more users
begin to use the system.

á Partitioning data access into a data tier (the actual database
server, such as SQL Server) and one or more data-access tiers.
This will allow the data server to be more or less painlessly
switched out, perhaps with only a recompile of the data-access
tier to point to a different data-access library or data engine, or
maybe even just a change in initialization files or Registry
entries.

á Using other data-access techniques that offload processing
from the server to workstations.

Chapter 1 DEVELOPING THE CONCEPTUAL AND LOGICAL DESIGN AND DERIVING
THE PHYSICAL DESIGN 27

04 002-8 CH 01 3/1/99 7:38 AM Page 27

28 Par t I VISUAL BASIC 6 EXAM CONCEPTS

This would include the use of client-side servers and offline
batch processing, as described in detail in Chapter 9.

á Splitting processing into multiple component tiers. This opens
the door to moving these tiers to different servers in the future,
thus relieving the load on a particular server.

Availability
Optimum availability of a solution means that it can be reached
from the most locations possible and during the greatest possible
amount of time.

Availability is therefore affected by the method of deployment:

á Local

á Network

á Intranet

á Internet

The best choice for availability depends on the nature of the solution
and on the usage scenarios for the solution.

For a desktop application, local availability might be perfectly
acceptable. If the users are mobile laptop users, then Internet
availability might be the best bet.

Security
Security is the most readily understandable issue of all those men-
tioned here.

For best security, a system’s services should be centralized in a single
physical location (to simplify administration and give less slack to
would-be violators of security). Such a requirement might conflict
with availability, scalability, and performance needs.

04 002-8 CH 01 3/1/99 7:38 AM Page 28

DESIGNING VB DATA-ACCESS
COMPONENTS FOR A MULTITIER
APPLICATION

. Design Visual Basic components to access data from a data-
base in a multitier application (70-175 and 70-176).

The role of the data-access component is central to the n-tier
application model.

In the standard client/server model, the components are divided into
the following:

á A client component, usually residing on local workstations and
containing a user interface and business rules.

á A server component that implements data access.

In the standard three-tier model, the components are as follows:

á A client component containing the user interface services

á A business logic component containing business rules

á A data-access component

In an n-tier model, the components are as follows:

á A client component containing the user interface services

á One or more business logic components that implement
various broad areas of business rules

á One or more business data access components that mediate
between the business logic components and the data-services
component

á A data-services component that provides data to the data-
access components

In the context of VB6 development, a data-access component will
typically be a COM component exposing one or more data-aware
classes, as either of the following:

Chapter 1 DEVELOPING THE CONCEPTUAL AND LOGICAL DESIGN AND DERIVING
THE PHYSICAL DESIGN 29

04 002-8 CH 01 3/1/99 7:38 AM Page 29

30 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á An ActiveX EXE (an out-of-process component) running on a
server

or

á An ActiveX DLL (an in-process component) running on a
server under Microsoft Transaction Server

An important consideration for implementing individual data
manipulation facilities is the decision about whether to locate them

á With the data itself. In a SQL Server environment, for exam-
ple, this would take the form of stored procedures or triggers.

or

á In a separate data-access component, as discussed earlier.

DESIGNING PROPERTIES, METHODS,
AND EVENTS OF COMPONENTS

. Design the properties, methods, and events of components
(70-175 and 70-176).

Because you will essentially implement VB-created components
through classes, you will create the three types of members that are
available to a VB programmer in all component programming.
These three member types are as follows:

á Properties

á Methods

á Events

The following sections discuss the design of these three member types.

Designing Properties of Components
To identify component properties, you need to identify a compo-
nent’s attributes.

N
O

T
E Further References For Creating

Data-Access Components This book
discusses how to create data-aware
components in Chapter 13, “Creating
ActiveX Controls,” and how to create
COM components in Chapter 9,
“Creating Data Services: Part 2.”

N
O

T
E Further Discussion of How to

Implement Component Members
The following sections discuss the
design of component members (prop-
erties, methods, and events). Other
locations in this book discuss the
actual programming of component
members. See Chapter 12, “Creating
a COM Component that Implements
Business Rules or Logic,” and Chapter
13, “Creating ActiveX Controls.”

04 002-8 CH 01 3/1/99 7:38 AM Page 30

You will derive properties in different ways:

á Re-examine the usage scenarios for aspects of the objects that
the application needs to track. These attributes will be good
candidates for object properties. A usage scenario may speak of
looking up a customer’s credit balance, for example. This
would imply that Credit Balance is a property of the Customer
object. More subtly, it would also mean that you need a
unique way to identify each customer: Customer ID would
therefore be another property.

á As you validate the Logical Model during the component design
process, you will find that items you may have initially identified
as business objects in their own right are really attributes of other
objects. During logical design, the nouns “Customer” and
“Contact Person” may be identified as objects, for example.
Further consideration will uncover the fact that a Contact Person
is best stored as an attribute of a customer. You would therefore
specify Contact Person as a property of the Customer object.

Designing Methods of Components
A method is an action or behavior that the object performs.

You can identify an object’s methods by

á Reviewing the usage scenarios. Behaviors of objects that the
usage scenarios mention can become methods.

á Identifying interactions between objects. When an object
needs to cause a second object to do something, you have
identified a method of the second object.

Designing Events of Components
An event is a message or notification that an object sends to the
system and that can be detected.

One way to identify events is to review the methods that you have
defined for an object. If it is clear that a method should run in
response to some other behavior in the system (either from the same
object or from another object), you have identified an event.

Chapter 1 DEVELOPING THE CONCEPTUAL AND LOGICAL DESIGN AND DERIVING
THE PHYSICAL DESIGN 31

04 002-8 CH 01 3/1/99 7:38 AM Page 31

32 Par t I VISUAL BASIC 6 EXAM CONCEPTS

You can design events to encapsulate the behavior of objects to make
it unnecessary for objects to manipulate each other directly.

If an object such as SalesOrder completes some action, such as com-
pleting a detail-line entry, for example, it might require a second
object, Inventory, to update its QuantityOnHand property. The
Inventory object might have an UpdateQOH method. Instead of
requiring the SalesOrder object to have direct knowledge of the
Inventory object and its methods, you could define an event for the
SalesOrder object, EntryComplete, that would signal a change to the
SalesOrder object. A programmer using your component could then
decide how to react to that event, perhaps by calling the UpdateQOH
method.

IMPLEMENTING LOAD BALANCING

. Implement load balancing (70-175).

Load balancing is the process by which server workload is spread
among two or more server computers to prevent overload on a single
server. With load balancing, a client makes a request for work as if a
single server is involved; instead, more than one server can handle
the request for the client.

There are two types of load balancing: static and dynamic, compared
as follows:

á In static load balancing, a client always goes to the same server
for tasks. The server that handles a client’s requests is hard
coded at the client site. Load balancing can be controlled by
changing settings on the client machine or by routing new
clients to new servers.

With static load balancing, if a particular server is unavailable,
the clients using that server cannot continue to work unless
they are reconfigured to point to an available server.

04 002-8 CH 01 3/1/99 7:38 AM Page 32

á With dynamic load balancing, each time a client requests
server-side work, a different server can handle the task. When
the client makes a request, that request goes to a referral server,
which in turn redirects the request to a server that can handle
the workload. The referral server monitors the workload of
each server and balances work requests based on the workload.

With dynamic load balancing, if one server becomes available,
clients do not have to be reconfigured. The referral server han-
dles redirection of requests.

Load balancing decisions therefore have the following design impli-
cations for software solutions:

á Performance can be better with static load balancing, because
requests do not have to be routed through a referral server.

á Availability can be better with dynamic load balancing, because
if a server is unavailable, its requests are just shifted to another
server that is available. With static load balancing, if a server
becomes unavailable, the clients must be reconfigured to point
to a different server.

á Scalability can be better with dynamic load balancing, because
the referral server will automatically allocate requests depend-
ing on available resources.

In conclusion, if your system will be extremely stable, with little
change anticipated in its configuration or scale and with highly
dependable servers, static load balancing might be an option,
because it would provide a performance advantage.

If the system needs to scale in the foreseeable future, or if there are
factors that affect dependability or servers or server configuration,
however, dynamic load balancing should be your choice.

Chapter 1 DEVELOPING THE CONCEPTUAL AND LOGICAL DESIGN AND DERIVING
THE PHYSICAL DESIGN 33

04 002-8 CH 01 3/1/99 7:38 AM Page 33

34 Par t I VISUAL BASIC 6 EXAM CONCEPTS

CASE STUDY: SALES-ORDER ENTRY SYSTEM

Availability is also an issue, going hand in hand
with scalability, because the business objects
implemented by this system will need to be avail-
able to growing numbers of new users in the
future in different locations.

The system must be extensible as well, because
different groups of users in the future may have
different needs that require different user inter-
faces and perhaps even enhanced sets of busi-
ness rules.

A secondary requirement would then be maintain-
ability, because the dynamic nature of the envi-
ronment implies that there may be numerous
far-reaching changes and enhancements to the
system in the future.

D ES IG N SPEC I F IC AT IO N
Because of the high need for extensibility and
maintainability, you will definitely want a multitier
application divided into at least the following
components:

• A client-side user interface tier, which you
might consider implementing as a DHTML
application over the corporate intranet. This
would enable you to offload some business-
rule processing from network servers to
those high-powered client workstations.
Less server-side activity would improve
scalability, because increases in user
population would create less of an increase
in demand on server resources.

NEEDS
Your company wants a new order processing sys-
tem that will make available data from its legacy
corporate mainframe system to users in a net-
worked Windows NT environment. Eventually
(exact timetable is uncertain) the legacy data-
base will be converted to SQL Server.

Individual users will have state-of-the-art worksta-
tions with the fastest available processors and a
lot of memory.

Management anticipates high growth for the sys-
tem, both because business itself will increase,
creating the need for new data-entry personnel,
and because users from other departments will
begin to use the system as the business opera-
tions become more integrated. Marketing,
finance, and accounting groups (and possibly oth-
ers as well) will access the same data at some
point in the future, and their exact needs are
unknown at the moment.

Again, management has not decided at what
point in the system’s development that the cut-
over from the legacy database storage to SQL
Server will happen.

REQU IREMENTS
The major concerns for this scenario seem to be
scalability, availability, and extensibility, with per-
haps a secondary need for good maintainability.

Scalability is an issue, because rapid growth in
the number of users and connections could over-
whelm a single server before management has a
chance to upgrade hardware to keep pace with
demand.

04 002-8 CH 01 3/1/99 7:38 AM Page 34

Chapter 1 DEVELOPING THE CONCEPTUAL AND LOGICAL DESIGN AND DERIVING
THE PHYSICAL DESIGN 35

CASE STUDY: SALES-ORDER ENTRY SYSTEM

• A data-access tier separate from the data-
services tier. This would help insulate the
business logic tiers from changes in the
back-end data-services tier when the cut-
over from the legacy data services to SQL
Server happens. You could write the data-
access tier as a COM component exposing
a set of data-aware object classes. The
actual data-access technology would be pri-
vate to the object classes, so the business
logic clients would need no change if the
data-access technology changed when the
data-services tier changed.

• A data-services tier, which would initially be
the legacy database engine and would at
some point be replaced by SQL Server. It
would be best to implement as few data
integrity or business rules at this level in the
legacy database engine, because any such
implementation would have to be re-created
in SQL Server when the cut-over happened.

The DHTML solution would at the same
time preserve maintainability, because the
DHTML application download could be
updated in the server deployment files and
automatically would download the updated
files when users connect with their
browsers. Finally, the DHTML client-side
interface could be split into several ver-
sions for different user groups, and thus
provide high extensibility as well.

• One or more business logic tiers, which
may split in the future depending on the
needs of new groups of users. This would
enhance extensibility. The business logic
tiers could be implemented as out-of-
process COM components for best main-
tainability and extensibility. When business
logic required a change, you could just swap
out the old components for their new and
improved counterparts.

04 002-8 CH 01 3/1/99 7:38 AM Page 35

36 Par t I VISUAL BASIC 6 EXAM CONCEPTS

This chapter covered the following topics:

á Microsoft development concepts

á Deriving logical design from conceptual design

á Business objects

á Deriving physical design from logical design

á Performance, maintainability, extensibility, scalability,
availability, and security

á Designing VB data-access components for a multitier
application

á Designing properties, methods, and events of components

á Implementing load balancing

CHAPTER SUMMARY

KEY TERMS
• Availability

• Business object

• Conceptual design

• Enterprise Application Model

• Enterprise Development Model

• Extensibility

• Load balancing

• Logical design

• Maintainability

• Performance

• Physical design

• Scalability

• Security

• User scenario

04 002-8 CH 01 3/1/99 7:38 AM Page 36

A P P LY YO U R K N O W L E D G E

Review Questions
1. Where does the user interface component of an

application normally reside in a system’s architec-
ture? Why?

2. Where does the data-access interface component
of an application normally reside in a system’s
architecture? Why?

3. How can striving for a “thin client” improve
maintainability of a software solution but
possibly hurt scalability?

Exam Questions
1. A software solution that you will implement on

your corporate network will need to enforce the
following restrictions:

• The value of a new customer order as well as
the sum of the customer’s outstanding bal-
ance cannot exceed the customer’s assigned
credit limit.

• The customer must pay shipping charges for
any order weighing more than 16 pounds.

How should you implement these constraints?

A. As stored procedures and triggers in the
database

B. As part of an independent data-access
component

C. As part of a business-rules component

D. As part of the user-interface component

2. You are implementing a system that runs with
data from a legacy database. At some point in the
future, the system will cut over to a SQL Server
database. What is your best choice for imple-
menting the data-access component?

A. Implement as a COM component exposing
data-aware classes for accessing the data from
any business logic tiers. Reprogram, recom-
pile, and swap out this component on the
network server when the cut-over happens.

B. Implement as a COM component running on
users’ workstations. Change the network-based
setup package when the cut-over happens and
request users or system administrators to rerun
the setup.

C. Implement as executable running on users’
workstations. Email the new executable to
users or system administrators when the cut-
over happens, including instructions about
where to copy the executable.

D. Implement as stored procedures in the origi-
nal database. Translate these stored procedures
to SQL Server stored procedures and triggers
in the new system.

E. Implement as a downloadable component in
a browser-based user interface. When the
data-access method changes, change the com-
ponent and place it on the intranet server
where the users’ browsers will automatically
download it and update the users’ systems.

3. You are going to implement a new call-tracking
system for users in the central office. The design
calls for the following components:

• A user-interface services tier

• A business-rules tier

Chapter 1 DEVELOPING THE CONCEPTUAL AND LOGICAL DESIGN AND DERIVING
THE PHYSICAL DESIGN 37

04 002-8 CH 01 3/1/99 7:38 AM Page 37

38 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

• A data-access tier

• A data-services tier

Your best choice for implementing the data-access
tier would be as

A. A DHTML application

B. An IIS application

C. A COM component on the network server

D. A standard executable distributed on user
workstations

4. You are implementing a solution for a custom job
estimating system.

Essentially, the users need to use the system to
enter requirements from customers, and the sys-
tem can then look up historical information that
most closely matches the customer requirements,
providing an overall cost estimate based on past
jobs that match the current one.

The users are all located at the company’s head-
quarters and have state-of-the-art workstations
connected to the same Windows NT network.

Customer inquiry volume is very high, and users
need to be able to enter information quickly and
get results immediately so that they can quickly
give quotes to customers and then move on to
the next call.

The organization expects high growth in the
short- to mid-term and therefore may double or
triple the number of users on the system within
the next year.

You decide to implement the system as a three-
tier system, with

• SQL Server as the data-services tier on the
back end

• A data-access tier residing on the network as a
COM component exposing data-aware classes
to perform general data access routines

• A “thick client” tier that resides as a stand-
alone executable on users’ workstations and
combines user interface and business logic

Which of the following concerns does this solu-
tion address? (Pick all that apply.)

A. Maintainability

B. Scalability

C. Security

D. Extensibility

E. Performance

F. Availability

5. A software solution that you will implement on
your corporate network will need to enforce the
following restrictions:

• Each sales order must be assigned to exactly
one customer and one customer alone.

• No two sales orders in the system can have
the same order number.

How should you implement these constraints?

A. As stored procedures and triggers in the
database

B. As part of an independent data-access
component

C. As part of a business-rules component

D. As part of the user-interface component

04 002-8 CH 01 3/1/99 7:38 AM Page 38

A P P LY YO U R K N O W L E D G E

6. You are implementing a solution that will allow
your organization’s employees to enter their
weekly hours into the corporate time-and-billing
database.

Some of the employees will be at remote loca-
tions and can only connect to your network
remotely from their PCs. There is also a wide
variation in the power of the hardware that is
available on employee workstations.

You decide to implement this solution as an IIS
application over the corporate Web server.

Which of the following concerns does this solu-
tion satisfy? (Pick all that apply.)

A. Maintainability

B. Scalability

C. Availability

D. Extensibility

E. Performance

F. Security

7. A software solution that you will implement on
your corporate network will need to enforce the
following restrictions:

• All alphanumeric data should be stored in
uppercase.

• Product dimensions will be displayed and
entered in centimeters, with up to three deci-
mal places of precision.

How should you implement these constraints?

A. As stored procedures and triggers in the
database

B. As part of an independent data-access
component

C. As part of a business-rules component

D. As part of the user-interface component

8. Which considerations might affect load balancing
decisions? (Pick all that apply.)

A. Maintainability

B. Scalability

C. Security

D. Extensibility

E. Performance

Answers to Review Questions
1. The user interface component of an application

normally resides on client workstations, because it is
the part that actually provides the user connection
to the rest of the system. See “Designing VB Data-
Access Components for a Multitier Application.”

2. The data-access interface of an application nor-
mally resides on the server so that it can provide
consistent service and server resource manage-
ment. It is also more maintainable if it resides in a
single central location. See “Designing VB Data-
Access Components for a Multitier Application,”
“Availability,” and “Maintainability.”

3. A “thin client” (that is, a workstation client that
implements as little functionality as possible) can
improve a software solution’s maintainability,
because more processing will be implemented on
servers. Such centralization of functionality means
that there are less locations where software changes
have to be distributed. By putting more processing
burden on servers, however, performance can
degrade dramatically as more demand is placed on
the server through the addition of new users. See
“Maintainability” and “Performance.”

Chapter 1 DEVELOPING THE CONCEPTUAL AND LOGICAL DESIGN AND DERIVING
THE PHYSICAL DESIGN 39

04 002-8 CH 01 3/1/99 7:38 AM Page 39

40 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Answers to Exam Questions
1. C. A business-rules component is the best place to

enforce constraints such as customer credit enforce-
ment and shipping charge rules. Both constraints
are clearly part of the way that the organization does
business. These rules could change over time, or
even change in different directions for different parts
of the same organization. For more information, see
the sections titled “Maintainability,” “Designing VB
Data-Access Components for a Multitier
Application,” and this chapter’s case study.

2. A. A COM component with data-aware object
classes is the best solution for implementing a data-
access component whose data-access platform will
change in the future. This provides the best main-
tainability, because it isolates the other tiers from
needing to be aware of the type of data access that’s
needed. B (COM component on workstations)
would be an inferior solution, because it would give
you the proverbial “maintenance nightmare” by
requiring many individuals (at assuredly varying
levels of system competence) to perfectly perform
the same action at the same time. C is even more
laughably inadequate, for the same reasons. D is
inappropriate because it mixes the functions of the
data-services tier itself (data-integrity rules) with the
data-access methods specific to the application
itself. It also might be trickier than you think to
transfer all the rules in stored procedure from one
DBMS platform to another. E doesn’t require any
conscious user interaction, but the location of the
data-access component itself will probably be a per-
formance drag, because all data access will have to
take place across network boundaries. For more
information, see the sections titled
“Maintainability,” “Performance,” “Designing VB
Data-Access Components for a Multitier
Application,” and this chapter’s case study.

3. C. A COM component with data-aware classes
would be the best choice for implementing a data-
access tier for centralized users. Although an IIS
application could be a part of the solution
described in the question, it is not really appropri-
ate for a data-access tier, but rather perhaps a user-
interface tier. The same could be said of a DHTML
application and of a standard client-side executable.
For more information, see the sections titled
“Maintainability,” “Performance,” “Designing VB
Data-Access Components for a Multitier
Application,” and this chapter’s case study.

4. B, E. The somewhat surprising “thick client” solu-
tion that implements user interface and business
rules on the client workstation best addresses con-
cerns of scalability and performance. The key to
both these considerations is the fact that such a
design will offload a lot of processing to client
workstations, which in the scenario are described as
being quite powerful (and so capable of handling
the extra work). The network will be less likely to
bottleneck because more users are quickly added to
the system (so scalability is served); performance
will also degrade less, because individual worksta-
tions will be more responsible for the performance
for each user. This solution definitely does not
address maintainability, because it will be harder to
make changes to business-logic components that
are scattered over many user workstations and are
intertwined with the user interface. For more infor-
mation, see the sections titled “Maintainability,”
“Scalability,” and “Performance.”

5. B. An independent data-access component is the
best place to enforce rules of referential integrity,
such as those mentioned in this scenario. If there
were no separate data-access component, A (stored
procedures and triggers) would be the best choice.

04 002-8 CH 01 3/1/99 7:38 AM Page 40

A P P LY YO U R K N O W L E D G E

In this case, however, because an independent
data-access component is one of our options, you
should normally favor that location. For more
information, see the section titled “Designing VB
Data-Access Components for a Multitier
Application” and this chapter’s case study.

6. A, C, E. An IIS application solution would favor
maintainability (it’s centralized and therefore easily
changeable), availability (any user with a Web con-
nection and any major Web browser), and perfor-
mance from the user’s point of view, although not
for the server, because the server will be doing most
of the work. It might not be the best solution for
scalability, because it is more server intensive than a
DHTML application, and it’s probably not very
easily extensible, either, because its logic is centered
around one type of solution. Security could also
be an issue, because users are connecting to your
server and your corporate data through the Internet.

For more information, see the sections titled
“Maintainability,” “Availability,” “Performance,”
“Scalability,” “Extensibility,” and “Security.”

7. D. The constraints mentioned in the scenario are
clearly data-entry and display rules, and therefore
are best implemented as part of the user interface
component. For more information, see the section
titled “Designing VB Data-Access Components
for a Multitier Application.”

8. B, E, F. Availability, extensibility, and perfor-
mance considerations affect decisions about
whether to make load balancing static or dynamic.
For more information, see the section titled
“Implementing Load Balancing.”

Chapter 1 DEVELOPING THE CONCEPTUAL AND LOGICAL DESIGN AND DERIVING
THE PHYSICAL DESIGN 41

04 002-8 CH 01 3/1/99 7:38 AM Page 41

04 002-8 CH 01 3/1/99 7:38 AM Page 42

OBJECT IVES

2C H A P T E R

Establishing the
Development
Environment

This chapter helps you prepare for the exam by cover-
ing the following objectives:

Establish the environment for source-code
version control (70-175 and 70-176).

. The first objective requires you to have some
knowledge of Visual SourceSafe 6.0, which is bun-
dled with VB 6.0, Enterprise Edition. You can use
Visual SourceSafe to manage the files for source
code through different versions of a single project.
You can also use Visual SourceSafe to prevent con-
flicts and confusion among developers who are
working on the same project at the same time.

Install and configure Visual Basic for develop-
ing desktop/distributed applications (70-175
and 70-176).

. Although the second objective is different for the
two exams (specifying desktop applications for the
176 exam and distributed applications for the 175
exam), it amounts to the same requirement for
both exams: knowing the features available in the
various editions of VB6 and Visual Studio 6.

05 002-8 CH 02 3/1/99 7:49 AM Page 43

OUTL INE STUDY STRATEGIES

Implementing Source-Code Control
with Visual SourceSafe 45

The Nature of a Visual SourceSafe
Project 46

The Visual SourceSafe Database 46

Visual SourceSafe Administrator 47

Visual SourceSafe Explorer 51

Installing and Configuring VB for
Developing Desktop and Distributed
Applications 65

Chapter Summary 67

. Make sure you have Visual SourceSafe
installed on your system (both Visual
SourceSafe Administrator and Visual
SourceSafe Explorer). You will need access to
Visual SourceSafe Administrator (know the
Admin password) to do some of the activities
suggested here.

. In Visual SourceSafe Administrator, add a
new user (Exercise 2.1) and archive and
restore a project (see Exercise 2.4).

. Create a new Visual SourceSafe project,
either directly from VB6 (Exercise 2.2) or by
using Visual SourceSafe Explorer (Exercise
2.3). Add files to the project.

. In Visual SourceSafe Explorer or VB, practice
checking out and checking in project files
(Exercises 2.2 and 2.3).

. Review the project source-code management
scenarios discussed throughout this chapter.
Most of the exam questions relating to Visual
SourceSafe will be scenario-based.

. In Visual SourceSafe Explorer, share a pro-
ject’s files to a new project and branch the
copies (Exercise 2.3).

. Familiarize yourself with the concepts of pin-
ning and merging, as discussed in the sec-
tions titled “Pinning an Earlier Version of a
File for Use in the Current Version of a
Project” and “Merging Two Different Versions
of a File.”

. Review and compare the features of the
Learning, Professional, and Enterprise edi-
tions of VB6 as discussed in the section
titled “Installing and Configuring VB for
Developing Desktop and Distributed
Applications.”

05 002-8 CH 02 3/1/99 7:49 AM Page 44

Chapter 2 ESTABLISHING THE DEVELOPMENT ENVIRONMENT 45

INTRODUCTION

When the exam objectives refer to “establishing the development
environment,” they refer to two basic concepts:

á Source-code control

á Knowledge of the general capabilities of the various VB editions

This chapter covers both of these general concepts by discussing
Visual SourceSafe and the VB6 editions.

IMPLEMENTING SOURCE-CODE
CONTROL WITH VISUAL SOURCESAFE

. Establish the environment for source-code version control.

Version control is a term that describes the actions that software
developers must take to keep track of the physical files that go into
various versions of a software product. Version control is basically
concerned with two types of control:

á Keeping track of changes to files over time and matching the
various versions of a file with versions of a software product.

á Managing concurrent changes made by multiple developers to
a project’s files and keeping their changes from conflicting with
each other.

Visual SourceSafe has three basic components that you need to know
about to understand how it works to implement version control:

á The Visual SourceSafe database. This is the repository for the
various versions of source code and other files that Visual
SourceSafe administers. The Visual SourceSafe database stores the
files in a compressed, proprietary format. It must be visible to all
developers and administrators who need to use Visual SourceSafe.

á Visual SourceSafe Administrator. This application enables
one or more administrators to manage the Visual SourceSafe
database, to manage users of Visual SourceSafe, and to define
the users’ rights in general and also for particular projects.

05 002-8 CH 02 3/1/99 7:49 AM Page 45

46 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á Visual SourceSafe Explorer. This application resides on
each developer’s workstation. It is the main vehicle that
developers use to manage the source code stored in the Visual
SourceSafe database.

Visual SourceSafe is typically installed as an option with VB or
Visual Studio. You should make sure that the Visual SourceSafe
database is installed in a location visible to all who will need to use
it (probably on a network drive). The default name for the installed
folder is VSS. The exact location of this folder will depend on the
choices you make during Visual SourceSafe installation.

The Nature of a Visual SourceSafe
Project
A Visual SourceSafe project typically corresponds to the physical
files in a development project. Developers usually think of a Visual
SourceSafe project as containing source-code files (in the case of a
VB project, file types would include VBP, FRM, BAS, CTL, and
so forth).

A Visual SourceSafe project can contain any files important to the
project, however—such as email documents containing
correspondence, design, specification, and project-management files in
word processor format or in the formats of other software tools, as
well as the latest compiled version of the executable files created from
the source code.

The Visual SourceSafe Database
The Visual SourceSafe database contains all the files that Visual
SourceSafe maintains. Visual SourceSafe stores the files in a propri-
etary, compressed format.

You will find the Visual SourceSafe database under the main Visual
SourceSafe directory (usually named VSS) in a folder named Database.

05 002-8 CH 02 3/1/99 7:49 AM Page 46

Chapter 2 ESTABLISHING THE DEVELOPMENT ENVIRONMENT 47

You will see several files under this folder and a lot of other folders
containing many other files. You should never try to manipulate the
contents of the Visual SourceSafe database manually, because Visual
SourceSafe has its own internal scheme for managing the database.

It is possible to have multiple Visual SourceSafe databases set up in
the same environment. When administrators or developers open the
Visual SourceSafe Administrator or the Visual SourceSafe Explorer
(as mentioned in the following sections), they have a choice of
Visual SourceSafe databases.

Figure 2.10 in the section titled “Using Visual SourceSafe Explorer”
illustrates the choice of databases for a user in Visual SourceSafe
Explorer.

A Visual SourceSafe administrator can also archive and restore Visual
SourceSafe databases, as discussed further in the section titled
“Archiving and Restoring Visual SourceSafe Databases.”

Visual SourceSafe Administrator
You can use Visual SourceSafe Administrator to

á Set up and remove users of Visual SourceSafe and set their
Visual SourceSafe passwords.

á Assign rights to users of Visual SourceSafe for specific projects
or in general.

á Set options for Visual SourceSafe projects.

á Archive and restore Visual SourceSafe projects in specific
Visual SourceSafe databases.

á Set options for the general behavior of Visual SourceSafe.

To answer SourceSafe-related questions in the exam, you will need to
know about some of these administrative functions:

á Archiving and restoring VSS databases

á Setting up VSS users

The following sections discuss these two topics.

05 002-8 CH 02 3/1/99 7:49 AM Page 47

48 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Archiving and Restoring Visual SourceSafe
Databases
You can use Visual SourceSafe Administrator to archive projects that
have fallen out of use. You can also restore projects if you need them
back again.

To archive a Visual SourceSafe project, you should follow these steps:

S T E P B Y S T E P
2.1 Archiving a Visual SourceSafe Project

1. Open Visual SourceSafe Administrator.

2. Choose Archive, Archive Projects from the Visual
SourceSafe Administrator menu.

3. The Choose Project to Archive dialog box shows a tree of
Visual SourceSafe projects and subprojects. Select a project
to archive from the tree and click OK. This will take you
to Screen 1 of the Archive wizard, shown in Figure 2.1.

4. If you want to archive more projects, click the Add button
on the first screen of the Archive wizard to choose addi-
tional projects, repeating this step until you have indicated
all the projects that you want to archive. After you have
finished, click the Next button.

5. On Screen 2 of the Archive wizard, use the Browse button
to define a location and a name for the file where you
want to save the archived projects’ information. (The
archive file’s extension, .SSA, will be supplied automati-
cally). See Figure 2.2.

6. Choose one of the three archive options:

• Save data to file

• Save data to file, then delete from database to save
space

• Delete data permanently

F IGU R E 2 .1▲
Adding a project to archive from the Archive
wizard.

F IGU R E 2 .2▲
Specifying an archive file from Screen 2 of the
Archive wizard.

05 002-8 CH 02 3/1/99 7:49 AM Page 48

Chapter 2 ESTABLISHING THE DEVELOPMENT ENVIRONMENT 49

8. Archive wizard will then archive your data and inform you
of its success (see Figure 2.4).

To restore a Visual SourceSafe project, follow these steps:

S T E P B Y S T E P
2.2 Restoring a Visual SourceSafe Project from

Archive

1. Choose the Archive, Restore Projects menu option.

2. On Screen 1 of the Restore wizard, browse to the Visual
SourceSafe archive (SSA) file that you want to restore, and
click the Next button (see Figure 2.5).

3. On the screen for step 2, choose the projects from the
archive that you want to restore (see Figure 2.6).

, F IGURE 2 .3
Screen 3 of the Archive wizard.

F IGURE 2 .4▲
Archive wizard’s closing prompt.

7. Set any other archiving options on Screen 3 of the
Archive wizard, and then click the Finish button (see
Figure 2.3).

F IGURE 2 .5▲
Specifying an existing Archive file to restore from.

05 002-8 CH 02 3/1/99 7:49 AM Page 49

50 Par t I VISUAL BASIC 6 EXAM CONCEPTS

4. On the screen for step 3, select where you would like the
project restored. Click the Finish button and wait for the
Restore wizard’s notification of success (see Figure 2.7).

F IGU R E 2 .6.
Specifying the projects that you want to restore.

F IGU R E 2 .7.
Step 3 of the Restore wizard.

You can use the Archive/Restore feature of Visual SourceSafe to
transfer projects between two Visual SourceSafe databases. To trans-
fer a project from one Visual SourceSafe database to another, follow
these steps:

1. Archive the project from the database where it originally
existed (the source).

2. Restore the archived project to the destination database.

05 002-8 CH 02 3/1/99 7:49 AM Page 50

Chapter 2 ESTABLISHING THE DEVELOPMENT ENVIRONMENT 51

Using Visual SourceSafe Administrator to
Set Up and Maintain Users
Although Visual SourceSafe Administrator can leave most general
Visual SourceSafe settings at the installed default values, there is one
task that you must perform in Visual SourceSafe Administrator for
Visual SourceSafe to function properly: setting up users.

Developers cannot have access to Visual SourceSafe Explorer and
the projects contained in the Visual SourceSafe database unless they
have a logon account for the Visual SourceSafe database.

To set up a user for access to the Visual SourceSafe database, follow
these steps:

S T E P B Y S T E P
2.3 Setting Up a User with Visual SourceSafe

Administrator

1. Open Visual SourceSafe Administrator and choose Users,
Add User from the main menu to bring up the Add User
dialog box (see Figure 2.8).

2. Fill in the logon ID for the user whom you are setting up.

3. Assign a password.

4. If you don’t want the user to be able to change informa-
tion stored in the Visual SourceSafe database, check the
Read Only box as well.

5. Click OK to close the dialog box and create the user
account.

Visual SourceSafe Explorer
When you run Visual SourceSafe Explorer, the first thing that you
see depends on how the administrator set up your Visual SourceSafe
account:

F IGURE 2 .8
Adding a SourceSafe user account.

N
O

T
E Visual SourceSafe Security and

Windows Security Visual
SourceSafe Explorer will automatically
try to use the Windows user ID and
password to log on a user who runs
Visual SourceSafe Explorer. If the user
ID and password match a user ID and
password in Visual SourceSafe, the
user will receive no logon prompt to
Visual SourceSafe Explorer.

05 002-8 CH 02 3/1/99 7:49 AM Page 51

52 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á If the Visual SourceSafe administrator set up a user with the
same name and password as your Windows logon and pass-
word, Visual SourceSafe Explorer will proceed immediately to
the main screen.

á Otherwise, Visual SourceSafe Explorer will present you with
the logon screen shown in Figure 2.9. In this case, you will
need to supply a valid Visual SourceSafe logon/password com-
bination as set up by the Visual SourceSafe administrator.

You can also click the Browse button on the logon screen to choose
from all the Visual SourceSafe databases recognized by Visual
SourceSafe on your system (see Figure 2.10). You can also wait until
you see the main Visual SourceSafe screen, and select the File, Open
SourceSafe Database from the menu to choose a different database.

Following is a list of some of the things that you can do with a pro-
ject’s files in Visual SourceSafe Explorer:

á Set working folder. You can specify the physical location on
your system where you want to put a project’s files when you
view them or work with them.

á Check out. You can get a writable copy of a file from the
SourceSafe database. Normally, only one developer at a time
can check out a given file.

á Check in. You can return a modified copy of a file to the
SourceSafe database. The modified file is now available for
other developers to check out.

á Get working copy. You can get a read-only copy of a file from
the Visual SourceSafe database. Anyone can get working copies
of a file, even if someone else currently has it checked out.

á Label. You can designate versions of one or more files in a
project with a label of your choosing. You can get copies of all
the files designated with a single label and thus reproduce a
particular version of a project.

á Share. You can share the same copy of one or more files
between various projects.

á Branch. You can break the link between shared copies of the
same file so that you can then develop the copies independently.

F IGU R E 2 .9▲
Logging on to Visual SourceSafe Explorer.

F IGU R E 2 .10▲
Choosing a Visual SourceSafe database.

05 002-8 CH 02 3/1/99 7:49 AM Page 52

Chapter 2 ESTABLISHING THE DEVELOPMENT ENVIRONMENT 53

á Pin. You can freeze a particular version of a file or project so
that no more changes can be made to it.

á Difference. You can view the differences between two differ-
ent versions of a file.

á Merge. You can merge two different versions of a file together.
You can view each difference and decide how to merge.

The following sections discuss many of these activities.

Because certification exam questions on Visual SourceSafe focus on
concepts rather than techniques, some of the activities are not dis-
cussed, or are only described in general.

Creating a New Project Folder in Visual
SourceSafe
The structure for storing Visual SourceSafe projects looks somewhat
like the Windows File Folder tree as presented by Windows Explorer
(see Figure 2.11).

F IGURE 2 .1 1
The project tree in Visual SourceSafe Explorer.

All projects in the Visual SourceSafe database are stored under a
root folder (denoted by a folder labeled “$/” at the top of the tree
hierarchy).

To add a new project to Visual SourceSafe, follow these steps:

05 002-8 CH 02 3/1/99 7:49 AM Page 53

54 Par t I VISUAL BASIC 6 EXAM CONCEPTS

S T E P B Y S T E P
2.4 Adding a New Project to Visual SourceSafe

1. Run and log on to Visual SourceSafe Explorer.

2. Select either the root folder ($/) or an existing project
folder. The project you create will belong under the folder
that you select.

3. Choose File, Create Project from the menu.

4. Under the Create Project dialog box, assign a name to the
project and enter any comments. Click the OK button to
create the new project’s folder in Visual SourceSafe (see
Figure 2.12).

5. Add files to the project (you may do this at a later time).
The next section describes this action in detail.

Adding Files to a Visual SourceSafe Project
Before you can use a Visual SourceSafe project, you must indicate
which files the Visual SourceSafe database will store in the project.
To add files to a Visual SourceSafe project, follow these steps:

S T E P B Y S T E P
2.5 Adding Files to a Visual SourceSafe Project

1. Select the folder of the project that you want to add files to.

2. Choose File, Add Files from the menu.

3. In the resulting Add File dialog box, browse to and select
the files that you want to add to the project. You can
either add files one at a time with the Add button, or you
can select several simultaneously with the mouse and the
Ctrl key, and then click Add (see Figure 2.13).

4. Click Close on the Add File dialog box. SourceSafe will
give you the chance to add a comment, and then you will
see the newly added files in the right-hand pane of Visual
SourceSafe Explorer (see Figure 2.14).

F IGU R E 2 .12▲
Creating a new project folder (figure shows
both the dialog box to create the folder and the
newly created folder).

F IGU R E 2 .13▲
Adding files to a project folder.

05 002-8 CH 02 3/1/99 7:49 AM Page 54

Chapter 2 ESTABLISHING THE DEVELOPMENT ENVIRONMENT 55

Setting the Working Folder for a Project
The Visual SourceSafe folders that you see when running Visual
SourceSafe Explorer are not physical folders. The Visual SourceSafe
folders are only logical folders for presenting the information about a
project in the Visual SourceSafe environment.

To check out a project’s files from Visual SourceSafe, however, you
need to associate the project’s Visual SourceSafe folder with a physi-
cal folder in your system. The physical folder that will hold copies of
files is called the Working Folder for the Visual SourceSafe folder.

If you have defined no Working Folder for a project, Visual
SourceSafe won’t let you check out files from that project or get
working copies.

To create a Working Folder for a project, choose the project in the
SourceSafe tree and select File, Set Working Folder from the main
menu. Use the resulting dialog box to browse to a folder where you
would like your copies of the project’s files to reside. You can define
a new folder on-the-fly at this point.

Each developer who uses Visual SourceSafe Explorer must define his
or her own Working Folder for a project. Therefore, each developer
can have a separate copy of the project, usually on a local drive or on
a personal area of a shared network drive.

The existence of multiple copies of the same project files may sound
to you like an opportunity for a lot of confusion. That’s where the
source-code management activities of the next section enter into the
picture.

F IGURE 2 .14
Newly added files under a SourceSafe project.

05 002-8 CH 02 3/1/99 7:49 AM Page 55

á When you check the file in, Visual SourceSafe stores the
changes that you have made to the Visual SourceSafe database.

You check the file in by selecting it under the Visual SourceSafe
project and choosing SourceSafe, Check In from the menu. A
dialog box will give you a chance to make comments (see Figure
2.16). The dialog box also enables you to decide whether to
keep the file checked out to your account and whether to
remove the local copy of the file after you have checked it in.

Visual SourceSafe also changes the permissions on the copy of
the file in your Working Folder to read-only.

56 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Checking Out, Checking In, and Getting
Working Copy
These three actions are the backbone of day-to-day Visual
SourceSafe activity. You employ them in the following manner:

á You check a file out when you intend to make changes to the
file. The Visual SourceSafe checkout process places a writable
copy of the file in your Working Folder. Usually, no one else
can check the file out until you check the file back in.

You can check a file out in Visual SourceSafe Explorer by
selecting the file in the Visual SourceSafe project and choosing
SourceSafe, Check Out from the menu. If no one else has the
file checked out, SourceSafe gives you the chance to make a
comment, checks the files out to you, and changes the file’s
icon to show that it is checked out (see Figure 2.15).

N
O

T
E Multiple Checkouts Possible on the

Same File Under certain circum-
stances, it is possible for more than
one developer to have the same file
checked out at the same time. See
the note in the section titled “Merging
Two Different Versions of a File” for
more information.

F IGU R E 2 .15.
The appearance of a checked-out file in
SourceSafe Explorer.

F IGU R E 2 .16▲
Checking a file in.

05 002-8 CH 02 3/1/99 7:49 AM Page 56

Chapter 2 ESTABLISHING THE DEVELOPMENT ENVIRONMENT 57

When you check the file in, you also have the option of keep-
ing the file checked out, as just mentioned. This has the effect
of refreshing Visual SourceSafe’s copy of the file, but keeping
it checked out to you. In this case, the copy in your Working
Folder remains writable.

On the other side of the coin, you also have the option of
checking the file in and then removing the local copy that you
were working on (also just mentioned). In this way, the most
recent version of the file is only stored in the Visual
SourceSafe database.

á If you choose Get Working File rather than Check Out, Visual
SourceSafe places a read-only copy of the file in your Working
Folder.

When developers are working together on a multifile project, the
development cycle with Visual SourceSafe goes through something
like the following steps:

1. You use Get Working Copy to place the most current copies
of all files needed to compile the project on your local system.

2. You check out the file or files that you personally will modify.

3. Because you have copies of all the project’s files (some readable
from step 1, and some writable from step 2), you can always
compile the whole project to test the changes that you are
making to the files that you are responsible for.

4. When it is time to compile and test the entire project, you
and the other developers can check in all your files (making
sure, of course, that the versions you check in run with the
rest of the project).

5. If you need to, you can keep your files checked out to con-
tinue working.

6. You can also periodically refresh your local read-only copies of
the files that other developers are working on. Just run the
Get Working Copy action on the files that you don’t have
checked out.

05 002-8 CH 02 3/1/99 7:49 AM Page 57

58 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Source-Code Labeling and Version Numbers
Visual SourceSafe can maintain a history of each check-in of a file as
well as the actual contents of all the versions of a file when the ver-
sions were checked in.

Visual SourceSafe assigns an incrementing version number (always a
whole number) to each checked-in version of a file. Visual SourceSafe
also maintains a date-time stamp that helps to identify the version.

Visual SourceSafe’s automatically assigned version numbers can be
useful for tracking the modification history of a file.

The most useful version-tracking feature of Visual SourceSafe is the
user-assigned label. A user of Visual SourceSafe can assign a label to
all the files in a project at a given moment. Later Visual SourceSafe
operations can manipulate the files as a group.

Assigning labels is one of the primary ways that you can continue to
identify a particular version of a product, even after subsequent
changes.

Although it is possible to assign labels to individual files in Visual
SourceSafe, it is more typical to label an entire project. To label the
current version of a project, follow these steps:

S T E P B Y S T E P
2.6 Labeling the Current Version of a VSS Project

1. In Visual SourceSafe Explorer, select the project.

2. Choose File, Label from the Visual SourceSafe menu.

3. In the resulting Label dialog box, type the label that you
want to give to this version of the project. Typically, this
label will be something along the lines of “Version 1.0”
(see Figure 2.17).

4. Click OK to apply the label.

F IGU R E 2 .17
Labeling a project.

05 002-8 CH 02 3/1/99 7:49 AM Page 58

Chapter 2 ESTABLISHING THE DEVELOPMENT ENVIRONMENT 59

Source-Code Sharing
When you want to share the same source code between two or more
projects, you can designate a file or files as shared. The shared files
will appear in the Visual SourceSafe folder for all projects where they
have been shared.

To share files, follow these steps:

S T E P B Y S T E P
2.7 Sharing Files from a VSS Project

1. In Visual SourceSafe Explorer, select the project to which
you want to share the files.

2. Choose SourceSafe, Share from the Visual SourceSafe
menu.

3. In the resulting dialog box, use the Projects tree to navi-
gate to the Visual SourceSafe project whose files you want
to share. Then choose the desired files so that their names
appear in the Files list (see Figure 2.18).

4. Click the Share button.

5. The selected files are now shared between the two pro-
jects. Notice that the document icon beside a shared file
appears doubled (see Figure 2.19). F IGURE 2 .18▲

Sharing files.

, F IGURE 2 .19
Files icons showing that the files are shared.

05 002-8 CH 02 3/1/99 7:49 AM Page 59

60 Par t I VISUAL BASIC 6 EXAM CONCEPTS

After programmers make changes to a shared file, the changes will
appear automatically in all the projects where the file has been shared.

If you want to find out where a file is shared, you can right-click the
file in the Visual SourceSafe window, choose Properties from the
shortcut menu, and then choose the Links tab from the Properties
dialog box.

Source-Code Branching
Sharing is appropriate when you want all subsequent changes to a
file to be reflected in each project where the file is shared.

You may want to put a copy of a file into a project, however, and
then modify the copy independently of the original.

Making a Visual SourceSafe copy of a shared file independent of the
original is called branching.

To branch a shared file, follow these steps:

S T E P B Y S T E P
2.8 Branching a Shared File in VSS

1. Select the file in the Visual SourceSafe window.

2. Choose SourceSafe, Branch from the Visual SourceSafe
menu (see Figure 2.20).

3. You will notice that the file’s icon changes: It no longer
appears doubled, but rather now appears as a simple doc-
ument icon.

The branched file now has an independent life, and any changes
you make to the file will not be reflected in the original file.

Branching can be appropriate in cases where there is an existing dis-
tributed version of a project that needs to be fixed, while at the same
time in a separate project you want to begin working on a major
new version. Imagine the following scenario, for example:

á Version 1.0 is the current production version of your
application.

F IGU R E 2 .20
Branching a file.

05 002-8 CH 02 3/1/99 7:49 AM Page 60

Chapter 2 ESTABLISHING THE DEVELOPMENT ENVIRONMENT 61

á Development team A (which may be only one person, of
course) will be responsible for ongoing patches to version 1.0
and will work on version 1.1.

á Development team B (once again, this might be a single
person—in fact, it might be the person who is development
team A, but just wearing a different hat) is responsible for the
new major release and will work on version 2.0.

To implement the preceding scenario with Visual SourceSafe, you
should take the following steps:

1. Label the project containing the files for version 1.0 if you
haven’t done so already.

2. Create a new project folder for version 2.0.

3. Share the version 1.0 files to the version 2.0 project, and
immediately branch the shared files.

4. You now have two independent projects based on version 1.0,
but the projects can now diverge along independent develop-
ment paths.

You can branch a file at the same instant that you share it by check-
ing the Branch after Share check box on the Share dialog box.

Suppose, for example, that your project contains a module that
processes sales orders. You need to create a new module that
processes purchase orders. A lot of the general logic will be the same
as the logic for processing sales orders, but the details will differ.

In this case, you will want to make a copy of the sales-order process-
ing module as a starting point for the purchase-order processing
module. As soon as you make the copy, you want to begin making
independent changes. You therefore use the Branch after Share
option at the instant that you share the files for this module.

Pinning an Earlier Version of a File for Use
in the Current Version of a Project
When you pin a version of a file, you mark that version of the file as
the version that you want to use when you check out that file for a
particular project.

05 002-8 CH 02 3/1/99 7:49 AM Page 61

62 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Pinning therefore enables you to specify an earlier version of a file
for use in the current project. This is helpful in a scenario such as
the following:

á Version 1.0 is the current production version of the product.
Version 1.0 files have been labeled in the project. They are
modules A, B, C, and D.

á Version 2.0 is in development. It uses newer versions of mod-
ules A, B, C, and D. Beta testing has begun, and these files
have been labeled with the version 2.0 stamp.

á In the meantime, version 1.0 is still in production and there is
a need to distribute version 1.1 that will fix problems in mod-
ule C of version 1.0.

á You want to be able to make changes to the bad module C of
version 1.0. At the same time, you need to move forward with
development of module C of version 2.0.

You can use a combination of sharing, pinning, and branching to
fulfill your needs (see Step by Step 2.9).

S T E P B Y S T E P
2.9 Using Share-Pin-Branch to Create a ”Service

Pack” Version While Concurrently Working on a
Newer Version

1. Share the original version 1.0 project files.

• Select the project’s folder in Visual SourceSafe
Explorer.

• Choose Tools, Show History from the Visual
SourceSafe menu to bring up the Project History
Options dialog box.

• Make sure that the Include Labels option is
checked and click the OK button. This will display
the History of Project dialog box.

• In the History of Project dialog box, select the
version labeled 1.0 (see Figure 2.21).

05 002-8 CH 02 3/1/99 7:49 AM Page 62

Chapter 2 ESTABLISHING THE DEVELOPMENT ENVIRONMENT 63

• Click the Share button to display the Share From
dialog box.

• Make sure that the Visual SourceSafe root is
selected in the Share From dialog box’s Projects
tree (see Figure 2.22), and click the OK button to
display the Share dialog box.

• In the Share dialog box, give the new project an
appropriate name, such as “Version 1.1” (see
Figure 2.23), and click OK on the Share dialog
box and Close on the History dialog box.

, F IGURE 2 .21
Selecting an older, labeled version of a project
in the History of Project dialog box.

F IGURE 2 .2 2▲
Selecting the appropriate parent project in the
Share From dialog box (usually, the root).

, F IGURE 2 .23
Naming the new maintenance project in the
Share From dialog box.

2. Open the new project’s Visual SourceSafe folder and note
that all the project’s files are automatically pinned (they
have a special pin icon). Visual SourceSafe automatically
pinned the files because the files that you shared were not
from the latest version (see Figure 2.24).

05 002-8 CH 02 3/1/99 7:49 AM Page 63

64 Par t I VISUAL BASIC 6 EXAM CONCEPTS

3. Branch the files for module C (the files that will need to
be changed).

• Select the file or files that you will need to modify
for module C.

• Choose SourceSafe, Branch from the Visual
SourceSafe menu.

• In the Branch dialog box, write any appropriate
comments, and then click the OK button to com-
plete the branching operation (see Figure 2.25).

• The branched file or files are no longer pinned, but
the files that you did not select for branching
remain pinned (see Figure 2.26).

F IGU R E 2 .24.
Pinned files in a SourceSafe project.

F IGU R E 2 .25▲
The Branch dialog box.

F IGU R E 2 .26.
A project that shows a branched file (no longer
pinned).

05 002-8 CH 02 3/1/99 7:49 AM Page 64

Chapter 2 ESTABLISHING THE DEVELOPMENT ENVIRONMENT 65

At the end of the preceding operation, you will have a new project
that contains pinned, shared files from the original project and
branched files from the original project.

Because the pinned files are still shared, they are the same as the files
in the original project. Because they’re pinned, a programmer work-
ing on the new project can’t check them out to change them.

The branched files are no longer shared, nor are they pinned. A pro-
grammer working on the new project can therefore check them out
and change them, without reflecting the changes back to the original
project.

Merging Two Different Versions of a File
Occasionally, you will need to reconcile two disparate versions of a
file in Visual SourceSafe. There are two scenarios where such a need
could occur:

á A project was branched into two projects, as described in the
section titled “Source-Code Branching.” The two projects fol-
low independent development paths from that moment on.
Somewhere down the line, however, developers discover the
need for a change (a bug fix or enhancement) that is desirable
for both projects. Developers make the change in one of the
branches and then merge the change to the other branch.

á Multiple developers have checked out the same file at the same
time and now want to check in their separate changes.

INSTALLING AND CONFIGURING VB
FOR DEVELOPING DESKTOP AND
DISTRIBUTED APPLICATIONS

. Install and configure Visual Basic for developing desktop/
distributed applications.

Practically speaking, this exam objective is the same for both exams.
Questions based on these exam objectives require you to know the
differences in the features provided with the various editions of VB6
and Visual Studio 6.0.

N
O

T
E Multiple Concurrent Checkouts

Enabled by Administrator Multiple
developers can check out the same
file at the same time if a Visual
SourceSafe administrator checks the
Allow Multiple Checkouts option on
the General tab of the SourceSafe
Options dialog box. An administrator
can invoke this dialog box in Visual
SourceSafe Administrator by choosing
Tools, Options from the Visual
SourceSafe Administrator menu.

05 002-8 CH 02 3/1/99 7:49 AM Page 65

66 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The following list of features provides the information necessary to
answer these questions:

á Visual Basic 6.0 Learning Edition

• Intrinsic controls

• Tab control

• Grid control

• Data-bound controls

á Visual Basic 6.0 Professional Edition

• All features included with the Learning Edition

• Additional ActiveX controls

• IIS Application Designer

• VB Database Tools and Data Environment

• ADO (ActiveX Data Objects)

• DHTML Page designer

á Visual Basic 6.0 Enterprise Edition

• All features included with Learning and Professional
Editions

• SQL Server

• Microsoft Transaction Server

• Internet Information Server

• Visual SourceSafe

• SNA Server

• Other BackOffice tools

05 002-8 CH 02 3/1/99 7:49 AM Page 66

Chapter 2 ESTABLISHING THE DEVELOPMENT ENVIRONMENT 67

This chapter covered the following topics:

á Using Visual SourceSafe Administrator to set up SourceSafe
user accounts

á Using Visual SourceSafe Administrator to archive and restore
projects in SourceSafe databases

á Using Visual SourceSafe Explorer to check projects in and out
of a Visual SourceSafe database

á Using Visual SourceSafe Explorer to share, pin, branch, and
merge information in development projects

á The different features of the editions of VB that developers
can use to create desktop and distributed applications

CHAPTER SUMMARY

KEY TERMS
• Branch

• Difference

• Merge

• Pin

• Share

• Version control

• Visual SourceSafe

• Working Folder

05 002-8 CH 02 3/1/99 7:49 AM Page 67

A P P LY YO U R K N O W L E D G E

68 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Exercises

2.1 Using SourceSafe Administrator

In this exercise, you use Visual SourceSafe
Administrator to administer Visual SourceSafe users.

Estimated Time: 20 minutes

If you want to have an automatic logon to Visual
SourceSafe Explorer from your workstation, the
username and password should be identical to
the username and password that you use to log
on to your Windows system.

5. Click the OK button to add the user.

6. Add another user, as in steps 3–5. Experiment
with changing the properties for this user with
the Users, Edit User and Users, and Change
Password menu choices. Finally, delete the user
by choosing Users, Delete User.

7. Examine some of the other administrative options
that are available by choosing Tools, Options
from the menu and examining the various tabs
on the SourceSafe Options dialog box.

8. Note the two check box options on the General
tab: Allow Multiple Checkouts, and Use Network
Name for Automatic User Log In. Changing
these options will change the behavior of
SourceSafe Explorer for developers.

9. Note the choices on the Project Security tab. If
you check the Enable Project Security option, the
other options will become available. These
options will determine which actions new users
can perform on projects in SourceSafe Explorer.

2.2 Using SourceSafe from the VB
Environment

In this exercise, you use features of SourceSafe that are
integrated into the VB IDE. Before doing this exercise,
you need to be sure that you have an available
SourceSafe user account, as discussed in Exercise 2.1.

Estimated Time: 20 minutes

N
O

T
E You Need Access to Visual

SourceSafe Software Tools for These
Exercises Exercises 2.1 through 2.4
require that you install SourceSafe
Administrator and SourceSafe
Explorer, which come as part of the
install package with VB or Visual
Studio. You will need to know the
Admin password for SourceSafe
Administrator. You will also need to
set up a SourceSafe user account
that you can use in Exercises 2.2 and
2.3. Exercise 2.1 shows you how to
set up a SourceSafe user in
SourceSafe Administrator.

1. Open Visual SourceSafe Administrator.

2. If this is the first time that anyone has entered
Visual SourceSafe Administrator, there will be no
logon screen, because there will be no Admin pass-
word. If someone has already set up an Admin pass-
word, you will need to know it to be able to log on.

3. To begin adding a new user, choose Users, Add
User on the menu. This brings up the Add User
dialog box.

4. Fill in the Username field and the Password
field. Leave the Read-only box unchecked.

05 002-8 CH 02 3/1/99 7:49 AM Page 68

Chapter 2 ESTABLISHING THE DEVELOPMENT ENVIRONMENT 69

A P P LY YO U R K N O W L E D G E

1. In VB, begin a new standard EXE project. On
the General tab of the Project, Options dialog
box, change the project name to
FirstSourceSafeDemo.

2. Save the project to a location on your local hard
drive, naming the default form and the project
file FirstSourceSafeDemo.frm and
FirstSourceSafeDemo.vbp, respectively.

3. If SourceSafe has been installed on your system,
you receive a prompt to add the project to
SourceSafe. Answer Yes to the prompt.

4. If you receive a SourceSafe Login screen, enter
the username and password that you created for
yourself in Exercise 2.1.

Note that you may need to select a VSS database
the first time that you log in. Make sure it is the
same database that you used in the preceding
exercise.

5. The Add to SourceSafe Project dialog box will
appear. The default project name will be the
name that you gave to the project in step 1. You
can leave the entry as is, type in a different pro-
ject name, or choose an existing SourceSafe pro-
ject. For this exercise, leave the entry as the VB
project name and click the OK button.

6. SourceSafe will prompt you that the project does
not exist in SourceSafe. Click Yes to create the
SourceSafe project.

7. The Add Files to SourceSafe dialog box appears.
Note that the files in your VB project are listed,
and all are checked. Leave them checked, and
click the OK button.

8. The FirstSourceSafeDemo project has now been
added to SourceSafe, and its files have been
checked in. Look at the project and the form in

Project Explorer and note the small padlock icon
to the left of each object. This indicates that the
file is read-only (because it has been checked in
to SourceSafe).

9. Right-click the form in Project Explorer to bring
up the form’s shortcut menu. The last four
options on the menu are SourceSafe options.
Select the Check Out option. Note that the icon
next to the form in Project Explorer now has a
red check mark in place of the padlock that you
saw in the preceding step.

10. Do something to change the form, such as
adding a command button.

11. Right-click the form again, and this time choose
Check In from the shortcut menu. Note the Check
In dialog box that appears. You can type comments
for this check-in, and you can also elect to keep the
form checked out. This will have the effect of
momentarily checking in your file, just long
enough to refresh the SourceSafe database with any
changes. The file will then remain checked out to
you so that you can continue working with it.

12. Choose Tools, SourceSafe from the VB menu and
examine the resulting submenu.

2.3 Using SourceSafe Explorer

In this exercise, you use Visual SourceSafe Explorer to
manipulate a sample project.

Estimated Time: 45 minutes

1. In VB, begin a new standard EXE project and
save its form and VBP files with the names
SecondSourceSafeDemo.frm and
SecondSourceSafe.vbp, respectively. Do not add
the project to SourceSafe from the VB environ-
ment. Exit VB.

05 002-8 CH 02 3/1/99 7:49 AM Page 69

70 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

2. Add a project to the Visual SourceSafe database
with the following steps:

• Select the Root folder (/$).

• Choose File, Create Project from the main
menu.

• Type the name of the new project,
SecondSourceSafeDemo, in the Create Project
dialog box, and press the Enter key.

• The folder for the new project should now
appear on the SourceSafe Projects tree.

3. Add files to the project with the following steps:

• Select the project folder for
SecondSourceSafeDemo.

• Choose File, Add Files from the main menu.

• On the Add File dialog box, browse to the
location of the files that you saved in the first
step of this exercise.

• Hold down the Ctrl key (for multiple selec-
tion), and select both files from the VB
project (SecondSourceSafeDemo.vbp and
SecondSourceSafeDemo.frm). Then click the
Add button.

• In the resulting Add Files dialog box, type
the comment Initial check-in and click the
OK button. If you receive a prompt to create
a Working Folder for your project, click No.
You will assign a Working Folder later in this
exercise.

• Click Close to end the Add File dialog box.

• The files you added to the project will now
appear in the right-hand pane of the Visual
SourceSafe Explorer.

4. Create a new Working Folder for the project by
following these steps:

• Select the project’s folder.

• Choose File, Set Working Folder from the
menu.

• Browse to a different folder and choose that
folder as the project’s new Working Folder.

5. Check out both files in the project with the fol-
lowing steps:

• Select both files (SecondSourceSafeDemo.frm
and SecondSourceSafeDemo.vbp) by selecting
them in the right-hand pane.

• Choose SourceSafe, Check Out from the
menu.

• In the resulting Check Out dialog box, type
the comment Checked out to add
CommandButton to form and click the OK
button.

6. In VB, open the project in the new location where
you checked it out and add a command button
to the form. Save the project and close VB.

7. In Visual SourceSafe Explorer, check the files
back in with the following steps:

• Select the project’s folder.

• Select both files.

• Choose SourceSafe, Check In from the menu.

• In the resulting dialog box, type the comment
Added CommandButton to form and click the
OK button.

05 002-8 CH 02 3/1/99 7:49 AM Page 70

Chapter 2 ESTABLISHING THE DEVELOPMENT ENVIRONMENT 71

A P P LY YO U R K N O W L E D G E

8. Create your own label to define a version with
the following steps:

• Right-click the project’s folder in the Projects
tree.

• In the resulting shortcut menu, choose Label.

• In the Label dialog box, type Version 1.0 as
the label, and click OK.

9. Share the files to another project by following
these steps:

• Create another project named
SourceSafeDemo 2.0 under the root ($/)
and select the new project’s folder.

• Choose SourceSafe, Share from the menu.

• In the resulting Share With dialog box, navi-
gate to the SecondSourceSafeDemo project
and choose its files.

• Click the Share button, and then click Close.

• You should now see the files in the second
project’s folder. Note that the document icon
next to each file appears doubled.

10. Branch the files by following these steps:

• Make sure that the SecondSourceSafeDemo
2.0 project is selected.

• Select its files in the right-hand pane.

• On the SourceSafe menu, click Branch.

• In the resulting dialog box, enter a comment
such as Version 2.0 branched from version
1.0 and click OK.

• Notice that the icon for each file changes
from the Share icon to the standard
Document icon.

2.4 Archiving and Restoring a Project in
SourceSafe Administrator

In this exercise, you archive and restore a project in
SourceSafe Administrator

Estimated Time: 20 minutes

1. Open Visual SourceSafe Administrator.

2. Choose Archive, Archive Projects from the menu.

3. On the Choose Project to Archive screen, choose
the FirstSourceSafeDemo project that you worked
with in Exercises 2.2.

4. Review your choice on Step 1 screen of the
Archive wizard. Click the Next button.

5. On the Step 2 screen of the Archive wizard,
choose the option Save data to file, then delete
from the database to save space.

6. Still on the Step 2 screen, click Browse and use
the Browse screen to choose a location and enter
a name for the archive file. (The .SAA extension
will be supplied by default, so you don’t have to
specify it.) Click the Next button to proceed to
the Step 3 screen of the Archive wizard.

7. Review the information on the Step 3 screen, and
click the Finish button. Wait until Archive wizard
gives you a message indicating success.

8. Now, you will restore the project that you just
archived.

9. Choose Archive, Restore from the menu to bring
up the Step 1 screen of the Archive wizard.

10. Click the Browse button to locate and select the
archive file that you created in the previous steps.
Then click the Next button to proceed to the
Step 2 screen.

05 002-8 CH 02 3/1/99 7:49 AM Page 71

72 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

11. Make sure the archived project is selected on the
screen for Step 2 and click the Next button.

12. On the Step 3 screen, make sure that the option
labeled Restore to the project the item was
archived from is selected. Click the Finish but-
ton. Wait until Archive wizard gives you a mes-
sage indicating success.

2.5 Investigating VB Features

In this exercise, you examine the features of VB that
enable you to develop distributed and desktop
applications.

Estimated Time: 20 minutes

1. Review the final section of this chapter,
“Installing and Configuring VB for Developing
Desktop and Distributed Applications.”

2. Install VB6 on your system (preferably
Enterprise Edition), and observe the various
options.

Review Questions
1. What is pinning in Visual SourceSafe, and why

is it useful?

2. How can a developer get a copy of a file stored
in Visual SourceSafe so that the developer can
make changes to the file?

3. Which versions of VB come with SQL Server
bundled in? Visual SourceSafe?

Exam Questions
1. You have an application whose production ver-

sion is 1.0. You are currently developing version
2.0, but there is a serious bug in version 1.0 that
needs fixing. This will require you to make a “ser-
vice pack” distribution of 1.0 called 1.1.

You would like to continue working on version
2.0 while version 1.1 is being prepared. Version
2.0 needs to use some of the same files as 1.1.
You would also like to keep a copy of the original
source code for version 1.0, including the files
that had the serious bug.

Version 2.0 is currently not a separate SourceSafe
project, but is just a set of changes over version
1.0, whose files are labeled in the project.

How can you use Visual SourceSafe to manage
this situation?

A. Make separate physical copies of all the files
in version 2.0 and a new set of copies of the
files of version 1.0. Create a new project for
version 1.1, and check in the new copies of all
the version 1.0 files. Check in all the 2.0
copies to the new 2.0 project.

B. Create a separate new project for version 1.1.
Share all the files from the version labeled 1.0.
As programmers make fixes to 1.1, they can
check them in. When they are finished, they
can label these files as version 1.1.

C. Check out and remove the 2.0 file and check
them into a new, separate project. Create a
new 1.1 project for the fix. Programmers
working on fixing the problematic module
can get a read-only copy of the good files
from 1.0 and can check out the files for the
bad module as they work on them.

05 002-8 CH 02 3/1/99 7:49 AM Page 72

Chapter 2 ESTABLISHING THE DEVELOPMENT ENVIRONMENT 73

A P P LY YO U R K N O W L E D G E

D. Share the files from the project to a new pro-
ject, 1.1, which will automatically pin the
files. In the 1.1 project, branch the “bad” files
that need to be fixed.

2. A project has multiple developers working on dif-
ferent parts of the project. At the end of each work-
day, you want there to be an updated, running
version of the project available from SourceSafe to
testers. You can achieve such a goal by:

A. Asking developers to make sure that their
code works with the latest code in rest of the
project, and then checking in their changes at
the end of the day.

B. Asking developers to keep their source code
checked out at all times, but make working
copies available in a second Visual SourceSafe
project or Visual SourceSafe database.

C. Asking developers to check their source code
in at the end of each day. It is then the pro-
ject manager or testers’ responsibility to deter-
mine the latest version of each file that runs
with the entire project.

D. Asking developers to coordinate source code
by email or face-to-face meeting at the end of
each day, label the latest version of all work-
ing source code, and then check in.

3. You want to use a VB project as the basis for
another project (not a new version of the first
project). If improvements are made to the files
during development of either project, you want
both projects to share the benefits. The original
project is in Visual SourceSafe. The best way to
manage this situation with Visual SourceSafe is:

A. Share the first project, and then define the
second project to include the same files.

B. Pin and branch the first project. One of the
branches will become the second project.

C. Check out the files from the first project and
check them in to the second project.

D. Make separate physical copies of the files in
the first project and check the new copies in
to the second project.

4. You want to release a new version of your applica-
tion, but you want to be able to recall all the
source code for the old version, even after the new
version has been released. What should you do?

A. Label the new version.

B. Share the old project under a distinct new
name.

C. Label the original version.

D. Make separate copies of all the files used in
the first version.

5. To copy information from one Visual SourceSafe
database to another Visual SourceSafe database,
you can:

A. Copy selected contents of the Data folder of
the source database to the Data folder of the
target database.

B. Check out selected contents of the source
database and check them in to the target
database.

C. Archive selected contents of the source data-
base and restore the archive into the target
database.

D. Delete selected contents of the source data-
base and add them to the target database.

05 002-8 CH 02 3/1/99 7:49 AM Page 73

74 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

6. The lowest-end product that provides you with
all the tools necessary to develop a solution that
uses a SQL Server database is:

A. VB 6.0 Learning Edition

B. VB 6.0 Professional Edition

C. VB 6.0 Enterprise Edition

D. Visual Studio 6.0

7. The lowest-end product that provides you with
all the tools necessary to develop a solution that
uses Internet Information Server is:

A. VB 6.0 Learning Edition

B. VB 6.0 Professional Edition

C. VB 6.0 Enterprise Edition

D. Visual Studio 6.0

Answers to Review Questions
1. Pinning enables you to use an earlier version of a

file (not the current version) in a VSS project. It
is good for creating maintenance releases of a
project while new development on the same pro-
ject is going on at the same time. See “Pinning
an Earlier Version of a File for Use in the
Current Version of a Project.”

2. A developer can check a file out of Visual
SourceSafe to get a modifiable copy. See
“Checking Out, Checking In, and Getting
Working Copy.”

3. Only the Enterprise Edition of VB6 actually
includes SQL Server, although it is possible to
access SQL Server data from the other editions.
See “Installing and Configuring VB for Developing
Desktop and Distributed Applications.”

Answers to Exam Questions
1. D. You can use the share, pin, and branch model

to create a maintenance or “service pack” release
on the production version of an application that
already is under development for a new major
version. Answer C contains no provision for
using the earlier versions of the files. Answers A
and D mention version 2.0, which really doesn’t
need to be changed for this purpose. For more
information, see the section titled “Pinning an
Earlier Version of a File for Use in the Current
Version of a Project.”

2. A. Developers can check working code in at the
end of each day to make sure that the project
always has the latest working copies of source
code. Answer B would be unnecessarily cumber-
some and would replicate the project in two
places. C places unnecessary responsibility on a
manual procedure (checking to see whether pro-
jects compile and run). D also puts unnecessary
reliance on manual procedures and unrealistically
relies on perfect group coordination. For more
information, see the section titled “Checking
Out, Checking In, and Getting Working Copy.”

3. A. You can share a project’s files to make it the
basis for another project that needs to share
changes with the first project. Answer B ignores
the requirement of sharing common changes,
because branching cuts off the link between
changes in the projects. Answer C is meaningless,
and answer D also would destroy the links
between the files in the two projects. With the
correct answer (answer A), if there is a need in
the future for the projects to diverge their copies
of these files, you could branch the second pro-
ject at that time. For more information, see the
section titled “Source-Code Sharing.”

05 002-8 CH 02 3/1/99 7:49 AM Page 74

Chapter 2 ESTABLISHING THE DEVELOPMENT ENVIRONMENT 75

A P P LY YO U R K N O W L E D G E

4. C. To keep track of all of a project’s older ver-
sion’s source code as a group, you can label the
older version. For more information, see the sec-
tion titled “Source-Code Labeling and Version
Numbers.”

5. C. To move information from one SourceSafe
database, you can archive it from the first data-
base and restore it to the second database.
Although answer B might work, it would be
clumsy. Answer D doesn’t achieve the objective of
making a copy because it deletes the files from
the source database. Answer A is incorrect,
because you should never attempt to directly
manipulate the contents of the VSS database. For
more information, see the section titled
“Archiving and Restoring Visual SourceSafe
Databases.”

6. C. The lowest-end product that provides you
with all the tools necessary to develop a solution
using SQL Server is the Enterprise Edition.

Although the other editions enable you to con-
nect to SQL Server data, they don’t actually come
with a copy of SQL Server. Therefore, unless you
already had access to SQL Server from your com-
puting environment, you wouldn’t have the nec-
essary tools to do the development. For more
information, see the section titled “Installing and
Configuring VB for Developing Desktop and
Distributed Applications.”

7. B. The lowest-end product that provides you with
all the tools necessary to develop a solution using
IIS (known as WebClass or IIS applications in VB)
is the Professional Edition. The Learning Edition
doesn’t have any tools for IIS/WebClass application
development. Both the Professional Edition and
Enterprise Edition give you the IIS Application
Designer. Remember that you must already have
access to IIS from your computing environment
(an installation of Windows NT 4.0 with Option
Pack 3.0); otherwise you won’t be able to develop
IIS applications, regardless of the VB edition. For
more information, see the section titled “Installing
and Configuring VB for Developing Desktop and
Distributed Applications.”

05 002-8 CH 02 3/1/99 7:49 AM Page 75

05 002-8 CH 02 3/1/99 7:49 AM Page 76

OBJECT IVE

3C H A P T E R

Implementing
Navigational Design

This chapter helps you prepare for the exam by cover-
ing the following objective:

Implement navigational design (70-175 and
70-176).

• Dynamically modify the appearance
of a menu

• Add a pop-up menu to an application

• Create an application that adds and deletes
menus at runtime

• Add controls to forms

• Set properties for CommandButtons, TextBoxes,
and Labels

• Assign code to a control to respond to an
event

. The exam objective addressed in this chapter covers
many of the basic elements of user interface pro-
gramming in Visual Basic. Specifically, this objec-
tive addresses two main topics:

. How to create and control the behavior of standard
Windows menus in a VB application

. How to set up and control the behavior and
appearance of the three most basic controls
(CommandButton, TextBox, and Label) in a
VB application

06 002-8 CH 03 3/1/99 7:51 AM Page 77

OUTL INE

Understanding Menu Basics 81

Knowing Menu Terminology 81

Using the Menu Editor 82

Attaching Code to a Menu Item’s
Click Event Procedure 83

Dynamically Modifying the Appearance
of a Menu 84

Adding a Pop-Up Menu to an Application 85

Defining the Pop-Up Menu 85

Determining the Mouse Button 86

Displaying the Pop-Up Menu 88

Controls with Pop-Up Menus 88

Creating an Application That Adds and
Deletes Menus at Runtime 89

Creating Runtime Menu Items 89

Code for Runtime Menu Items 90

Removing Runtime Menu Items 91

Adding Controls to Forms 91

Setting Properties for CommandButtons,
TextBoxes, and Labels 92

Referring to a Property Within Code 94

Important Common Properties of
CommandButtons, TextBoxes, and Labels 95

Important Properties of the
CommandButton Control 99

Important Properties of the TextBox
Control 100

Important Properties of the Label Control 102

Assigning Code to a Control to Respond
to an Event 103

Changing a Control Name After You Assign
Code to the Event Procedure 104

The Click Event 105

The DblClick Event 106

MouseUp and MouseDown 106

Mouse Events Compared With Click and
DblClick 108

MouseMove 109

The Change Event 109

Other Events Commonly Used for Input
Validation 110

Chapter Summary 110

06 002-8 CH 03 3/1/99 7:51 AM Page 78

STUDY STRATEGIES

. Experiment with basic menu setup using the
Menu Editor (see Exercise 3.1).

. Experiment with dynamic runtime changes to
menu properties (see Exercise 3.2).

. Experiment with pop-up menus (see
Exercise 3.3).

. Experiment with menu items in a control array
(see Exercise see 3.4).

. Experiment with programming the events and
properties of CommandButtons, TextBoxes, and
Labels (see Exercises 3.5 and 3.6).

. Memorize the relative timing of MouseUp,
MouseDown, Click, and DblClick events (see the
section of this chapter, “Assigning Code to a
Control to Respond to an Event”).

06 002-8 CH 03 3/1/99 7:51 AM Page 79

80 Par t I VISUAL BASIC 6 EXAM CONCEPTS

INTRODUCTION

To increase the functionality of a Visual Basic application, menu bars
provide the user with a simple way of controlling the program. The
menu bar is at the top of a form window in most applications.
Visual Basic provides a Menu Editor that simplifies the creation of
menus. Once created these menus can be individually programmed
to respond when selected.

Another type of menu quite popular with users is the pop-up menu.
This menu can be very specific to certain controls or areas of the
application. These menus are often called context-sensitive menus.

To provide the user with customized menu options, menus can also
be created at runtime. The Most Recently Used File list is a good
example of how dynamic menus customize an application based on
the user’s needs. These menus provide runtime assistance that can
vary depending on a user’s preferences.

This chapter covers the following topics:

á Menu basics

á Menu terminology

á Using the Menu Editor

á Dynamically modifying the appearance of a menu

á Changing the menu’s properties at runtime

á Adding a pop-up menu to an application

á Defining the pop-up menu

á Determining the mouse button

á Displaying the pop-up menu

á Controls with pop-up menus

á Creating an application that adds and deletes menus at runtime

á Creating runtime menu items

á Coding for runtime menu items

á Removing runtime menu items

á Adding controls to forms

06 002-8 CH 03 3/1/99 7:51 AM Page 80

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 81

á Setting properties for CommandButtons, TextBoxes, and Labels

á Assigning code to a control to respond to an event

UNDERSTANDING MENU BASICS

Applications use menu bars to provide an organized collection of
commands that can be performed by the user. Menus can inform the
user of the application’s capabilities as well as its limitations. If a pro-
gram has properly organized menus, users can easily find common
commands as well as less-familiar features. Users can also learn short-
cut keys from a well-designed menu structure.

Because menus have so many benefits to the user, a programmer
should be well-versed in their creation and the functions they can
provide.

Programmers can use one of two different methods to create menus
in VB. The first is a built-in Menu Editor dialog box. This editor
provides a fast, simple way to generate menus. Once made, all menu
objects can have their properties set through program code.

The other method uses the Win32 Application Programmers
Interface. The Win32 API is a series of functions that are by VB and
provided by the operating system. By using specialized function calls,
a programmer can create menus, set properties of menus, and mod-
ify menu structure. Most of the functionality found in the API is
also available using the Menu Editor. Although more difficult to
work with, the API provides enhanced function calls and special
capabilities not part of the VB Menu Editor. However, using the API
is beyond the scope of this chapter.

Knowing Menu Terminology
Knowing how menus operate is an important part of the design
process. It is also important to be familiar with the standard termi-
nology for Windows menu interfaces. Terms such as top-level menu,
sub-menu, and pop-up menu all describe how the menu should
behave as well as where the user can expect to see the menu, as
shown in Figure 3.1 and 3.2.

06 002-8 CH 03 3/1/99 7:51 AM Page 81

82 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Top-level menus are the items seen on the main part of the menu
bar, directly under the title bar of the application window. Standard
user interface guidelines state that all top-level menus should have at
least one sub-menu.

The sub-menu appears when a top-level menu has been opened. The
sub-menu implements commands that logically belong to the top-
level menu. One example is the File menu, found in most applica-
tions. This is a top-level menu. Once opened, commands such as
New, Open, Save, and Close all relate to actions that affect the file.

Using the Menu Editor
Standard Windows menus are always located at the top of a form,
just under the title bar. VB programmers can create menus by first
selecting the form that will host the menu and then using the VB
Menu Editor, as shown in Figure 3.3.

The Menu Editor is available only when a form is being designed. It
is located on the Tools menu in VB6.

The first step in creating a menu is to enter the menu item’s caption.
The caption can incorporate the ampersand (&) for an access key
designation, also known as an accelerator key. This enables the user
to see an underlined letter in the menu and use the Alt key along
with the accelerator key.

After the caption of the menu item has been set, the menu requires
an object name for programmatic reference. The menu names can be
any valid object name. Naming conventions are preferred to allow
for easier reading of source code and quick identification of objects.
Menus use the three-letter prefix “mnu” before the selected name.

The remaining task in creating a menu is to decide at which level in
the menu structure this item will appear. Will the object be a top-
level menu item, sub-menu item, or a sub–sub-menu item? In the
list box at the bottom of the Menu Editor, all top-level menu items
are flush with the left side of the list box border. Sub-level menu
items have four small dots preceding the menu caption; sub–
sub-menu items have eight dots. The menu items can also be
reorganized according to position in the menu.

F IGU R E 3 .1▲
Menu terminology and hierarchy.

Top-level menuSub-menu

F IGU R E 3 .2▲
Pop-up menu for Microsoft Excel.

F IGU R E 3 .3▲
The Visual Basic Menu Editor.

06 002-8 CH 03 3/1/99 7:51 AM Page 82

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 83

To control the level and position of the menu item being entered,
just use the four direction arrows in the Menu Editor. The up and
down arrows reposition menu items for order. The left and right
arrows allow menu items to be top-level, sub-level or sub–sub-level.

You can implement a separator bar in a menu (a horizontal line that
visually defines the boundary between two groups of menu items) by
putting a single dash (-) as the entire caption for a menu item. This
item then becomes the separator bar on the runtime menu. You
must remember that even separator items in a menu must each have
their own unique Name property.

Menu items can also have their appearance properties set at design
time through the Menu Editor. Properties such as Checked, Enabled,
Visible, WindowList, and a shortcut key can all be specified. In
Figure 3.3, the Menu Editor check boxes for the Checked, Enabled,
Visible, and WindowList properties are all visible.

In addition a drop-down list of possible shortcut key combinations
allows the programmer to assign a shortcut key to this particular
menu item. Unlike the accelerator or access key mentioned above,
the shortcut key can be pressed by the user without its correspond-
ing menu item being visible. Windows automatically displays the
shortcut key assignment when the menu item is displayed.

All of these properties are also available at runtime except for the
shortcut key. To change the desired property of the menu object, just
use the object name followed by the property name and the value.
Examples of such runtime changes are given in the following section.

Attaching Code to a Menu Item’s
Click Event Procedure
A menu control has a single event procedure: the Click event proce-
dure. The Click event procedure is the place where you write or call
the code that you want to execute when the user chooses the menu
item.

You can access a menu control’s Click event procedure by single-
clicking the menu item from the design time copy of the menu.

06 002-8 CH 03 3/1/99 7:51 AM Page 83

84 Par t I VISUAL BASIC 6 EXAM CONCEPTS

DYNAMICALLY MODIFYING THE
APPEARANCE OF A MENU

When a menu system is created at design time, the programmer can
control property settings for menu items. After these properties are
set, they can be altered at runtime to assist the user in interpreting
which selections have been made, which items are turned on, and
which commands are available.

To dynamically alter the appearance of a menu system, the menu
object is referenced along with the desired property to be altered. This
syntax is the same for regular controls found on a VB form. The fol-
lowing sections explore the syntax used in setting menu properties.

The following code assumes that Form1 has a complete menu system
already defined. The View menu has a sub-menu item called
Toolbar. This menu item is having the Checked property set to true
to indicate the toolbar is visible (see the result in Figure 3.4):

mnuViewToolbar.Checked = True

This code uses the same syntax that other objects use: the object
name, a period separator, followed by the property to be set, and
then the value after the assignment operator.

The following code demonstrates more menu objects and their prop-
erty settings:

mnuViewStatusBar.Checked = True
mnuFileOpen.Enabled = False
mnuFormatFontBold.Checked = True
mnuPopUp.Visible = False

In these examples, notice how the use of the menu naming conven-
tion helps decipher which menu is to be affected. The object name
starts with the mnu prefix followed by the top-level menu item
named View, followed by the sub-level menu item, StatusBar. This
ensures easy readability when going through source code.

Altering application menus at design time is not very different from
controlling other objects. The one difficulty that programmers have
with menus is remembering to control both the user interface and
the menus. The interface can always be seen, but menus must first
be opened to view their states. One common technique used to
assist with maintaining a consistent interface is to call a procedure.

F IGU R E 3 .4
Sample menu with properties that change at
runtime.

06 002-8 CH 03 3/1/99 7:51 AM Page 84

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 85

The procedure will perform the required actions and affect both the
interface and required information. This allows various menus to
call the same code and keep the program flow easier to follow.

ADDING A POP-UP MENU TO AN
APPLICATION

Pop-up menus, also known as “context menus” or “right-mouse
menus,” provide the user another convenient way to control the
application. Pop-up menus are usually unique for various areas of an
application. They can be created in Visual Basic or the operating sys-
tem, and certain objects provide them. Microsoft Excel provides an
example of pop-up menus in Figure 3.2. With Excel, the user has
the option to use the main menu bar, shortcut keys, or pop-up
menus. Different pop-up menus are found, depending on the object
selected. If the user selects a set of cells in the spreadsheet, he gets a
specific pop-up menu. If the user right-clicks on a worksheet tab, he
gets a different pop-up menu.

To provide pop-up menus for different parts of the application, vari-
ous menus must be used. These menus, created as part of the main
menu system, do not have to be visible. When they are needed, they
are called through program code.

Defining the Pop-Up Menu
To create a pop-up menu, a top-level menu item is used. This item
can be part of the normal menu structure seen by the user, or it can
have its Visible property set to False so that it does not appear with
the regular menu(as shown in Figure 3.5).

All items on the pop-up menu are created as sub-level items of the
invisible top-level menu. Each sub-menu item can have its properties
set as required.

When the pop-up menu is needed, the PopupMenu method is called
to activate the pop-up menu. The following code demonstrates this:

Form1.PopupMenu mnuPopUp1

06 002-8 CH 03 3/1/99 7:51 AM Page 85

86 Par t I VISUAL BASIC 6 EXAM CONCEPTS

This preceding code calls the PopupMenu method of Form1, as shown
in Figure 3.6. The menu item mnuPopUp1 is passed as an argument
and is displayed at the current mouse location. This code assumes
that a menu system has been created and a menu item named
mnuPopUp1 exists.

The PopupMenu method accepts the name of the menu to activate,
arguments that indicate the orientation of the menu (left, center,
and right), and the screen coordinates for display and other options.

Determining the Mouse Button
After the desired menus have been created, the next step for the pro-
grammer is to decide which objects will call which menus. The
form, as well as individual controls on the form, can all have pop-up
menus specified.

The standard method used to activate an object’s pop-up menu is to
use the MouseUp event procedure to detect when the user right-clicks
the mouse. After the user right-clicks, the menu is displayed.

To determine the state of the mouse, the programmer traps the MouseUp
event of the object to provide the menu. Using the event’s Button para-
meter, the programmer verifies which mouse button the user pressed.

F IGU R E 3 .5.
design time view of menu system with a pop-up
menu.

F IGU R E 3 .6▲
Runtime view of a custom pop-up menu.

06 002-8 CH 03 3/1/99 7:51 AM Page 86

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 87

To determine which mouse button was activated, the procedure is
passed two arguments: Button and Shift. The Button argument
indicates the mouse button that was pressed. The Shift indicates
whether the Ctrl and/or Alt and/or Shift was active when the mouse
click event occurred.

The following code in the form’s MouseUp event determines which
mouse button was pressed and then further distinguishes which
Shift key or Shift key combination was pressed along with the
mouse button.

Sub Form_MouseUp(Button As Integer, Shift As Integer, X
➥As Single, Y As Single)

Dim blnIsAlt as Boolean
Dim blnIsCtrl as Boolean
Dim blnIsShift as Boolean
BlnIsAlt = Shift And vbAltMask
BlnIsCtrl = Shift And vbCtrlMask
BlnIsShift = Shift And vbShiftMask
If Button = vbLeftButton Then

If blnIsAlt And blnIsShift Then
… So something to react to Left Button +

➥Alt + Shift
End If

ElseIf Button = vbRightButton Then
Form1.PopupMenu mnuPopUp1

End If

End Sub

The preceding code uses VB constants to determine the button-Shift
key combination. The key combination of Ctrl and/or Alt and/or
Shift will also be returned as a number in the Shift parameter. You
can test to see whether a particular key was pressed by the user by
using the AND operator to compare the Shift parameter with one of
the bit mask constants vbAltKey, vbShiftKey, or vbCtrlKey.

In the MouseUp event, both Button and Shift are integer values.
When programming for this event, either the integer value can be
used or the VB constants that refer to the various possible Button
and Shift key values.

For further discussion of how to program with the MouseUp and
MouseDown event procedures, see the section in this chapter entitled
“MouseUp and MouseDown.”

06 002-8 CH 03 3/1/99 7:51 AM Page 87

88 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Displaying the Pop-Up Menu
When using pop-up menus with forms or controls, you first define
the menu, test for the right mouse button, and then display the
desired menu.

The following source code puts together these tasks by using the
PopupMenu method of the form at the same time that the mouse but-
ton has been pressed.

Sub Form_MouseUp(Button As Integer, Shift As Integer, X As
➥Single, Y As Single)

If Button = vbRightButton Then
Form1.PopupMenu mnuPopup1

End If
End Sub

In this code sample, a simple If statement provides the check to see
whether the right mouse button has been selected. If the Button
argument equals the vbRightButton constant, the form PopupMenu
method is called and passed the name of the top-level menu object
to be displayed. Remember that the top-level item will not be
shown, only sub-level items will be.

Any menu can be passed to the PopupMenu method. In the preceding
code, a special menu named mnuPopup1 was created and its visible
property was set to False. This hides the top-level menu from the
application menu bar but allows the menu to be called. The
PopupMenu method will display sub-level menu items regardless of the
top-level menu item’s visible property.

The PopupMenu method can display only one menu at a time. A sec-
ond call to the PopupMenu will be ignored.

Controls With Pop-Up Menus
Not all controls require a pop-up menu to be created. Certain con-
trols that ship with Visual Basic, such as the TextBox control, already
have a pop-up menu built into them, as shown in Figure 3.7. Visual
Basic has no method to disable such built-in, pop-up menus.

If the PopupMenu method is used with a control that has its own
built-in, pop-up menu, the built-in menu will always be displayed
first. The custom menu will only be displayed subsequently.
Displaying two separate menus is not usually the desired effect for
the user interface.

F IGU R E 3 .7
The built-in pop-up menu of the TextBox control.

06 002-8 CH 03 3/1/99 7:51 AM Page 88

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 89

The benefit of built-in menus is that they do not require program
code for their functionality. The control provides all mouse handling
and functions.

CREATING AN APPLICATION THAT
ADDS AND DELETES MENUS AT
RUNTIME

Runtime menus are created dynamically by the application, as they
are required. The runtime menu may list user-selected information,
recently used files, or a list of Internet Web sites, to name three
examples.

To create runtime menus dynamically, you must use a menu control
array. At runtime the Load statement creates the new menu items,
and the Unload statement removes them.

The following sections detail how runtime menus are created and
removed from the menu system.

Creating Runtime Menu Items
The three steps to creating a runtime menu item are as follows:

S T E P B Y S T E P
3.1 Creating a Runtime Menu Item

1. Create a design time menu that will act as the template, as
shown in Figure 3.8. Set the Index property of the tem-
plate item to create a menu control array. This array will
allow new elements to be created at runtime. These ele-
ments can then be controlled like a regular menu item.

2. Use the Load statement at runtime. The Load statement
accepts the name of the object to be loaded. The following
is sample syntax:

Load mnuFileItem(1) F IGURE 3 .8
Creating a template menu item with an index
value.

Index property

06 002-8 CH 03 3/1/99 7:51 AM Page 89

90 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The name of the menu item is based on the design time
item that had the Index property set. To create a new
menu, just use the menu name and a unique number that
has not been previously used in the array.

3. After the control has been loaded, use the menu name and
the index value to refer to the new menu. The menu item
can then have all the normal properties of menus set at
runtime.

Dynamically created menu items appear directly under the preceding
index item. This must be taken into consideration when incorporating
menu items below the array. Menu items below the array will function
as expected; however, as the new elements are added to the collection,
regular menu items appear lower on the menu. Compare the positions
of the Exit menu item on the File menu before and after dynamic
menu items have been added, as shown in Figures 3.9 and 3.10.

Code for Runtime Menu Items
When a menu item has been created at runtime, it is part of a con-
trol array. When code is to be associated with the runtime-generated
menu, just use the design time menu item that was the first index
number in the array.

The template menu item will have an extra argument in the Click
event. The Index argument provides the number used to refer to that
control. The following sample code demonstrates one way to code
for the dynamic menus:

Sub mnuFileItem_Click(Index as Integer)
Select Case Index

Case 0
MsgBox “You clicked the first menu item!”

Case 1
MsgBox “You clicked the first dynamically

➥created menu item!”
Case 2

MsgBox “You clicked the second dynamically
➥created menu item!”

End Select
End Sub

F IGU R E 3 .9▲
The File menu before runtime items are added.

F IGU R E 3 .10▲
The File menu after runtime items have been
added.

06 002-8 CH 03 3/1/99 7:51 AM Page 90

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 91

Of course, code such as the above would be appropriate only when
you knew ahead of time exactly which items you would be adding
to your menu at runtime and how many maximum items there
would be. For a more dynamic example of menu programming, see
Exercise 3.4.

Removing Runtime Menu Items
You can use two different methods to remove the runtime menus.
The first is to hide the newly created item; the second is to unload it.

When hiding a menu item, the user interface will no longer display
the item; however, program code can still use the menu and control
the properties.

mnuFileItem(1).Visible = False

If a runtime menu item is unloaded, that control and the associated
properties will be removed from memory. If required again, they will
have to be loaded.

Unload mnuFileItem(1)

Only runtime control names and elements can be passed to the
Unload statement. If a design time menu item is passed to Unload, an
application error will occur because you can’t unload controls created
at design time.

ADDING CONTROLS TO FORMS

You can place controls on the surface of a valid VB container object.
Standard container objects in VB include:

á Forms

á PictureBoxes

á Frames

Although Image controls and PictureBox controls have many features
in common, Image controls cannot act as containers.

You can use two different methods to add controls to a form or
other container object.

06 002-8 CH 03 3/1/99 7:51 AM Page 91

92 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The first method uses a mouse double-click and requires the follow-
ing steps:

S T E P B Y S T E P
3.2 Adding Controls to Forms: Method 1

1. Select the form or other container object (such as a
PictureBox or Frame) where you wish to add the control

2. Double-click the control’s icon in the ToolBox. A new
instance of the control will appear in the selected con-
tainer.

With the second method, you draw the control on the container sur-
face by following these steps:

S T E P B Y S T E P
3.3 Adding Controls to Forms: Method 2

1. Single-click the control’s icon in the ToolBox.

2. Release the mouse button and move the mouse pointer to
the position on the container where you want to locate the
control.

3. Hold down the mouse button and draw a rectangle on the
container surface to indicate the size and position for the
control instance.

SETTING PROPERTIES FOR
COMMANDBUTTONS, TEXTBOXES, AND LABELS

You can set most of the properties of a control object at either design
time or at runtime.

To set a control’s property at design time:

06 002-8 CH 03 3/1/99 7:51 AM Page 92

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 93

S T E P B Y S T E P
3.4 Manipulating a Control’s Property at Design Time

1. Use the F4 key or choose View, Properties from the VB
menu to bring up the Properties window, as shown in
Figure 3.11.

2. Find the property in question on the list. You may navi-
gate the properties list by pressing Shift + the first letter of
the property name.

3. Set the property to the appropriate value.

Depending on the nature of the information that the property repre-
sents, you will find different ways to set the property:

á Properties that can take a wide range of numeric values or a
string of text are usually changed by simply typing in the value
you want to assign.

á Properties that represent Boolean values (such as the
CommandButton’s Cancel and Default properties) can be toggled
by double-clicking them.

á Properties that can hold a small range of named, enumerated
values (such as the MousePointer property) usually exhibit a
drop-down list of the possible values.

á Properties (such as Font or BackColor) that contain sub-
components or more visually complex information may pop-
up their own property dialog box or Property Page when you
double-click them.

To set a control property at runtime, use the familiar object.property
syntax to assign a value to the property. For example if you want to
assign the string “Activate” to the Caption property of the
CommandButton named cmdExecute at runtime, you would put the line

cmdExecute.Caption = “Activate”

Other properties can take the name of the appropriate VB constant.
In the following example, the vbHourGlass constant for the
MousePointer can be found in the drop-down list of values at design
time. The vbRed constant could be found in the ObjectBrowser’s list
of the VBRun library’s Color constants.

F IGURE 3 .1 1
Setting properties in the Properties window.

06 002-8 CH 03 3/1/99 7:51 AM Page 93

94 Par t I VISUAL BASIC 6 EXAM CONCEPTS

txtName.MousePointer = vbHourGlass
lblName.BackColor = vbRed

Finally, for properties which are complex objects, you may need to
use double-dotted syntax to refer to the property of a property of an
object, as in the following examples with sub-properties of the Font
property of a TextBox:

txtInvitation.Font.Bold = True
txtInvitation.Font.Name = “Arial”

Referring to a Property Within Code
If you need to read or write to a property within code, you need to
refer to the object’s name in front of the property name using the
general syntax:

ControlName.PropertyName

For example, if you want to evaluate a CommandButton’s Enabled
property within an If condition, you can do it in one of two ways, as
illustrated in the following examples:

If cmdAdd.Enabled = True Then

or

If cmdAdd.Enabled Then

Notice that, in this case, the Enabled property is a Boolean type and,
therefore, you can imply a True value, as in the second example.

You can also assign a value to the default property without naming the
property as long as you assign the correct data type for the property:

cmdAdd.Enabled = True

Each control has a default property (usually the most important
property for the control in question). The default properties of the
three controls under discussion here are:

á CommandButton Value property

á Label Caption property

á TextBox Text property

06 002-8 CH 03 3/1/99 7:51 AM Page 94

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 95

This property can be set or read in code simply by using the name
of the control without the property name. So, for example, you could
write the following code to set a CommandButton’s Value property, a
TextBox control’s Text property, and a Label’s Caption property:

cmdOK = True
txtName = “Jones”
lblName = “Name”

Some programmers might argue against this type of implicit refer-
ence to the default property on the grounds that it’s a bit less clear in
code. On the other hand, however, implicitly referring to the default
property actually makes for faster performance at runtime.

Important Common Properties of
CommandButtons, TextBoxes, and
Labels
There are several properties that are shared by many of the standard
controls.

Name
You use a control’s Name property in code to refer to the control
object when you want to manipulate its properties or methods. For
example, if you name a TextBox txtFirst, you could write code to
change its Enabled property and invoke its Move method as follows:

txtFirst.Enabled = True
txtFirst.Move 100,200,500,200

A control’s Name also becomes part of all the event procedure names
of that control. See the section in this chapter on “Assigning Code to
a Control to Respond to an Event” for more discussion and its
implications.

You should always rename a control a meaningful name as soon as
you place it on its container. Most VB programmers use the
“Hungarian notation” convention for naming controls and variables.
This means that the name of each control begins with a lowercase
prefix that is one to three (or sometimes four or five) letters long.
The prefix is the same for all objects of the same type.

06 002-8 CH 03 3/1/99 7:51 AM Page 95

96 Par t I VISUAL BASIC 6 EXAM CONCEPTS

For instance, you should rename a TextBox control a name begin-
ning with the letters txt as shown in the example given just above
with txtFirst.

Although you can reference the control’s Name property directly in
code (though it’s almost never necessary), you cannot change the
Name property at runtime.

Enabled
The Enabled property of a control is a True/False property that you
can set to determine whether or not the control can receive focus or
respond to user-generated events such as the Click event. Many con-
trols’ Caption or Text properties (including the CommandButton,
TextBox and Label) will appear fainter or “grayed out” to the user
when you set their Enabled properties to False, as illustrated in
Figure 3.12.

Since the Label control never gets focus, its Enabled property has no
effect on whether the user can set focus to the Label (the user never
could set focus to a Label, anyway). However, an enabled Label can
still receive events such as the Click and DblClick events when the
mouse pointer is over it. Setting the Label’s Enabled property to
False disables these events for the Label as it does for other controls.

You can set a control’s Enabled property at both design time and
runtime.

Visible
This property is True by default. Setting it to False means that the
control will not be visible to the user. If you set Visible to False at
design time, you (the programmer) will still be able to see the control
on the design surface but the user won’t be able to see it at runtime.

You can set the Visible property at both design time and runtime.

Font
This property is actually an object that contains many properties of
its own. You can manipulate the Font object’s properties through a
design time dialog box that you can call up in one of two ways:

F IGU R E 3 .12
A form with Enabled and Disabled controls.

N
O

T
E Different Use of a Timer’s Enabled

Property The Enabled property for
the Timer control has a different
meaning from the other controls.
When you set a Timer’s Enabled prop-
erty to True, you cause the Timer
event to fire at the interval of millisec-
onds specified by the Timer’s
Interval property. When you set its
Enabled property to False, the Timer
event will not fire.

06 002-8 CH 03 3/1/99 7:51 AM Page 96

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 97

á Double-click the word “Font” in the control’s Properties win-
dow (see Figure 3.13).

á Click the ellipsis button (…) to the right of the word “Font”
in the Properties window.

You may also refer to the Font object’s sub-properties in your code
by using double-dotted syntax or the With construct.

For instance, if you wanted to make the type in the Label named
lblName appear bold (after first saving its original Bold setting), you
would write the lines of code:

Dim blnOrigBold As Boolean
BlnOrigBold = lblName.Font.Bold
lblName.Font.Bold = True

However, if you wanted to refer to or manipulate several Font prop-
erties at the same time, it is more efficient to write lines such as

Dim blnOrigBold As Boolean, blnOrigUnderline As Boolean
Dim sOrigFontName As String
Dim iOrigSize As Integer

With lblName.Font
BlnOrigBold = .Bold
.Bold = True
blnOrigUnderLine = .Underline
.Underline = False
sOrigFontName = .Name
.Font = “Courier”
iOrigSize = .Size
.Size = 24

End With

Properties that Determine Size and Position
The Height and Width properties determine an object’s size, while the
Left and Top properties determine its position within its container
object (Form, Frame, or PictureBox).

The unit of measure for these four properties is the unit of measure
given by the ScaleMode property of the container. The default unit is
the twip (twentieth of a point), but it may be different depending on
whether or not you change the container’s ScaleMode.

You can change each of these properties at runtime in your code,
and you can also use the control’s Move method to change a control’s
size and position.

F IGURE 3 .1 3
The Font property dialog box.

06 002-8 CH 03 3/1/99 7:51 AM Page 97

98 Par t I VISUAL BASIC 6 EXAM CONCEPTS

TabIndex and TabStop
The TabIndex property determines the order in which controls on a
form get focus when the user presses the Tab key. Note that Labels
have a TabIndex property even though they can’t receive focus.

The TabStop property lets you specify whether or not a user can use
the Tab key to navigate to the control. Its default value is True. If
you set TabStop to False, users will bypass the control as they cycle
through the TabIndex order when they press the Tab key.

Assigning an Access Key to a TextBox
Control Through a Label’s Caption
Let’s say that you have a TextBox representing the Department name
on an entry screen. The Label to the left of the TextBox duly con-
tains the Caption “Department.”

If you put an ampersand (&) in front of the “D” in “Department,”
the “D” will appear underlined. When users see this, they will think,
of course, that pressing Alt-d will place the cursor in the TextBox.
Unfortunately, the “D” represents an access key for the Label—and
moreover, the Label is incapable of receiving focus. Figure 3.14 illus-
trates a Label that implements an access key for a TextBox.

However, if the user does press the Alt-D combination, focus will
fall on the control following the Label in TabIndex order. Thus you
can implement an access key for a TextBox control by defining an
access key on a Label that immediately precedes the TextBox control
in the TabIndex order.

So in order to give an access key to a TextBox, follow these steps:

S T E P B Y S T E P
3.4 Giving an Access Key to a TextBox

1. Put a Label to the left of the TextBox.

2. Make sure the Label’s UserMnemonic property is True (it
should be, as that’s the default value).

3. Give the Label a TabIndex that is one less than the
TabIndex of the TextBox.

N
O

T
E The TabStop Property Only Controls

Tab Key Navigation. Remember the
TabStop property only controls user
navigation with the Tab key. It says
nothing about whether the user can
set focus to the control in other ways
(such as with the mouse or with
access keys).

F IGU R E 3 .14
A Label that implements an access key for a
TextBox.

06 002-8 CH 03 3/1/99 7:51 AM Page 98

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 99

4. Put an ampersand (&) in front of one of the letters in the
Label’s Caption. This letter will become the access key for
the TextBox.

This technique works because the ampersand in the Label’s caption
defines an access key, as discussed above in the section on the
Caption property. However when the user presses the Label’s access
key, the system is unable to set focus to the Label (because Labels
cannot receive focus). Instead, the focus goes to the next control in
the Tab order—which in this case is the TextBox that you’ve
strategically placed to receive the focus from the Label.

Important Properties of the
CommandButton Control
Along with the TextBox and Label controls, the CommandButton con-
trol is one of the most familiar sights in a Windows application.

The main function of the CommandButton control is to run code
when the user clicks on it. You should keep the following points in
mind when programming with CommandButton properties:

á You should always change the Caption property of a
CommandButton. The Caption property contains the text dis-
played on the CommandButton. This property can be changed at
design time and runtime.

á The Cancel property is a Boolean type. It allows VB to associ-
ate the Escape key with the CommandButton’s Click event proce-
dure. Thus if you set Cancel to True, the Click event
procedure fires when the user presses the Escape key. Cancel
buttons are usually associated the with the Escape key.

Notice that the Click event itself does not fire in this case.
Instead only the Click event procedure runs. There is a differ-
ence when only the event procedure runs and the event itself
does not fire. The most noticeable difference is that the focus
does not change to the CommandButton when only the event
procedure runs—as it would if the event itself had fired.

06 002-8 CH 03 3/1/99 7:51 AM Page 99

100 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á The Default property is a Boolean type. It allows VB to associ-
ate the Enter key with the CommandButton’s Click event proce-
dure. Thus, if you set Default to True, the Click event
procedure will run if the user presses the Enter key. OK but-
tons are commonly associated with the Enter key.

The comment made about the relation between the Cancel
property’s Click event and Click event procedure also applies
to the Default property (i.e., the event procedure will fire, but
the event itself will not run).

á Only one CommandButton on a form can have its Default prop-
erty set to True at a time. If you set one CommandButton to be
the default, all other buttons will have their Default property
set to False. The same rule applies for the Cancel property.

á The Value property (the Default property for the
CommandButton) is available only at runtime. If you set the Value
property to True within your code, the CommandButton’s Click
event procedure runs. Notice that, as in our comments for the
Cancel and Default property, we say here that the Click event
procedure will run, but the Click event will not fire. Since
Value is the CommandButton’s Default property, code such as

CmdOK = True

would cause the CommandButton’s Click event procedure to run.

Important Properties of the TextBox
Control
The TextBox is one of the handiest and most popular controls in a
Windows application. It’s a common approach to getting free-form
input from the user. You can manipulate a TextBox control’s contents
and detect changes the user makes to the TextBox through several
properties:

á The HideSelection property is True by default and it signifies
that the user-highlighted contents of the TextBox will not
remain highlighted when focus shifts to another object. If you
want the highlighted contents to remain highlighted, just set
HideSelection to False.

N
O

T
E CommandButton Controls CommandButton

controls have a BackColor property
that only takes noticeable effect when
the Style property has been set to 1 -
vbGraphical.

06 002-8 CH 03 3/1/99 7:51 AM Page 100

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 101

á The MaxLength property determines the maximum number of
characters that the user can enter into the Text property of the
TextBox. If you set MaxLength to 0, there is no limit on the
number of characters that the user can enter (well, up to 32K,
that is).

á The Locked property allows the TextBox to reject user changes
but still allows the user to set focus to the TextBox. Therefore, the
user can scroll through the contents of a TextBox without acci-
dentally changing anything. Contrast this to the Enabled prop-
erty which doesn’t allow the user to set focus to the TextBox.

á The MultiLine property is only writable at design time,
although you can find out its value at runtime. MultiLine is
False by default, meaning that everything in the TextBox con-
trol will appear on a single line. If MultiLine is set to True, the
TextBox will perform word-wrapping and also break a typed
line after a hard return.

á The PasswordChar property defines a character that will appear
on the screen in place of the actual characters in the Text prop-
erty. The underlying value of the Text property still contains
the actual characters typed by the user, but for each character
typed, only the password character will appear. Typically pro-
grammers set this property to an asterisk (*) for TextBox con-
trols that represent the password on login screens. If you want
to eliminate the PasswordChar property for a TextBox, be care-
ful to erase its old value with your keyboard’s Delete key
instead of simply overwriting it with the spacebar. A space in
the PasswordChar property will cause the user’s input to appear
as a series of blanks!

á The ScrollBars property is only writable at design time,
although you can check its value at runtime. The default value
is None, but you can also choose Horizontal, Vertical, or Both.
Scrollbars enable the user to scroll vertically through the con-
tents of a multiple line TextBox or horizontally through wide
contents of TextBoxes.

á The SelText property assigns or returns the contents of the
currently selected text in a TextBox. If you assign a string to
SelText property in your code, you’ll replace the currently
highlighted text with the contents of the new string and
deselect whatever had been selected before.

06 002-8 CH 03 3/1/99 7:51 AM Page 101

102 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á The SelStart property is an integer value that gives you the
position of the first highlighted character in the TextBox. It’s
zero-based. If there’s no text currently selected, SelStart will
represent the current position of the text cursor within the
TextBox control. If you change the SelStart property in your
code, you’ll deselect whatever text was highlighted and move
the text cursor to the position given by SelStart.

á The SelLength property is an integer that indicates the number
of selected characters in the TextBox. You can change
SelLength in your code in order to change the number of
selected characters. You can also deselect any highlighted
characters by setting SelLength to 0.

á The Text property is the TextBox control’s default property.
You can set it at design time or runtime, and you can also read
it at runtime. The Text property represents the current visible,
editable (not necessarily visible or editable, depending on the
value of the Visible property, Enabled and/or Locked) contents
of the TextBox. Since Text is the TextBox control’s default
property, code such as

txtName = “Elizabeth”

would have the effect of setting the TextBox control’s Text
property to “Elizabeth.”

Important Properties of the Label
Control
Some notable properties of the Label are listed here:

á Use the Alignment property to align text inside the
Label—left-, right-, or center-aligned, or not aligned (None).

á The Appearance, BackStyle, and BorderStyle properties
together help determine the general appearance of the Label.
For instance, if you leave Appearance at its default setting of
1-3d, set BackColor to vbWhite, and set BorderStyle to Fixed
Single, you can give the Label the same look as that of a
TextBox. BackStyle is normally Opaque, but if you set it to
Transparent, whatever is on the underlying form will show
through and underlie the text in the Label’s Caption.

N
O

T
E TextBox Controls TextBox controls

have no Caption property.

06 002-8 CH 03 3/1/99 7:51 AM Page 102

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 103

á Use the AutoSize and WordWrap properties to determine how
the Label displays lengthy text in its Caption. If you set the
AutoSize property of the Label to True (default is False), the
Label automatically shrinks or stretches to the exact size
needed to display the text. The WordWrap property determines
whether or not an autosized Label changes size in a horizontal
direction (WordWrap = False, its default value) or in a vertical
direction (WordWrap = True). Remember, WordWrap has an effect
only if you first set AutoSize to True.

á The Label’s Default property, Caption, holds the text that is visi-
ble to the user on the Label’s surface. You can change Caption at
runtime. As noted in previous sections, putting an ampersand
character (&) in front of a letter in the Caption will turn that
letter into an access key for the control (usually a TextBox) that
immediately follows the Label in the TabIndex order. Since
Caption is the Label’s Default property, code such as

lblName = “Name”

would have the effect of setting the Label control’s Caption to
“Name.”

ASSIGNING CODE TO A CONTROL TO
RESPOND TO AN EVENT

To cause a control to react in a certain way to user or system activity,
you must put code in the appropriate event procedure of the control.
The VB IDE automatically provides event procedure stubs for a con-
trol as soon as you define an instance of a control by placing its icon
on the form designer surface.

When you double-click the control instance, you call up a Code
Window for one of the control’s event procedures, as seen in Figure
3.15. Which event procedure you see first depends on one of two
possibilities:

á If you haven’t yet done anything with the control’s event pro-
cedures, you first see the user interface Default event proce-
dure, that is, the procedure for the event that’s considered to
be the most important event for the control.

N
O

T
E Visually Displaying an Ampersand in

a Caption So what if you want an
ampersand in a Label’s caption to
really display as an ampersand—and
not to function as an access key? No
problem: Just set the Label’s
UseMnemonic property to False. This
property’s default value of True indi-
cates that an ampersand will define
an access key.

You can also use “&&” to display a
single ampersand. Using this second
method, you could leave UseMnemonic
with a value of True and place a sin-
gle ampersand before another letter in
the Caption to define an access key.

Note that although many controls have
a Caption property, only the Label fea-
tures the UseMnemonic property.

N
O

T
E Events Versus Event Procedures

You will often hear VB programmers
loosely refer to writing code in
“events.” Technically, this is not cor-
rect. You don’t write code in events;
you write code in event procedures.

06 002-8 CH 03 3/1/99 7:51 AM Page 103

104 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á If you’ve already written some event procedure code, then you
call up the first event procedure in alphabetical order for which
you’ve already provided some code.

The default event procedures for the three most basic controls are:

á The Click event for the CommandButton.

á The Change event for the TextBox.

á The Click event for the Label control.

It’s a very good idea to hold off writing any event procedure code
until you’ve re-named all controls appropriately. We discuss this idea
further in the following section.

Changing a Control Name After You
Assign Code to the Event Procedure
As mentioned in the discussion of the Name property, a control’s Name
becomes part of all the event procedure names of that control. For exam-
ple, the control named txtFirst would have event procedures named
txtFirst_Change, txtFirst_GotFocus, txtFirst_Click, and so on.

If you change a control’s Name, you automatically create new event
procedures. If there is already code in the event procedures that uses
the old name, those procedures will not be renamed and the code
will become “orphaned.”

The good news is that the old event procedures are not destroyed
outright. However, if you want to get the old event procedures back,
you must either copy and paste the code into the event procedures
with the new names, rename the old procedures, or rename the con-
trol back to its previous name.

For example, if you add a CommandButton named Command1 to a
form, write code in its Click event procedure, and then change
Command1’s name to cmdOK, the event procedure name does not
change and would still be named Command1_Click. Therefore, the
procedure would no longer be associated with the CommandButton.
CommandOK_Click would be the name of the current Click event pro-
cedure, and obviously this event procedure begins life with no code.

F IGU R E 3 .15
Editing an event procedure in the Code window.

06 002-8 CH 03 3/1/99 7:51 AM Page 104

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 105

Conversely, if you happen to write a general procedure and later
rename a control in such a way that one of its event procedure
names happens to match the name of the existing general procedure,
then that general procedure becomes an event procedure for the con-
trol. For example, if you write a general procedure whose declaration
looks like this:

Private Sub Bozo_Change()

and then later rename a TextBox control to “Bozo,” VB associates the
Bozo_Change procedure with the TextBox named “Bozo.”

The Click Event
A control’s Click event fires when the control is enabled and the user
both presses and releases a mouse button while the mouse pointer is
over the control. If the mouse pointer is over a disabled control or if
the mouse cursor is over a blank area of the form, then the form
receives the Click event.

The Click event is easy to understand, because it represents a com-
mon user action that occurs dozens of times during a single session
in any Windows-based application.

Notice that in our definition of the Click event in the first para-
graph, the user must both press and release the mouse button over
the same control. The Click event won’t occur if the user presses the
mouse button over one control and then moves the mouse pointer
off the control to release it. The same goes for a form’s Click event:
The user must both press and release the mouse button over an
exposed area of the form or over a disabled control in order for the
form to receive the Click event.

The Click event can also fire when the user presses a control’s access key.

The following controls support the Click event as noted:

á CommandButton Only the left (or, for left-handed mice, the
primary) mouse button fires a Click event for this control.
Pressing Enter or SpaceBar when a CommandButton has focus
will fire the Click event. Programmatically setting its Value
property to True will cause the Click event procedure to run
but will not fire the Click event.

N
O

T
E Choosing the Proper Mouse Event

Procedure One of the tricks to learn-
ing Visual Basic is to determine which
events to use in a given situation.
When attempting to determine which
mouse button was selected, many
new programmers do not see much
difference between the Click,
MouseUp, and MouseDown events. The
difference between any two events
within VB lies in when they occur with
respect to each other. The Click
event procedure is the preferred place
to detect a user’s intentions.

The reason for using the Click event
is to allow the user forgiveness. If the
user did not mean to click on your
object, or has pressed the button and
then realized he did not want to, the
mouse could still be removed from
the object. If the mouse is dragged
outside the area of the object, the
MouseUp event will still occur. The
Click event, however, will not occur.

Allowing your program to be forgiving
means the user will have an easier
time using the software, instead of
fearing the next mistake.

N
O

T
E Pressing and Releasing the Mouse

Button To distinguish between
pressing and releasing the mouse but-
ton, see the discussion of MouseUp
and MouseDown events later in this

06 002-8 CH 03 3/1/99 7:51 AM Page 105

106 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á Label Left or right mouse button fires a Click event.

á TextBox Left or right mouse button fires a Click event.

The DblClick Event
The DblClick event occurs on a form or a control when the object is
enabled, the mouse pointer is directly over the form or control, and
the user clicks the mouse twice in rapid succession. Windows deter-
mines whether the user’s two clicks represent a double-click or two
single clicks. The user can access the Windows Control Panel to set
the maximum time interval between two clicks for these two clicks
to count as a double-click.

The DblClick event is not defined for the CommandButton in VB, but
it is defined for the Label and the TextBox controls.

When the user double-clicks a form or a control that supports the
DblClick event, Windows generates a Click event followed by a
DblClick event for that control.

When the user double-clicks a control such as a CommandButton that
doesn’t support the DblClick event but does support the Click event,
Windows will generate two Click events for the control.

MouseUp and MouseDown
The MouseDown event fires when the user presses a mouse button over
a control or form. Similarly the MouseUp event occurs when the user
releases the mouse button over a control or form. Note that if the
user moves the mouse between the time the button was pressed and
released, the same control (i.e., the control that originally received
the MouseDown) will receive the MouseUp event.

During the MouseDown and MouseUp event procedures, you might
want to know whether the left or right mouse button was pressed.
You might also want to know whether or not one of the auxiliary
keys (Shift, Alt, or Ctrl) also was depressed during the mouse event.
Finally, it might be nice to know the relative position of the mouse
pointer within the form or control receiving the event.

All of the foregoing information is available in parameters that the
MouseUp or MouseDown event procedure receives from the system. The
four parameters are

Click Event Procedure Versus
Event Setting a CommandButton’s
Default or Cancel property to True
at design time will cause the
CommandButton’s Click event proce-
dure to run when the user presses
Enter or Esc keys respectively.
However, the Click event itself will
not fire.

W
A

R
N

IN
G

N
O

T
E DblClick Event Only the primary

(usually the left) mouse button will fire
the DblClick event.

06 002-8 CH 03 3/1/99 7:51 AM Page 106

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 107

á Button As Integer. This is a value representing which mouse
button fired the event. The value of this parameter is either
vbLeftButton, vbRightButton, or vbMiddleButton. Again these
terms are from the point of view of a right-handed mouse.
vbLeftButton always refers to the primary button, regardless of
whether it’s physically the left or right button.

á Shift As Integer. This parameter represents an integer that
indicates whether an auxiliary key is pressed during the Mouse
event. It contains a value of 0 (none), 1 (Shift), 2 (Ctrl), 4
(Alt), or the sum of any combination of those keys. For exam-
ple, if both the Ctrl and Alt key were pressed, the value of the
Shift parameter is 6. You can check for the state of any one of
the auxiliary keys with one of the VB constants vbAltMask,
vbCtrlMask, or vbShiftMask. The following code illustrates how
you could store the state of each auxiliary key in a Boolean
variable within the MouseDown or MouseUp event procedure. The
bit-wise representation of 1, 2, or 4 in the Shift parameter is
000000001, 000000010, 00000100. By doing a logical AND
between the Shift parameter and one of the VB Shift-key con-
stants, you can pick out whether each of the three Shift keys is
currently pressed, as illustrated in Listing 3.1.

á X As Single. This is the horizontal position of the mouse
pointer from the internal left edge of the control or form
receiving the event.

á Y As Single. This is the vertical position of the mouse
pointer from the internal top edge of the control or form
receiving the event.

LISTING 3.1

TEST ING THE SHIFT MASK IN A MOUSEDOWN OR MOUSEUP
EVENT PROCEDURE

Dim blnIsAlt As Boolean
Dim blnIsCtrl As Boolean
Dim blnIsShift As Boolean
blnIsAlt = Shift And vbAltMask
blnIsCtrl = Shift And vbCtrlMask
blnIsShift = Shift And vbShiftMask

06 002-8 CH 03 3/1/99 7:51 AM Page 107

108 Par t I VISUAL BASIC 6 EXAM CONCEPTS

“Of course,” you may be thinking, “isn’t a Click event simply the
combination of a MouseUp and a MouseDown?” How does the system
handle this fact when the user clicks or double-clicks the mouse? In
the next section we discuss how a VB program handles the combina-
tion of these various events.

Mouse Events Compared With Click
and DblClick
Programming mouse-related events is a common task within most
applications. This is because the mouse is the most common device
for user interaction within a Windows-based user interface.

In particular, the Click event is possibly the most commonly pro-
grammed event in a VB application. All the mouse events except
MouseMove are directly related to the action of one of the mouse but-
tons. For controls that support mouse events, the click-related events
take place in the following order:

When the user clicks once over Label and TextBox controls:

1. MouseDown

2. MouseUp

3. Click

When the user clicks once over a CommandButton control:

1. MouseDown

2. Click

3. MouseUp

When the user double-clicks over Label and TextBox controls:

1. MouseDown

2. MouseUp

3. Click

4. DblClick

5. MouseUp

06 002-8 CH 03 3/1/99 7:51 AM Page 108

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 109

When the user double-clicks over a CommandButton, no DoubleClick
event fires (the CommandButton does not support a DoubleClick
event). Instead, the CommandButton receives (as you might imagine):

1. MouseDown

2. Click

3. MouseUp

4. MouseDown

5. Click

6. MouseUp

MouseMove
The MouseMove event fires every time the mouse moves over a form
or control. The MouseMove event could therefore fire dozens of times
as the user quickly and casually moves the mouse. A user can fire
several MouseMove events in rapid succession just by being bored
enough to move the mouse around while waiting for relatively long
processes to complete (for example, data access, or some ActiveX
Automation call).

The MouseMove event has the same parameters as the MouseUp and
MouseDown events.

You might use the MouseMove event to react to the user moving the
MousePointer onto a control.

The Change Event
We discuss the Change event in greater detail in the chapter on Input
Validation. We mention it here briefly because the Change event is
the TextBox control’s user default event. It fires every time the Text
property alters. This event can fire due to user input or also because
your code has done something to change the Text property.

Labels also receive a Change event whenever the Caption changes at
runtime. Although user input could never fire a Label’s Change event
(since Labels can’t receive user input), the Label’s Change event
might fire if the Label Caption were changed in code.

06 002-8 CH 03 3/1/99 7:51 AM Page 109

110 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Other Events Commonly Used for Input
Validation
In the chapter on Input Validation, we discuss several more events at
length. We mention them briefly here as well for completeness:

• Keystroke events, including the KeyPress, KeyUp, and KeyDown
events, fire when the user hits keys at the keyboard.

• GotFocus and LostFocus events happen when focus comes to or
leaves a control. Note, of course, that the Label does not sup-
port these two events (it can’t get focus).

This chapter covered the following topics:

á Creating and editing a menu with the Menu Editor

á Modifying a menu item’s appearance in code

á Programming with Pop-Up menus

á Programming with menu control arrays

á Important properties and events of CommandButtons, TextBoxes,
and Labels

CHAPTER SUMMARY

KEY TERMS
• Access key

• Context-sensitive menu

• Event

• Event procedure

• Pop-up menu

• Right-mouse menu

• Shortcut key

• Sub menu

• Top menu

06 002-8 CH 03 3/1/99 7:51 AM Page 110

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 111

A P P LY YO U R K N O W L E D G E

Exercises

3.1 Creating a Simple Menu

In this exercise, you create a simple menu for the Form
object. A standard File menu will be created with com-
mon sub-menu items and also a View and Help menu.
To create this template, follow these steps:

Estimated time: 10 minutes

1. Start Visual Basic 6.

2. Create a Standard EXE project.

3. Select Tools, Menu Editor. Make sure that Form1
is currently selected. Otherwise the editor will
not be available. At the end of this project, the
menu editor should look like Figure 3.16.

6. Click on the Next button. Notice the &File
appears on the left edge of the bottom list box.
This menu item will be a top-level menu because
it has not been indented.

7. The caption should now be empty. To enter the
next menu, type &Open in the Caption property.

8. In the Name text box, type mnuFileOpen. The
mnu is the three-letter object prefix, File is the
top-level menu, and Open is a sub-menu of File.

9. Click on the right arrow. Notice that the &Open
menu item should now be indented one position
under the &File menu. This represents a sub-
menu item.

10. Continue creating the menus by following Table
3.1. Remember to click on Next to create a new
menu and watch the indents. Remember even
separator items must have distinct names (see
Table 3.1).

TABLE 3.1

MENUS TO CREATE

Caption Menu Name Position

- mnuFileSep1 Sub-menu of File

E&xit mnuFileExit Sub-menu of File

&Help mnuHelp Top-level menu

&About mnuHelpAbout Sub-menu of Help

11. On Form1, click on the File, Exit menu items.

12. In the open code window, enter the following
code:

Sub mnuFileExit_Click()
Unload Form1
End

End Sub

F IGUR E 3 . 16
Menu Editor with completed menus for Exercise 3.1.

4. In the Caption text box, type &File. Remember
that the ampersand is used for shortcut key desig-
nation.

5. In the Name text box, type mnuFile. The mnu is
the three-letter object prefix, and File is the top-
level menu caption.

06 002-8 CH 03 3/1/99 7:51 AM Page 111

112 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

13. On Form1, click on the Help, About menu item.

14. In the open code window, enter the following
code:

Sub mnuHelpAbout_Click()
MsgBox “This is a test application”, _

vbInformation
End Sub

15. Run the project.

16. Select the Help, About menu. A message box
should appear.

17. Click on OK to close the message box.

18. Select the File. Notice the Separator line. This
appears due to the “-” only being used in the cap-
tion of the menu item.

19. Choose Exit from the menu. This ends the appli-
cation.

This exercise demonstrated creating a simple menu sys-
tem attached to the form object. Code was also
assigned to various menu items so that the code would
execute when the menu item was selected.

3.2 Dynamically Modify the Appearance of
a Menu

In this exercise, you create a menu that is dynamically
modified during runtime. To create this template, fol-
low these steps:

Estimated time: 20 minutes

1. Start Visual Basic 6.

2. Create a Standard EXE project.

3. On Form1 create a menu bar with the items in
Table 3.2.

TABLE 3.2

MENU BAR ITEMS

Caption Menu Name Position

&File mnuFile Top-level menu

&Open mnuFileOpen Sub-menu of File

&Close mnuFileClose Sub-menu of File

- mnuFileSep1 Sub-menu of File

E&xit mnuFileExit Sub-menu of File

&View mnuView Top-level menu

&Toolbar mnuViewToolbar Sub-menu of View

Status &Bar mnuViewStatusBar Sub-menu of View

- mnuViewSep1 Sub-menu of View

&Options mnuViewOptions Sub-menu of View

4. Set Shortcut keys as shown in Figure 3.17.

5. With the Menu Editor open, choose the &Close
menu option and remove the check mark from
Enabled. This disables the menu by default. The
appearance of the Menu Editor should now
resemble Figure 3.17.

F IGURE 3 .1 7
Menu Editor with completed menus for Exercise 3.2 and
&Close menu option disabled.

06 002-8 CH 03 3/1/99 7:51 AM Page 112

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 113

A P P LY YO U R K N O W L E D G E

6. Close the Menu Editor.

7. From Form1 select File, Open. In the Code win-
dow, enter the following code for the menu:

Sub mnuFileOpen_Click()
mnuFileClose.Enabled = True
mnuFileOpen.Enabled = False

End Sub

8. From the Code window, find the FileClose
Click event procedure and enter the following
code for the menu:

Sub mnuFileClose_Click()
mnuFileOpen.Enabled = True
mnuFileClose.Enabled = False

End Sub

9. From Form1 select View, Toolbar. In the Code
window, enter the following code for the menu.
This code acts as a toggle switch. If it is on, turn
it off. If it is off, turn it on:

Sub mnuViewToolbar_Click()
mnuViewToolbar.Checked =

➥Not(mnuViewToolbar.Checked)
End Sub

10. From Form1 select View, Status Bar. In the Code
window, enter the following code for the menu:

Sub mnuViewStatusBar_Click()
mnuViewStatusBar.Checked =

➥Not(mnuViewStatusBar.Checked)
End Sub

11. Run the project.

12. From Form1 select File, Open. Once clicked,
return to the File menu. The Open menu should
now be disabled, and the Close menu should be
enabled.

13. From Form1 select File, Close. Once clicked, the
Open menu should be enabled, and Close
should be disabled.

14. From Form1 select View, Toolbar. Once clicked,
return to the View menu. The toolbar should
have a check mark beside it.

15. From Form1 select View, Status Bar. Once clicked,
the status bar should have a check mark. Notice
that status bar and toolbar do not affect each
other. One can be on, the other off, or both the
same.

16. End the application.

This exercise demonstrated simple, dynamic changing
of the menu appearance. Although no program code
was called in this project, each menu item could con-
tain VB commands or calls to other procedures. When
changing the appearance of menus, caution should be
taken if the code cannot execute or is not successful.
The menu appearance should not be altered. By execut-
ing code first and changing appearance last, the pro-
grammer can better handle the interface needs.

3.3 Add a Pop-Up Menu to an Application

In this exercise, you create a form that uses a pop-up
menu. To create this template, follow these steps:

Estimated time: 15 minutes

1. Start Visual Basic 6.

2. Create a Standard EXE project.

3. On Form1 place a text box in lower portion of the
form. Leave half the form empty. This will pro-
vide an area for the custom pop-up menu.

4. On Form1 create a menu bar with the structure in
Table 3.3.

06 002-8 CH 03 3/1/99 7:51 AM Page 113

114 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

TABLE 3.3

MENU BAR STRUCTURE

Caption Menu Name Position

MyMenu mnuMyMenu Top level

Cu&t mnuMyMenuCut Sub of MyMenu

&Select mnuMyMenuSelect Sub of MyMenu

&About mnuMyMenuAbout Sub of MyMenu

5. With the Menu Editor open, select MyMenu and
set the menu to be invisible.

6. Open the code window for Form1.

7. Find the form MouseUp event and enter the fol-
lowing code:

Sub Form_MouseUp(Button As Integer, Shift
➥As Integer, X As Single, Y As Single)

If Button = vbRightButton Then
Form1.PopupMenu mnuMyMenu

End If
End Sub

8. Run the project.

9. Click on the form background. Ensure that you
are not on the background of the text box.

10. Right-click on the form background. Although
no menu bar should appear at the top of the
form, your custom pop-up menu should appear.
Make sure you use the alternate mouse button to
get the menu.

11. The menu items can be clicked but have no code
attached.

12. To see a built-in control pop-up menu, right-
click on the TextBox control window. The menu
should appear automatically.

13. Type some words into the text box. Within your
pop-up menu, select to copy and paste some text.
Notice that you did not program this functionality.

14. End the application.

This exercise demonstrated how to use both a cus-
tomized pop-up menu and a built-in, pop-up menu.
When customized menus are required, just build them
as a regular menu and hide the top-level menu if
desired. Built-in menus require no coding or trapping
of the mouse but cannot be overridden in VB.

3.4 Create an Application That Adds and
Deletes Menus at Runtime

In this exercise, you create a form that adds and deletes
menus at runtime. To create this template, follow these
steps:

Estimated time: 25 minutes

1. Start Visual Basic 6.

2. Create a Standard EXE project.

3. Under the Project menu, choose Components.

4. Check the Microsoft Common Dialog Control.
A new tool icon should be added to the toolbox.

5. Add the new tool to Form1. It should appear as a
small gray square. This control provides the Open,
Save As, Color, Font, Printer, and Help dialog boxes
from Windows. The control is invisible at runtime.

6. Change the Name property for the object to
CDC1.

7. Open the code window and, in the General Dec-
larations section for Form1, enter the following code:

Private iItem as Integer

8. Create the menu structure for Form1 as shown in
Table 3.4.

06 002-8 CH 03 3/1/99 7:51 AM Page 114

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 115

A P P LY YO U R K N O W L E D G E

TABLE 3.4

FORM1 MENU STRUCTURE

Caption Menu Name Position

&File mnuFile Top-level

&Open... mnuFileOpen Sub-menu of File

&Close mnuFileClose Sub-menu of File

- mnuFileItem Sub-menu of File

- mnuFileSep1 Sub-menu of File

&Exit mnuFileExit Sub-menu of File

9. Using the Menu Editor, select mnuFileItem; set the
Index property to 0 and make the menu item invis-
ible. This will be your first element in the menu
array, and it will be invisible until an array element
has been assigned. After completing this action, the
Menu Editor should appear, as in Figure 3.18.

11. Select the File, Open menu item. In the Code
window, enter the following code:

Sub mnuFileOpen_Click()
Dim iLoop As Integer
cdc1.ShowOpen
If cdc1.filename <> “” Then

mnuFileItem(0).Visible = True
For iLoop = 0 To iItem

If mnuFileItem(iLoop).Caption =
➥cdc1.filename Then

Exit Sub
End If

Next iLoop
iItem = iItem + 1
Load mnuFileItem(iItem)
mnuFileItem(iItem).Caption =

➥cdc1.filename
mnuFileItem(iItem).Visible = True

End If
End Sub

12. Add a CommandButton to Form1. Change the
Caption property to &Clear File List.

13. Open the Code window for the Clear File List
button, and enter the following code:

Sub Command1_Click()
Dim iLoop as Integer
mnuFileItem(0).Visible = False
For iLoop = 1 to iItem

Unload mnuFileItem(iLoop)
Next iLoop
iItem = 0

End Sub

14. Run the project.

15. From Form1 select File, Open. Choose any direc-
tory, and then choose any file. The file will not be
opened, but the path and filename will appear
under the File menu. This is similar to the Most
Recently Used list found in Applications.

16. Using File, Open, select as many different file-
names as you like. If the path and filename are
already in the list, they will not be added again.

F IGURE 3 .18
Menu Editor with completed menus for Exercise 3.4 and
Index property set for mnuFileItem.

10. Open the File menu while in Design mode.
Notice that the Open, Close, Sep1, and Exit menu
items are visible, but the first array element—
Separator—is not.

06 002-8 CH 03 3/1/99 7:51 AM Page 115

116 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

17. After you have selected a few different files, use
the Clear File List button. This button will use a
form-level variable which indicates the number of
menu array elements and unloads each element.

18. After the list is cleared, the Open menu can be
used again followed by the Clear File List button.

19. End the application.

This exercise demonstrated how runtime menus are cre-
ated based on a design time template. The template is
the first item in a control array, and new menu elements
are loaded dynamically at runtime. Unloading the items
just requires the array element’s index and the Unload
statement to remove the menu from memory.

3.5 Test Control Events

In this exercise, you create a form that tests the event
procedures of many of the events discussed in this
chapter. To create the application, follow these steps:

Estimated time: 35 minutes

1. Start Visual Basic 6.

2. Create a Standard EXE project and populate the
default startup form with controls as shown in
Figure 3.19. Note the upper control in the frame
for the Mouse events is a Label with its
BorderStyle property set to 1-Fixed Single.

3. You should name the controls according to their
respective captions as shown in the figure:
cmdCommand1Value, Command1,
cmdOption1ValueTrue, cmdCheck1Value0,
cmdCheck1Value1, cmdCheck1Value2, Option1,
Option2, Check1, cmdClickAndDblClick,
txtKeyStroke, lblClickAndDblClick, and
cmdClickAndDblClick. Name the two
CommandButtons on the lower right corner of the
form cmdClearForm and cmdQuit respectively.

4. Enter the following code into cmdClearForm and
cmdQuit’s Click event procedures:

Private Sub cmdClearForm_Click()
Me.Cls

End Sub
Private Sub cmdQuit_Click()

Unload frmEvents
Set frmEvents = Nothing
End

End Sub

5. CmdQuit will allow you to gracefully terminate the
application by closing the form properly.
CmdClearForm will clear the results of old calls to
the form’s Print method from the form’s surface.
You will want to use this button frequently in the
following steps so that you can clearly see when
certain event procedures run and when they do
not.

6. Enter the following code into the indicated event
procedures of txtKeyStroke:

Private Sub txtKeyStroke_KeyDown(KeyCode As
➥Integer, Shift As Integer)

If KeyCode = vbKeyF1 Then
Me.Cls

F IGURE 3 .19
Form and controls for Exercise 3.5.

06 002-8 CH 03 3/1/99 7:51 AM Page 116

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 117

A P P LY YO U R K N O W L E D G E

Me.Print “KeyDown.”
End If

End Sub
Private Sub txtKeyStroke_KeyPress(KeyAscii
➥As Integer)

KeyAscii = Asc(UCase(Chr(KeyAscii)))
End Sub
Private Sub txtKeyStroke_KeyUp(KeyCode As
➥Integer, Shift As Integer)

If KeyCode = vbKeyF1 Then
Me.Cls
Me.Print “KeyUp.”

End If
End Sub
Private Sub txtKeyStroke_Change()

Beep
End Sub

7. Run the app and experiment with keyboarding
into the TextBox. Notice that the state of the
Caps Lock key doesn’t matter, because everything
always comes through as upper case. Notice the
annoying beep every time you do anything to
change the contents of the TextBox. Finally
notice that, upon pressing the F1 key, the
KeyDown event fires, and only when you release it
does the KeyUp event fire.

8. Stop the app and enter the following code into
lblClickAndDblClick’s event procedures:

Private Sub lblClickAndDblClick_Click()
Me.Font.Bold = True
Me.Print “Label Click”
Me.Font.Bold = False

End Sub
Private Sub lblClickAndDblClick_DblClick()

Me.Print “Label DblClick”
End Sub
Private Sub
lblClickAndDblClick_MouseDown(Button As
➥Integer, Shift As Integer, X As Single, Y
➥As Single)

Me.Cls
Me.Print “Label MouseDown”

End Sub
Private Sub
lblClickAndDblClick_MouseUp(Button As
➥Integer, Shift As Integer, X As Single, Y
➥As Single)

Me.Print “Label MouseUp”
End Sub

9. Run the app and experiment with clicking and
double-clicking the mouse over this Label. Try
disabling the Label to verify that it does not then
receive these events.

10. Stop the app and enter the following code into
the event procedures of cmdClickAndDblClick:

Private Sub cmdClickAndDblClick_Click()
Me.Font.Bold = True
Me.Print “CommandButton Click”
Me.Font.Bold = False

End Sub
Private Sub
cmdClickAndDblClick_MouseDown(Button As
➥Integer, Shift As Integer, X As Single, Y
➥As Single)

Me.Cls
Me.Print “CommandButton MouseDown”

End Sub
Private Sub
cmdClickAndDblClick_MouseUp(Button As
➥Integer, Shift As Integer, X As Single, Y
➥As Single)

Me.Print “CommandButton MouseUp”
End Sub

11. Run the app and notice the different behavior of
the CommandButton’s mouse events compared to
the Label.

12. Stop the app and in Command1’s and
cmdCommand1Value’s Click event procedures, enter
the following code:

Private Sub cmdCommand1Value_Click()
Command1.Value = True

End Sub

13. Run the app and notice that setting Command1’s
Value property has the same effect as clicking it.

14. Stop the app and in the Click event procedures of
Option1 and Check1, enter the following code:

Private Sub Option1_Click()
Me.Cls

06 002-8 CH 03 3/1/99 7:51 AM Page 117

118 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Me.Print “Option1_click”
End Sub
Private Sub Check1_Click()

Me.Cls
Me.Print “Check1_Click”

End Sub

15. Run the app and notice that the Click events
only run when you change the value of the
OptionButton or CheckBox.

16. Stop the app and in the Click event procedures
of cmdOption1ValueTrue, cmdCheck1Value0,
cmdCheck1Value1, and cmdCheck1Value2, enter the
following code:

Private Sub cmdOption1Value_Click()
Option1.Value = True

End Sub
Private Sub cmdCheck1Value0_Click()

Check1.Value = 0
End Sub
Private Sub cmdCheck1Value1_Click()

Check1.Value = 1
End Sub
Private Sub cmdCheck1Value2_Click()

Check1.Value = 2
End Sub

17. Run the app and notice the effect of setting the
Values of the OptionButton and CheckBox.

3.6 Use Common Control Properties

In this exercise, you create a form that uses many of the
control properties discussed in this chapter. To create
the application, follow these steps:

Estimated time: 10 minutes

1. Start Visual Basic 6.

2. Create a Standard EXE project and populate the
default startup form with controls as shown in
Figure 3.20. Name the TextBoxes on the form
txtName, txtDepartment, txtLoginID, and
txtPassword and name the CommandButtons cmdOK

and cmdQuit. You can leave the Labels with their
default names.

3. Modify the TabStop property of txtPassword so
that the user cannot access it with the Tab key.

4. Convert the first letter of each of the first three
Labels into an access key for the TextBox immedi-
ately to the right of the respective Label.
Remember that the TabIndex property of the
Label must immediately precede the TabIndex of
the TextBox for which the Label provides the
access key.

5. Change the PasswordChar property of txtPassword
so that the user only sees asterisks (*) when typ-
ing into this control. Change the MaxLength prop-
erty of txtPassword so that the user can enter no
more than eight letters.

6. Experiment with the Locked, Enabled, MultiLine,
and Scrollbars properties of the other three
TextBoxes.

7. Put the following code into the Click event
procedures of the CommandButtons:

Private Sub cmdOK_Click()
MsgBox “It’s OK”

End Sub
Private Sub cmdQuit_Click()

MsgBox “Abandoning User Changes”
End Sub

F IGURE 3 .2 0
Form and controls for Exercise 3.6.

06 002-8 CH 03 3/1/99 7:51 AM Page 118

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 119

A P P LY YO U R K N O W L E D G E

8. Set the Default property of cmdOK to True and
the Cancel property of cmdQuit to True. Now run
the app, make sure that the cursor is in one of
the TextBoxes, and observe the effects of pressing
the Enter key and the Esc key. Notice that the
CommandButtons do not receive focus even though
their event procedures run. This is because the
events themselves do not fire when Enter or Esc
is pressed—only the event procedures run.

Review Questions
1. Visual Basic forms can be used to host a menu

bar. What two methods can be utilized by Visual
Basic to create these menus?

2. When designing application menu bars, a variety
of terminologies are used to refer to the different
levels and positions held by a menu item. What
is the name of a menu item that appears directly
under a window’s title bar?

3. When using the Menu Editor, how can the pro-
grammer define which menus will be at the top,
which will be sub-items, and how the order is
controlled?

4. Pop-up menus are displayed when the user
selects the right mouse button. This displays a
menu with options specific to the area that the
user has selected. In which event, in Visual Basic,
would a programmer trap for the use of the right
mouse button?

5. Right-clicking on certain objects provides the
user with a menu. What names are used to refer
to this menu?

6. Menus can be created dynamically in Visual Basic
by declaring a menu array and then loading a
new element into the menu array. Once loaded,
the new menu can have its properties set. True or
False? Why?

7. The Unload statement is used to remove menu
items created at runtime. Can the Unload state-
ment also be used for removing the design time
menu template that is the first element in the
array?

8. Describe two mouse techniques for adding con-
trols to a form.

9. Name three objects that can contain controls.

10. What are the default properties, respectively, of
CommandButtons, Labels, and TextBoxes. What
does each of these properties represent?

11. What is the syntax for changing a control prop-
erty’s value in VB code?

12. What problem might happen to a control’s event
procedure when the programmer renames the
control?

Exam Questions
1. Menus in Visual Basic can have their appearance

changed to reflect the state of the application. To
change menu items in VB at runtime, which
methods can be used?

A. The Menu Editor

B. Program code

C. Program code and the Menu Editor

D. Menu property of a form

E. Negotiate property of a form

06 002-8 CH 03 3/1/99 7:51 AM Page 119

120 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

2. The Menu Editor enables the programmer to cre-
ate menu objects. These objects can have a variety
of properties set and changed. Which property
cannot be affected by using the Menu Editor?

A. Checked

B. Visible

C. Picture

D. Shortcut Key

E. Enabled

3. In certain applications, objects provide a shortcut
menu by using the right mouse button. This pop-
up menu can be used to provide common com-
mands for the selected object. Which item best
describes the requirements to create a pop-up
menu?

A. Define the top-level and sub-level menu item,
trap for the right mouse button in the
MouseUp event, and call the form PopupMenu
method.

B. Define the menu items, trap for the right
mouse button in the MouseUp event, and call
only the selected menu items.

C. Use the pop-up property of the object.

D. Assign a top-level menu to the pop-up menu
property of the object.

E. Use the Menu Editor, define the top-level
menu name as “pop-up,” and in the MouseUp
event call the menu.

4. Assume that the Menu Editor has already been
used to create a menu structure. For the menus to
provide the functionality required, how are the
menu items assigned program code?

A. By using the ItemCode property in the editor

B. By using the Menu property in the Properties
window

C. By using the ItemCode property in the
Properties window

D. By selecting the menu item from the form and
entering code into the opened Code window

E. None of these

5. When a menu control array is created, runtime
menu items can be added to the array. When the
element’s properties are set, where in the menu
structure do the new items appear?

A. In the order specified by the
NegotiatePosition property

B. In the order specified by the array element

C. Immediately below the preceding array
element

D. At the bottom of the menu specified at design
time

E. None of these

6. You can specify that a menu control will be a sep-
arator bar by

A. Supplying a space(“ ”) as the Name property

B. Supplying a dash (“—”) as the Caption prop-
erty

C. Supplying a dash (“—”) as the Name property

D. Supplying an underscore (“_”) as the Caption
property

7. If Text1 is selected and the following line of code
runs

Text1.SelText = “Hello”

06 002-8 CH 03 3/1/99 7:51 AM Page 120

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 121

A P P LY YO U R K N O W L E D G E

A. The text “Hello” replaces the previously
selected text.

B. The text “Hello” inserts into the TextBox in
front of the previously selected text.

C. Text1.SelLength becomes 5

D. Everything visible in Text1 disappears and is
replaced by “Hello.”

8. The value of the Name property

A. Can’t be read in code at runtime

B. Provides a default value for the Caption prop-
erty for all controls having a Caption

C. Takes its default from the Caption property

D. Can’t be changed at runtime

9. To prevent the user from being able to give focus
to a control under any circumstances, you may
(select all that apply)

A. Set the control’s TabIndex property to 0.

B. Set the control’s TabStop property to 0.

C. Set the control’s TabStop property to False.

D. Set the control’s Enabled property to False.

10. Which of these statements will assign the value
of the CommandButton’s Caption property to the
TextBox’s Text property?

A. Text1 = Command1

B. Text1 = Command1.Caption

C. Text1.Text = Command1

D. Text1.Text = CStr(Command1)

11. If a TextBox’s Enabled property is False, then

A. The text in the box will be grayed, and the
user won’t be able to set focus to the TextBox.

B. The text in the box will be grayed, the user
can still set focus to the TextBox, but the user
won’t be able to make changes to the text.

C. The text in the box will be grayed, and the
user can still make changes to the text.

D. The text in the box will appear normal, the
user can set focus to the TextBox, but the user
can’t make any changes.

12. An access key for a TextBox control

A. Can be provided in the TextBox’s Caption
property

B. Can be provided in the TextBox’s Text property

C. Can be provided in an accompanying Label
control

D. Can be provided in the TextBox’s Label
property

Answers to Review Questions
1. The two methods used by Visual Basic to create

menus for an application are the VB Menu
Editor and the Win32 API. Both methods can be
used from VB to generate menu systems. The
built-in Menu Editor is a simple dialog box that
enables the user to create a hierarchy of menu
items and menu item order. The Win32 API is an
external set of functions provided by the operat-
ing system and allows for a wide variety of func-
tions. See “Understanding Menu Basics.”

06 002-8 CH 03 3/1/99 7:51 AM Page 121

122 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

2. The term used to refer to a menu item found
directly under a window’s title bar is a top-level
menu. This menu item is used to group other
items into a sub-menu, which will appear under
the top-level item when it is selected. See
“Knowing Menu Terminology.”

3. When creating menus with the Menu Editor, the
programmer uses the left and right arrows. The
arrows allow the menu hierarchy to be cus-
tomized as required. The up and down arrows of
the Editor allow the items to be ordered from top
to bottom. See “Using the Menu Editor.”

4. The MouseUp event can be used to determine
which mouse button has been clicked. By using a
specific object’s MouseUp event, the programmer
can determine whether the right mouse button
was used. If so, the form PopupMenu method can
be called. See “Determining the Mouse Button.”

5. The menu provided when a user right-clicks on
an object has a variety of names. One of the most
common terms used is the “pop-up menu.”
Another term is the “context-sensitive menu.”
Also used is the “right mouse menu.” All terms
refer to the same menu. Certain objects and the
operating system provide the menu, or they can
be created in Visual Basic. See “Adding a Pop-Up
Menu to an Application.”

6. True. This is one way to allow for the customiza-
tion of menu items on a menu bar. By setting the
index value of one menu item at design time, new
items can be dynamically loaded and controlled
through code. See “Creating an Application that
Adds and Deletes Menus at Runtime.”

7. No. The Unload statement can only be used to
remove instances of menu items created at run-
time. If the first element in the array—assuming

it is the design time item—is passed to Unload,
an application error will occur: Can’t unload
controls created at design time. See
“Removing Runtime Menu Items.”

8. First technique: Double-click on the control’s
icon in the ToolBox. Second technique: Single-
click on the control and then use the mouse to
draw its rectangular outline on the container’s
surface. See “Adding Controls to Forms.”

9. Some objects that can contain controls are: Forms,
PictureBoxes, and Frames. Note: Image controls
cannot contain other controls. See “Adding
Controls to Forms.”

10. Value property, Caption property, and Text prop-
erty, respectively. The CommandButton’s Value
property is a True/False property that you can set
in code to fire the CommandButton’s Click event.
The Label’s Caption property represents the text
that the user sees on the Label’s surface. The
TextBox control’s Text property represents
editable text that appears in the TextBox. See
“Referring to a Property Within Code,”
“Important Properties of the CommandButton,”
“Important Properties of the TextBox Control,”
and “Important Properties of the Label Control.”

11. ControlName.PropertyName = NewValue. See
“Referring to a Property Within Code.”

12. When you re-name a control, the control gets a
brand-new event procedure with a new name. If
you wrote code that you wrote in the event pro-
cedure before the name change, that code stays in
the procedure with the old name. Therefore, any
code that you wrote in the old event procedure
before you changed the control’s name is no
longer associated with the control’s event. See
“Changing a Control Name After You Assign
Code to the Event Procedure.”

06 002-8 CH 03 3/1/99 7:51 AM Page 122

Chapter 3 IMPLEMENTING NAVIGATIONAL DESIGN 123

A P P LY YO U R K N O W L E D G E

Answers to Exam Questions
1. B. The menu items can only be affected by pro-

gram code at runtime. If an application is to have
dynamic menus that reflect the state of the appli-
cation, the program code will allow the menu
objects to be controlled. The Menu Editor is only
available for application forms that have a menu
and are in Design mode. For more information,
see the section “Using the Menu Editor.”

2. C. The Picture property cannot be accessed by
using the Visual Basic Menu Editor. This prop-
erty is one of the special features of a menu that
requires using the Win32 API. By using a special
external call from Visual Basic, a menu can be
assigned a picture. The new applications from
Microsoft, such as Word 97 and Excel 97, show
this capability. For more information, see the
section “Using the Menu Editor.”

3. A. The top-level menu is created first, and the
pop-up menu items are then created as sub-level
menu items of the top-level menu. The next step
is to test for a right-click on the selected object.
After the right-click has been detected, the form
PopupMenu method is called, and the top-level
menu that has been defined is passed as an argu-
ment. For more information, see the section
titled, “Defining the Pop-Up Menu.”

4. D. You can bring up a menu item’s code window
by selecting the menu item from the design time
form with the mouse or keyboard. The code
window will contain the procedure stub for the
menu object’s Click event. The programmer just
has to enter the desired code to be run. For more
information, see the section titled, “Attaching
Code to a Menu Item’s Click Event Procedure.”

5. B, C. When runtime menus are created, they are
displayed according to their element number and
appear directly below the menu with the preced-
ing element number. The only exception is if the
element is not displayed because the Visible
property has been set to False. Runtime menus
will always be on the same menu where they were
created at design time, directly below the array
elements that were created at design time. For
more information, see the section titled,
“Creating an Application that Adds and Deletes
Menus at Runtime.”

6. B. You can specify that a menu control will be a
separator bar by specifying a dash as the Caption
property. This is the only way to get a separator
bar, so none of the other options will work. See
“Using the Menu Editor.”

7. A. The code Text1.Seltext=”Hello” causes “Hello”
to replace the previously selected text and sets the
value of Text1.SelLength to 0 (after SelText is set,
no text is selected). Setting the value of SelText
replaces the currently selected text with the new
string, leaving the new string as the currently-
selected text. Thus the length of the newly-
selected text would be the same as the length of
the string. Answer D would be true only if every-
thing in the TextBox were selected before the line
of code ran. See “Important Properties of the
TextBox Control.”

8. D. The value of the Name property can’t be
changed at runtime. In some earlier versions of
VB, the Name property couldn’t be read at runtime,
but now it can (this has been true for several ver-
sions already). The Name property does not provide
a default value for the Captions of Menu items
(you must always type in their names manually).

06 002-8 CH 03 3/1/99 7:51 AM Page 123

124 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

In other cases the Name property definitely serves
as the default value for the Caption and not the
other way around. See “Name” under the section
“Important Common Properties of
CommandButtons, TextBoxes, and Labels.”

9. D. To prevent the user from being able to give
focus to a control under any circumstances, you
may set the control’s Enabled property to False.
All the other options will only affect the user’s
navigation with the Tab key. The user could still
use the mouse as long as the Enabled property
were True. See “Enabled” under the section
“Important Common Properties of
CommandButtons, TextBoxes, and Labels.”

10. B. The line Text1 = Command1.Caption would set
the TextBox’s Text property to the CommandButton’s
Caption. Text1 = Command1 would not work
because the CommandButton’s Default property is
the Value property. Text1.Text = Command1 would
not work for the same reason. Finally Text1.Text
= CStr(Command1) would set Text1.Text to the
string “True” or “False” because, once again, it
would convert the Default property of Command1
(the Value property, which is Boolean) into a
string. See “Referring to a Property Within Code.”

11. A. When a TextBox’s Enabled property is False,
the text in the box will be grayed and the user
won’t be able to set focus to the TextBox. Option
D describes the behavior of a TextBox when the
Locked property is True; Option B describes the
behavior if the ForeColor property were gray and
Locked were True, and C would be the situation if
ForeColor were gray, Enabled were True, and
Locked were False. See “Enabled” under the sec-
tion, “Important Common Properties of
CommandButtons, TextBoxes, and Labels” and also
see “Important Properties of the TextBox
Control.”

12. C. An access key for a TextBox control can be
provided in an accompanying Label control, pro-
vided the Label immediately precedes the TextBox
in the Tab order. As for the other answers:
TextBoxes have no Caption property, their Text
property is constantly changed by the user, and
they have no Label property. See “Assigning an
Access Key to a TextBox Control Through a
Label’s Caption.”

06 002-8 CH 03 3/1/99 7:51 AM Page 124

OBJECT IVES

4C H A P T E R

Creating Data
Input Forms and

Dialog Boxes

This chapter helps you prepare for the exam by cover-
ing the following objectives:

Add an ActiveX control to the ToolBox
(70-175 and 70-176).

. See the objective explanation for “Create data input
forms and dialog boxes.”

Create data input forms and dialog boxes
(70-175 and 70-176).

• Display and manipulate data by using cus-
tom controls. Controls include ListView,
ImageList, ToolBar, and StatusBar.

• Create an application that adds and deletes
controls at runtime.

• Use the Controls Collection to manipulate
controls at runtime.

• Use the Forms Collection to manipulate
forms at runtime.

. The exam objectives for this chapter broaden the
focus of the objective of the previous chapter by
adding more elements of user interface programming:

. The first objective (Add an ActiveX control to the
ToolBox) and the first subobjective (Display and
manipulate data by using custom controls) of the
second objective (Create data input forms and
dialog boxes) focus on several controls that are not
found in the standard VB toolbox. You must know
how to add such custom controls to the VB toolbox
so that you can program with them, and then, of
course, you must know something about each
control’s object model and design- and runtime
behaviors. We discuss each of the controls listed
in the second objective in this chapter.

. The remaining subobjectives deal with broader
issues of programmatic manipulation of VB objects
in the visual interface. These objectives apply to any
type of control in any VB application.

07 002-8 CH 04 3/1/99 7:53 AM Page 125

OUTL INE STUDY STRATEGIES

Adding an ActiveX Control to the
ToolBox 128

Using ActiveX Controls to Create Data
Input Forms and Dialog Boxes 129

Using the ImageList Control 129

Using the TreeView Control 134

Using the ListView Control 139

Using the ToolBar Control 147

Using the StatusBar Control 153

Techniques for Adding and Deleting
Controls Dynamically 160

More on Creating Data Input Forms and
Dialog Boxes 172

Using the Forms Collection 179

Chapter Summary 185

. For the first objective (Display and manipulate
data by using custom controls), you should per-
form Exercises 1 through 4 at the end of this
chapter.

. For the second objective (Create an application
that adds and deletes controls at runtime),
see Exercise 5 at the end of this chapter.
Programmers familiar with earlier versions of
VB should not depend solely on their knowl-
edge of previous versions for this objective,
since VB6 now allows you to add controls
dynamically without having a design time con-
trol array to provide initial templates for the
new controls.

. For the third objective (Use the Controls
Collection to manipulate controls at runtime),
see Exercise 6 at the end of this chapter.

. For the fourth objective (Use the Forms
Collection to manipulate forms at runtime),
see Exercise 7 at the end of this chapter.

07 002-8 CH 04 3/1/99 7:53 AM Page 126

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 127

INTRODUCTION

This chapter extends the ideas introduced in Chapter 3,
“Implementing Navigational Design,” and describes further steps
you can take to provide the user with a functioning data input
form or dialog box.

You may include several standard 32-bit ActiveX controls on your
form to enhance your Visual Basic application’s user interface. These
controls organize data and provide different ways of presenting infor-
mation to the user, give you additional means of displaying informa-
tion about the environment, and also provide the means for you—as
a developer—to manipulate data and controls.

Here is a brief description of what the ActiveX controls discussed in
this chapter do:

á The ImageList control gives you a means of loading graphics
files, such as icons and bitmaps, into your application for use
with other controls.

á You can use the ListView control to organize data in lists.

á The ToolBar control lets you quickly build toolbars in your
application, giving users an alternative to the menu for
performing actions.

á You can add the StatusBar to a form to present information
about the environment to the user through text messages and
progress bars.

We then discuss control arrays that allow your application to
dynamically create and destroy controls as the application runs.

Next we examine the related concept of a form’s Controls Collection
that you can use to manipulate controls without referencing each by
name.

Turning our attention to the manipulation of forms, we first discuss
the different techniques for managing forms programmatically.

Finally we talk about how to manipulate the loaded forms in an
application without referencing each form by name. As you might
expect from the earlier description of the Controls Collection, we
will use the Forms Collection.

07 002-8 CH 04 3/1/99 7:53 AM Page 127

128 Par t I VISUAL BASIC 6 EXAM CONCEPTS

This chapter examines the following topics:

á Adding an ActiveX control to the ToolBox

á Using the ImageList control

á Using the TreeView control

á Using the ListView control

á Using the ToolBar control

á Using the StatusBar control

á Adding and deleting controls dynamically

á Using the Controls Collection

á Manipulating forms in code to provide data input forms and
modal dialogs

á Using the Forms Collection

ADDING AN ACTIVEX CONTROL TO
THE TOOLBOX

. Add an ActiveX control to the ToolBox.

The controls discussed in this chapter are available through the
Microsoft Windows Common Controls Library 6.0 (comctl32.ocx)
that you can select from the Project Components dialog box, as
shown in Figure 4.1.

Generally custom controls that you will add to a VB application are
implemented in files with the extension .ocx.

F IGU R E 4 .1
Adding the Common Controls to a project.

07 002-8 CH 04 3/1/99 7:53 AM Page 128

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 129

USING ACTIVEX CONTROLS TO
CREATE DATA INPUT FORMS AND
DIALOG BOXES

. Create data input forms and dialog boxes.

The various ActiveX controls and their uses are discussed in this
section.

Using the ImageList Control
The ImageList is a control that enables you to store graphic images
in an application. Other controls can then use the ImageList as a
central repository for the images that they will use. Both bitmaps
(*.bmp files) and icons (*.ico files) can be stored in the ImageList
control. At runtime the ImageList is invisible, just like a Timer or a
CommonDialog control, so you can place it anywhere on a form with-
out interfering with the user interface.

After an ImageList control has been added to a form, images can be
added to the control at design time through the Custom Properties
dialog box. The first tab of the dialog box, as shown in Figure 4.2,
enables you to change general properties of the ImageList. On this
tab, you can select the style and size of a graphic that will be
included in the ImageList. Three of the resolutions, 16×16, 32×32,
and 48×48, refer to the resolution of icon files. The Custom option
lets you include bitmap images in the ImageList as well as icon
images. You do not need to choose a resolution, height, and width
for the ImageList. As soon as you add an image to the control,
Visual Basic automatically determines the properties for you. After
you have placed an image in the ImageList, you cannot change the
resolution property. It is locked for as long as there is an image in
the ImageList control.

The list of images contained in the ImageList control can be managed
through the Images tab of the Property Pages dialog box, as shown in
Figure 4.3. This tab enables you to add and remove images from the
control as well as set additional information about each image. The
Index of each image is assigned by Visual Basic. The Index starts at
1 for the first image and increments by 1 for each additional image.

F IGURE 4 .2
The General tab of the Property Pages dialog
box for the ImageList control.

07 002-8 CH 04 3/1/99 7:53 AM Page 129

130 Par t I VISUAL BASIC 6 EXAM CONCEPTS

You can use the Key property to refer to an image in the ImageList’s
collection of images. The Key property is a string value that you can
use in place of the Index property to refer to an image in the list.

The easiest way to add images to the ImageList is to use the Images
tab at design time. Just click on the Insert Picture button, and you can
browse for the *.ico and *.bmp files that you want to add to the con-
trol. After you have added images to the ImageList control, they are
available for your application to use in other controls. You can load
images into PictureBoxes and Image controls from the ImageList. The
images can also be used by the other controls discussed later in this
chapter, such as the ToolBar and ListView controls.

Although you can add all the images you may need in your applica-
tion to the ImageList at design time, there are times when you will
have to manipulate these images at runtime. This can be done
through the ListImages Collection of the ImageList control. The
ListImages Collection contains ListImage objects.

ListImage Object and ListImages Collection
All the images contained in the ImageList control are stored in the
ListImages Collection. Each icon and bitmap in the collection is a
separate ListImage object. You can refer to each image in the list by
its index:

ImageList1.ListImages(1).Picture

or, if a key (for example, “Smiley”) were assigned to a particular
ListImage object, you could refer to it by its key value:

ImageList1.ListImages(“Smiley”).Picture

You can use the ListImages Collection to loop through all the
images in the list. If you wanted to display all the stored images in a
PictureBox, one after another, you could use the code of Listing 4.1.

LISTING 4.1

LOOPING THROUGH THE IMAGES IN AN IMAGELIST
CONTROL

Dim picImage as ListImage

For Each picImage in ImageListImageList1.ListImages
Picture1.Picture = picImage.Picture

Next

F IGU R E 4 .3
The Images tab of the Property Pages dialog
box for the ImageList control.

07 002-8 CH 04 3/1/99 7:53 AM Page 130

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 131

If you knew the image you wanted to move to a PictureBox, you
could just code this:

Picture1.Picture = ImageList1.ListImages(3).Picture

or this:

Picture1.Picture = ImageList1.ListImages(“Smiley”).Picture

In the first example, the third image in the ImageList control would
be loaded into PictureBox Picture1, and in the second example, the
image whose key is FirstImage would be loaded.

Add and Remove Methods
You can use the Add method of the ListImages Collection to add
images to the ImageList at runtime. The syntax for Add is as follows:

ImageList1.ListImages.Add([index], [key], picture)

Here ImageList1 is the name of the ImageList control on your form.
Index and Key are optional parameters. If Index is specified, it will
be the location at which the image is loaded into the ListImages
Collection. If Index is omitted, the new image will be inserted at the
end of the collection. Key is a string value that you can use to refer to
an image in the list without knowing its index value. For example if
an image were added as follows:

ImageList1.ListImages.Add(, “folder icon”,
➥LoadPicture(“folder.ico”))

you might not know the index value of the new image, but you
could still refer to it in this way:

Picture1.Picture = ImageList1.ListImages(“folder
➥icon”).Picture

Using the ListImages key makes your code more readable than if
you refer to images with the Index property.

You can remove a ListImage from the ListImages Collection with
the Remove method. You can use Remove either by specifying the
index of the image:

ImageList1.ListImages.Remove 1

or by providing the image’s key value:

ImageList1.ListImages.Remove “key value”

07 002-8 CH 04 3/1/99 7:53 AM Page 131

132 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Draw Method
You can use the Draw method of the ListImage object to draw an
image on another object. As discussed earlier, an image from the
ImageList control can be loaded into a PictureBox by setting the
Picture property:

Picture1.Picture = ImageList1.ListImages(1).Picture

You can also use the Draw method to accomplish the same thing.
With Draw, however, you have some additional options. The syntax
for Draw is as follows:

ImageList1.ListImages(Index).Draw (HDC, x,y, style)

where Index identifies the image to be drawn. The Key value can be
used in place of the Index as well. HDC is the device context ID of the
destination device. If you were to draw an image onto a form, for
example, you could specify Form1.HDC for the HDC property. This
tells Windows where to put an image. The optional parameters, x
and y, identify the coordinates within the destination at which the
image will be drawn. The Style property can take one of the follow-
ing four values:

á imlNormal (0) The image will appear normally—with style = 1.

á imlTransparent (1) The part of the image will appear to be
transparent. Transparency is determined by the MaskColor prop-
erty (set on the Color tab of the Custom Properties dialog box).

á imlSelected (2) The image will be dithered with the system
highlight color.

á imlFocus (3) The image appears as if it has focus.

Overlay Method
You can use the Overlay method of the ImageList control to return
a combination of two images from the ListImages Collection. The
method is a function and returns the result as a picture. The syntax
for the Overlay method is as follows:

Set Object = ImageList1.Overlay(index1,index2)

where index1 and index2 refer to two images in the ListImages
Collection and Object refers to an object such as an Image or
PictureBox. Either the Index or the Key for a ListImage can be used.

07 002-8 CH 04 3/1/99 7:53 AM Page 132

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 133

The resulting picture can be used as any other picture object in
Visual Basic. It can be placed on a destination object, such as a Form
or PictureBox, or can even be loaded into another ImageList con-
trol. The following code

Form1.Picture = ImageList1 (1, 2)

combines the first and second images from the ImageList1.
ListImages Collection and places the resulting picture on Form1.

ImageHeight and ImageWidth Properties
The ImageHeight and ImageWidth properties of the ImageList con-
trol identify the height and width in pixels (not in twips!) of images
belonging to the ListImages Collection. These properties are read/
write at design time (from the Custom Properties window) and at
runtime. The Height and Width properties identify the size of an
image in pixels.

Note that after the first image is added to the ListImages, all other
images must be the same height and width; otherwise an error will
occur. If you need to include different-sized icons in an application,
you can use multiple ImageList controls, one for each size needed.

ListImages Property
The ListImages property returns a reference to the collection of
ListImage objects (ListImages Collection) contained within an
ImageList control.

MaskColor and UseMaskColor Properties
MaskColor is a read/write property used to identify the color that
will be used to create masks for the ImageList control. The
MaskColor can be set at design time on the Color tab of the Custom
Properties dialog box for the ImageList control. It can also be set
and read at runtime as follows:

ImageList1.MaskColor = vbBlack

You can set the MaskColor property by using the Visual Basic color
constants, the QBColor function, or by using the RGB function. The
MaskColor is used with the Draw and the Overlay methods to deter-
mine the parts of an image that will be transparent.

07 002-8 CH 04 3/1/99 7:53 AM Page 133

134 Par t I VISUAL BASIC 6 EXAM CONCEPTS

UseMaskColor determines whether the MaskColor property will be
used as part of a Draw or Overlay. It takes either a True or a False
value and is also available at either design time or runtime.

Using the TreeView Control
The purpose of a TreeView control is to display information in a
hierarchy. A TreeView is made up of nodes that are related to each
other in some way. Users can look at information, or objects, pre-
sented in a TreeView control and quickly determine how those
objects are bound together.

Figure 4.4 shows a good example of TreeView in the Windows
Explorer. The left side of Explorer shows information about drives
in a hierarchical layout. Explorer starts its tree with a node called
Desktop. From there you can see several nodes indented below the
Desktop node. The indentation and the lines connecting nodes show
that the My Computer node is a child of the Desktop node. My
Computer also has children—the A: drive, C: drive, and so on.
Children of the same parent are often referred to as siblings. The A:
drive and B: drive, for example, both have My Computer as a parent
and are called siblings.

F IGU R E 4 .4
Windows Explorer as an example of a TreeView.

The TreeView control is available as part of the Common Controls
component in Visual Basic. You can use the TreeView anytime that
you need to display data to a user as a hierarchy.

07 002-8 CH 04 3/1/99 7:53 AM Page 134

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 135

Node Object and Nodes Collection
A TreeView’s information is contained in a Nodes Collection of
Node objects. Just as image information is stored in the ListImages
Collection for the ImageList control, node information is stored in
the Nodes Collection of the TreeView control. You can get to the
information in a specific node in the tree by referring to that node
by index, as follows:

TreeView1.Nodes(index)

where “index” is an integer identifying a node in the collection, or
by referring to the node with a key value, as follows:

TreeView1.Nodes(“key”)

where “key” is the string value of the node’s key property. The Node
object represents a single node from the Nodes Collection:

Dim objNode as Node
Set objNode = TreeView1.Nodes(1)

After the above code executes, objNode will have the same properties
as the node identified by TreeView1.Nodes(1).

Add and Remove Methods
Nodes can be added to the TreeView control by using the Add
method of the Nodes Collection. The syntax for Add is as follows:

TreeView1.Nodes.Add(relative, relationship, key, text,
➥image, selectedimage)

All the arguments for the Add method are optional.

The Relative argument gives VB the Key or Index of an existing
node, and the Relationship parameter tells VB where to place the
new node in relation to the relative node.

If the Relative and relationship arguments are not specified, the
new node will be placed at the top level in the tree after all other
existing nodes at that level.

The values for the relationship argument are as follows:

á tvwFirst (0) The new node is placed at the same level in
the tree as the “relative.” It will be added as the first node of
that level.

07 002-8 CH 04 3/1/99 7:53 AM Page 135

136 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á tvwLast (1) The new node is placed at the same level in the
tree as the “relative” but will be added after the last existing
node at the same level as “relative.”

á tvwNext (2) The new node will be placed at the same level
in the tree as the “relative,” immediately following that node.

á tvwPrevious (3) The new node will be placed at the same
level in the tree as the “relative,” immediately preceding that
node.

á tvwChild (4) The new node will be a child of the “relative”
node.

The Key property identifies the new node in the tree. If provided as
an argument, it must be a unique string, not used as a key by any
other node in the tree. The key is used to retrieve or to find this
node when the index is not known.

The last three arguments of the Add method define the appearance of
the new node. The text that appears next to a node in the TreeView
is specified by the Text argument, a string value. If you want to have
icons appear in the TreeView alongside the Text, you must first have
an ImageList control on your form. When you set up a TreeView
and define its properties through the Property Pages dialog box, you
can bind an ImageList to the TreeView. Figure 4.5 shows an example
of this.

To include an icon with the node text, you can use the Image argu-
ment. This argument has an integer value that corresponds to the
index of an image in the bound ImageList control. The ImageList
has to be set up first so that the index values are available for use in
the TreeView control. If you want a node to have a different icon dis-
played when that node is selected by the user, you can specify a sec-
ond icon with the SelectedImage argument. This is also an integer
argument identifying an image in the same ImageList.

EnsureVisible and GetVisibleCount
Methods
If at some point during the execution of your program, you need to
make sure that a node in the TreeView is visible, you can use the
EnsureVisible method of a specific node:

TreeView1.Nodes(23).EnsureVisible

Key Values for TreeView Nodes
Throughout Visual Basic, you will
find many collections that can be
referenced by key, which is a string
value. In most of these collections,
if you want to use a number as the
key, you can just convert the num-
ber to a string by using the Str$()
function or by enclosing the number
in double quotation marks. You
should be aware, however, that
Nodes Collection of the TreeView is
an exception to this. Converting a
number to a string and attempting
to use that string as the key to a
TreeView Node object will generate
a runtime error.

W
A

R
N

IN
G

F IGU R E 4 .5
Binding an ImageList to a TreeView control.

07 002-8 CH 04 3/1/99 7:53 AM Page 136

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 137

This makes the node with an index of 23 visible to the user even if the
node is several levels deep in a tree that is completely collapsed. The
EnsureVisible property expands the tree to make the node visible.

To get the number of nodes visible at any one time, you can use the
GetVisibleCount method of the TreeView control. By using

TreeView1.GetVisibleCount

you will get a count of nodes visible within the TreeView. The count
will only include those nodes that are visible, including any nodes par-
tially visible at the bottom of the control. The count does not include
any nodes expanded below the bottom edge of the TreeView control.

TreeView Properties
Numerous properties for the TreeView control and for Node objects
define the appearance of the tree and give access to nodes within the
tree. You can use many of these properties to navigate through a
TreeView, as follows:

á Child Returns a reference to the first child of a node. The
Child property can be used to set a reference to a node:

Dim objNode as Node
objNode = TreeView1.Nodes(1).Child

This sets objNode equal to the first child of the node with
index 1. Operations can also be performed directly on the
reference to the child:

TreeView1.Nodes(1).Child.Text = “This is the first child.”

This changes the text for the first child node of node 1.

á FirstSibling Returns a reference to the first sibling of the
specified node. FirstSibling is a node at the same level as
the specified node.

á LastSibling Returns a reference to the last sibling of the
specified node. LastSibling is a node at the same level as
the specified node.

á Parent Returns a reference to the parent of the specified node.

á Next Identifies the node immediately following the specified
node in the hierarchy.

á Previous Identifies the node immediately preceding the spec-
ified node in the hierarchy.

07 002-8 CH 04 3/1/99 7:53 AM Page 137

138 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á Root Provides the root node, or top-level node, in the tree for
the specified node.

á SelectedItem Returns a reference to the node currently
selected in the TreeView control.

á Nodes Returns a reference to the entire Nodes Collection for
the TreeView.

You can also use the following additional properties to control the
behavior and appearance of the TreeView:

á Children Returns the total number of child nodes for a given
node.

á Selected A True or False value indicating whether a
particular node is selected.

á Expanded A True or False value indicating whether a particu-
lar node is expanded (that is, its child nodes are visible).

á FullPath Returns a string value depicting the entire path
from the root to the current node. The full path is made up of
the concatenated text values of all the nodes from the root,
separated by the character specified by PathSeparator property.

á PathSeparator Identifies the character used as a separator in
the FullPath property.

á LineStyle Determines the appearance of the lines that
connect nodes in a tree. LineStyle can have two values 0
(tvwTreeLines) and 1 (tvwRootLines). If LineStyle is 0, there
will be lines connecting parents to children and children to
each other. If LineStyle is 1, there will also be lines connecting
the root nodes.

á Sorted A True or False value for the TreeView. If Sorted is
True, the root nodes will be sorted alphabetically by the Text
property of each node. Child nodes will also be sorted alpha-
betically within each parent. If Sorted is False, the nodes in
the TreeView will not be sorted.

When the Sorted property is set to True, the nodes that already
exist in the TreeView will be sorted. If any additional nodes
are added, they will not be sorted into the existing nodes.

07 002-8 CH 04 3/1/99 7:53 AM Page 138

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 139

The Sorted property will have to be set to True again for these
new nodes to appear in sorted order.

TreeView Events
You can use several events of the TreeView control to code for actions
taken by the user or to handle actions caused by code execution. In
addition to standard control events such as Click and DblClick, the
TreeView control has these following additional events:

á Collapse Generated whenever a node in a TreeView control
is collapsed. This event occurs in one of three ways: when the
Expanded property of a node is set to False; when the user
double-clicks on an expanded node; or when the user clicks on
the +/- image for a node to collapse that node. The node that
was collapsed is passed in as an argument to the event.

á Expand Generated when a node in a TreeView is expanded.
Like the Collapse event, Expand occurs in one of three
instances: when the user double-clicks on a node that has
children to expand that node; when the user clicks on the +/-
image to expand a node; or when the Expanded property for
the node is set to True. Expand also has one argument, the
node object that was expanded.

á NodeClick Occurs when a Node object is clicked by the user.
The node that was clicked is passed in as an argument to the
event. If the user clicks anywhere on the TreeView, other than
on a node, the Click event for the TreeView control is fired
instead.

Using the ListView Control
The ListView control displays lists of information to a user. As with
the TreeView control, Windows Explorer provides an example of the
ListView control. The left side of Windows Explorer contains a tree
of all the directories on a drive. The right side contains a list of items
within a directory. To get an idea of the ways in which a ListView
control can be used, you just need to look at the way a list of files
appears and behaves in Windows Explorer (see Figure 4.6).

07 002-8 CH 04 3/1/99 7:53 AM Page 139

140 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Objects can be displayed in one of four ways with the ListView. You
can use either large or small icons to represent each item in the list,
along with accompanying text information, where multiple items
can appear on a single row. You can also display items in a list with
one item per line. Finally you can show items as a columnar report
in the ListView control with one item appearing on each line and
sub-item information displaying in additional columns in the con-
trol, as shown in Figure 4.7.

F IGU R E 4 .6.
Example of a ListView in Windows Explorer
showing large icons.

F IGU R E 4 .7.
Example of a ListView in Windows Explorer
showing the report style.

As you learn about the ListView, you will see similarities to the
TreeView control. The behavior and appearance of the two controls
can be manipulated in many of the same ways. The major difference
that you will notice is that objects in a ListView are not related to
each other, as are objects in a TreeView.

07 002-8 CH 04 3/1/99 7:53 AM Page 140

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 141

ListItem Object and ListItems Collection
Each item in the ListView is called a ListItem object. If you look at
Figure 4.6, for example, you will see a list of files in the Visual Basic
directory. Biblio.mdb, Readme.hlp, and each of the other files in the
right side of the Windows Explorer is a ListItem.

The ListView control organizes all the ListItem objects into a single
collection called ListItems. This is similar to a TreeView, which
organizes each Node object in a tree into the Nodes Collection. The
ListItems Collection can be used to cycle through all the objects in
the control for processing, just as with any other collection (see
Listing 4.2).

LISTING 4.2

PROCESSING THE ITEMS CONTAINED IN A LISTVIEW
CONTROL

Dim objItem as ListItem
For Each objItem in ListView1.ListItems

‘ do some processing÷
Next

Index and Key Properties
You can refer to Items in a ListView by either the Index property or
the Key property. The Index property is an integer expression typi-
cally generated by Visual Basic when a ListItem is added to the
ListView. You can refer to a specific item by number:

Msgbox ListView1.ListItems(1).Text

Alternatively you can loop through the collection of ListItems,
referring to each by number, as illustrated in Listing 4.3.

LISTING 4.3

LOOPING THROUGH A LISTVIEW CONTROL’S LISTITEMS BY

NUMBER

For I = 1 To ListView1.ListItems.Count
Msgbox ListView1.ListItems(I).Text

Next I

07 002-8 CH 04 3/1/99 7:53 AM Page 141

142 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Unlike the Index in the TreeView, you have some control over the
value of the Index property in the ListView control. Specifying an
Index number is discussed later in this section.

A more convenient way to reference an item in the list is by Key.
The Key property is a string expression—assigned by you as the
developer (or by the user if you desire)—that can also be used to
access an item in the list. The Key property is included as part of the
Add method (discussed later) when an item is inserted into the list.
As a developer you usually know the value for the Key and can access
a node directly. It is easier to refer to the node you want by using a
meaningful text string than by using the Index property that is
determined by Visual Basic.

Unlike the TreeView you can store numbers in the Key property of
each ListItem if necessary. You just have to convert the number to a
string by using the Str$() function, and the string value will be
accepted as the Key by Visual Basic.

View Property
The overall appearance of a ListView is determined by the View prop-
erty. The View property can have one of the following four values:

á lvwIcon (0) Display item text along with the regular icon
with one or more ListItems per line.

á lvwSmallIcon (1) Display item text along with the small
icon with one or more ListItems per line.

á lvwList (2) Display the small icon with the text to the right
of the icon. One ListItem will appear per line.

á lvwReport (3) Display the small icon with the text to the
right of the icon and sub-item information to the right of the
text displayed in columns. One ListItem will appear per line.

Add and Remove Methods
ListItems are inserted into a ListView by using the Add method.
The Add method has the following syntax:

ListView1.ListItems.Add(index, key, text, icon, smallIcon)

All the arguments for the Add method are optional.

07 002-8 CH 04 3/1/99 7:53 AM Page 142

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 143

F IGURE 4 .8
Setting an ImageList reference for a ListView
control.

The Index argument is an integer value that you can use to specify
the position of the new item being added to the list. If the Index
argument is omitted, Visual Basic places the new item at the end of
the list.

The Key property is a unique string that you can use to identify an
item in the list instead of using the Index to that object.

The last three arguments—Text, Icon, and SmallIcon—determine
the appearance of the new item in the ListView.

If the Text argument is given, that text will appear with the item in
the ListView.

The Icon and SmallIcon arguments are integers referring to an icon in
an ImageList control. As with the TreeView, the ListView needs at
least one ImageList control on the form for icons to be displayed.
References to ImageLists are set through the Property Pages dialog
box for the ListView, as shown in Figure 4.8. You can set references to
two different ImageLists for a ListView: one reference for regular
icons (when the ListView’s View property is lvwIcon) and a second
list for small icons (when the View property is set to any other value).

Because an ImageList control can only contain images of a single
size, two ImageLists are required if you will be using both regular
and small icons. Typically regular icons will be 32×32, and small
icons will be 16×16.

07 002-8 CH 04 3/1/99 7:53 AM Page 143

144 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Icon and SmallIcon Properties
After ListItems have been added to a ListView, their references to
icons in an ImageList can be read or set through the Icon and
SmallIcon properties. These properties have integer values that corre-
spond to the index value of images in the ImageLists to which the
ListView is bound. If you create a form with ListView1, ImageList1,
and ImageList2 controls, for example, and you use ImageList1 for
regular icons and ImageList2 for small icons, the following:

x = ListView1.ListItems(1).Icon

returns an integer that corresponds to an index value of an image in
ImageList1 while:

x = ListView1.ListItems(1).SmallIcon

gives you the index of an image in ImageList2.

FindItem Method
After items have been added to a list, you may have a need to find
one or more of those items. The FindItem method of the ListView
control enables you to search through the items and return the
desired ListItem object. FindItem has the following syntax:

ListView1.FindItem (string, value, index, match)

The string argument, which is required, specifies the string for
which you are searching in the list. The value argument tells Visual
Basic how to search for the string. Value can be one of the following:

á lvwText (0) Search for the String argument in the Text
property of the ListItems.

á lvwSubItem (1) Search for the String argument in the
sub-items of the ListItems.

á lvwTag (2) Search for the String argument in the Tag
property of the ListItems.

The Index argument can be used to indicate the start position for
the search. This argument can have either an integer or a string
value. If the value is an integer, Visual Basic starts the search at the
ListItem with an Index of that value. If the argument is a string, the
search begins at the item having the same Key value as the argument
value. If the Index argument is not specified, the search starts at the
first item in the list.

07 002-8 CH 04 3/1/99 7:53 AM Page 144

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 145

The final argument, match, determines how Visual Basic will select
a ListItem that matches the string argument. Match can have the
following two values:

á lvwWholeWord(0) A match occurs if the String argument
matches the whole word that starts the Text property of the item.

á lvwPartial (1) A match occurs if the String argument
matches the beginning of the Text property regardless of
whether it is the whole word.

Arrange Property
The Arrange property of the ListView determines how items are
arranged within a list. Arrange can have one of the following three
values:

á lvwNone (0) Items are not arranged within the ListView.

á lvwAutoLeft (1) Items are arranged along the left side of the
ListView.

á lvwAutoTop (2) Items are arranged along the top border of
the ListView.

The ListItem’s appearance in a ListView is also determined by the
sorting properties.

Sorted, SortKey, and SortOrder Properties
Three properties—Sorted, SortKey, and SortOrder—determine the
order of ListItems in a ListView control.

The Sorted property can have one of two values, True or False. If
Sorted is False, the items in the ListView are not sorted. If the
Sorted property is set to True, the ListItems will be sorted with an
order that depends on the other two properties: SortKey and
SortOrder. The values of SortOrder and SortKey are ignored unless
the Sorted property is set to True.

SortOrder specifies whether the ListItems appear in ascending
(lvwAscending) or descending (lvwDescending) order. Ascending
order is the default for SortOrder. SortKey identifies on what the
items in the list will be sorted. By default the items in the list will be
sorted by the Text property of the ListItems.

07 002-8 CH 04 3/1/99 7:53 AM Page 145

146 Par t I VISUAL BASIC 6 EXAM CONCEPTS

If your ListView is in a report format with multiple columns, you
can sort by using the text value of any of the columns by setting the
SortKey property to the desired column. If SortKey is 0, the list will
be sorted by the ListItems().Text property. If SortKey is greater
than 0, the sort will take place using one of the additional report
columns in the control (described in the following section).

ColumnHeader Object and ColumnHeaders
Collection
If you want to use a ListView with a report format that has multiple
columns for each ListItem, you must work with the ColumnHeaders
Collection. ColumnHeaders is a collection of ColumnHeader objects.
Each ColumnHeader object identifies one column in a ListView.
The ColumnHeaders Collection always contains at least one column
for the ListItem itself. Additional columns can be added using the
ColumnHeaders.Add method or removed with the ColumnHeaders.Remove
method.

If you look back at the example of the Windows Explorer as an
ImageList, you will see that it uses four columns. The first column—
the icon and the filename—is the ListItem. This would be the first
entry in the ColumnHeaders Collection. Additional columns are
included for the file size, type, and modification date.

SubItems Property
Once additional columns have been added to a ListView, those
columns can be accessed through the SubItems property of a
ListItem. The text that appears in a column for a particular
ListItem can be read or set using:

Msgbox ListView1.ListItems(1).SubItems(2)

For this example the above code will display the text that appears in
the third column, SubItems(2), of the first ListItem, ListItems(1).

ItemClick Event
Most code associated with a ListView control appears in either the
ItemClick event or the ColumnClick event. The ItemClick event occurs
when the user clicks on a ListItem within the ListView control. The
ListItem that was clicked will be passed into the event as an argument.

07 002-8 CH 04 3/1/99 7:53 AM Page 146

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 147

The ItemClick event occurs only when an item in the list is clicked.
If the user clicks anywhere in the ListView control other than on an
item, the regular Click event is fired.

ColumnClick Event
The ColumnClick event is fired when the user clicks on the column
header of the ListView. The ColumnHeader object that was clicked is
passed into the event as an argument.

The code that is typically placed in the ColumnClick event is the code
to sort the ListItems by that column. This is the normal behavior
expected by users in the Windows environment.

The ColumnHeaders is one-based, meaning that the first column in
the ColumnHeaders collection has an index of 1. The SortKey prop-
erty, however, uses 0 as the index for the first key. Therefore if you
want to match up a ColumnHeader with its corresponding SortKey,
you must subtract 1 from the ColumnHeader index, as in Listing 4.4.

LISTING 4.4

MATCHING A COLUMNHEADER WITH ITS CORRESPONDING

SORTKEY

Private Sub ListView1_ColumnClick _
(ByVal ColumnHeader As ComctlLib.ColumnHeader)

‘Change the SortKey of the ListView
‘to correspond to the SubItem in the just-clicked ColumnHeader

‘MsgBox ColumnHeader.Index
ListView1.SortKey = ColumnHeader.Index - 1
ListView1.Sorted = True

End Sub

Using the ToolBar Control
In earlier 16-bit releases of Visual Basic, it was difficult to implement
a toolbar for your users. You had to place a PictureBox control on a
form and then add CommandButton controls to the PictureBox to sim-
ulate the toolbar. Starting with the 32-bit version of Visual Basic 4.0
and continuing with all subsequent versions of VB, you have the
ToolBar ActiveX control that you can add to your forms to easily
implement toolbar functionality for your users.

07 002-8 CH 04 3/1/99 7:53 AM Page 147

148 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A toolbar is becoming a standard feature of Windows applications.
Toolbars provide functionality to a user through an easily accessible,
graphical interface. For common functions the user does not need to
navigate through a menu or remember shortcut keys to use an appli-
cation. Applications can expose their most common features through
buttons on a toolbar.

Setting Custom Properties
The ToolBar control is available through the Windows Common
Controls, along with the TreeView, ListView, and ImageList. After
you have drawn a toolbar on a form, you will usually start by
setting properties through the Property Pages dialog box for the
control.

On the first tab of the Property Pages dialog box, as shown in Figure
4.9, one of the options you will set most often is the ImageList. Like
the TreeView and the ListView controls, the toolbar gets images from
an ImageList control. If you are building a toolbar that will have
graphics on its buttons, you will first need to add an ImageList con-
trol to the form and then bind that ImageList to the toolbar through
the Property Pages dialog box.

F IGU R E 4 .9
General tab of the Custom Properties of a
toolbar.

07 002-8 CH 04 3/1/99 7:53 AM Page 148

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 149

Several other properties are unique to the toolbar and can be
set on the General tab. The ButtonHeight and ButtonWidth
properties determine the size of buttons that appear on the toolbar.
All buttons will have the same height and width. The number of
buttons that can appear on a toolbar is determined by the size of
the buttons and the width of the window. If you want the toolbar
and buttons to wrap when the window is resized, you can set the
Wrappable property of the toolbar to True.

If you want to add ToolTips to your ToolBar control, you must set
the ShowTips property to True. The actual tips that appear are tied to
each button. You can allow the user to customize the toolbar by set-
ting the AllowCustomize button to True. These properties are dis-
cussed later in the section “Customizing Toolbars.”

Button Object and Buttons Collection
Command buttons on a toolbar are called Button objects, and all the
Button objects are stored in the Buttons Collection. This is similar to
the way that the TreeView Node objects are contained in a Nodes
Collection. Each Button object has many properties that control its
appearance and functionality. These properties can be set either at
design time through the Buttons tab of the Property Pages dialog
box (see Figure 4.10) or at runtime.

F IGURE 4 .1 0
Buttons tab of the Custom Properties of a
toolbar.

07 002-8 CH 04 3/1/99 7:53 AM Page 149

150 Par t I VISUAL BASIC 6 EXAM CONCEPTS

As with the other controls discussed in this chapter, individual
Button objects can be referenced by either the Index property or the
Key property. The Index property has an integer value that refers to a
button’s position on a toolbar. The first button on a toolbar will have
an index value of 1. The Key property is a unique string expression
that can be used to access a particular button on a control.

Style Property
The Style property of the Button object determines how a button
performs on a toolbar. The values that the Style property can take
are as follows:

á tbrDefault (0) This is the default value for the Style prop-
erty. When buttons have this style, they appear and behave as
standard CommandButton controls.

á tbrCheck (1) The button will function as a check box.
This style goes along with the Value property (Pressed or
Unpressed). When this button is clicked, it will stay pressed or
indented until it is clicked a second time.

á tbrButtonGroup (2) Buttons with this style function as
OptionButton controls. Buttons on a toolbar can be grouped
together, and all have a style of tbrButtonGroup if you want to
give the user mutually exclusive options. When the user selects
a button in the group, that button will stay depressed (value of
1) until another button in the group is clicked. Button groups
are separated from the rest of the buttons in the toolbar by a
separator (see following item).

á tbrSeparator (3) If you use this style for a button, it will
not appear as a button at all but as a space between buttons.
The space will be a fixed eight pixels wide.

á tbrPlaceholder (4) This style will allow a button to act like
a separator, but the width is adjustable.

Appearance Properties
Several other properties of the Button object control the appearance
of each button on the toolbar.

The first of these is the Image property. The value of image is an inte-
ger that maps to the index of an image in an ImageList control. The
ImageList used is determined by the ImageList selected on the
General tab of the Property Pages dialog box.

Key Property of a Toolbar’s Button
Object The Key property of a
Button object cannot contain a
numeric expression even if you con-
vert the number using the Str$()
function first. If you try to use a
number converted to a string as the
key to a Button object, you will
receive a runtime error indicating
an invalid key value.

W
A

R
N

IN
G

07 002-8 CH 04 3/1/99 7:53 AM Page 150

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 151

In addition to an image, you can place a caption on each button of
your toolbar by setting the caption property. If you have both an
image and a caption on a Button object, the caption will show below
the image.

ToolTips can be added to each button on a toolbar by setting the
ToolTipText property.

If the ShowTips property of the toolbar is set to True, the
ToolTipText of a button will appear to the user when the mouse
pointer is rested over that button. This is valuable for new users of
an application who do not yet know the purpose of each button.

Add and Remove Methods
Buttons can be added and deleted from a toolbar at runtime by
using the Add and Remove methods. The Add method of the Buttons
Collection has the following syntax:

Toolbar1.Buttons.Add(index, key, caption, style, image)

Index is the position at which you want to insert the new button. If
you do not specify an index, the new button will appear at the right
end of the existing buttons. The key is a string value that can be
used to reference the new button. The caption argument will be any
text that you want to appear on the new button. Style specifies how
a button will behave (as described earlier). Finally, the image argu-
ment is an integer value that corresponds to an image in the
ImageList connected to the ToolBar control.

To delete an existing button from the toolbar, you can use the
Remove method:

Toolbar1.Buttons.Remove index

where the Index argument is either the integer value for the Index
of the Button object you wish to remove or a string value for the
Key of the Button object.

ButtonClick Event
The ButtonClick event for the ToolBar control will fire whenever a
user clicks on a Button object. For each toolbar there is a single
ButtonClick event, not one for each button on the toolbar. The
event is fired as follows:

Private Sub Toolbar1_ButtonClick(ByVal button As Button)

07 002-8 CH 04 3/1/99 7:53 AM Page 151

152 Par t I VISUAL BASIC 6 EXAM CONCEPTS

where the Button argument is a reference to the Button object that
has been clicked. You can use this argument to determine which but-
ton was clicked by the user and what to do as a result by using a
Select Case statement, as shown in Listing 4.4.

LISTING 4.4

REACTING TO A USER CLICK ON A TOOLBAR BUTTON

Private Sub Toolbar1_ButtonClick(ByVal button As Button)

Select Case button.Key
Case “Open”

‘ open an existing file
Case “New”
‘ create a new file

Case “Exit”
‘ close the application

End Select

End Sub

Customizing Toolbars
Many applications are now allowing users to customize toolbars with
their own preferences. You can also provide your users the ability to
customize the toolbars you create within your application. The first
thing you must do before a user can change your toolbar is to set the
AllowCustomize property to True. As long as AllowCustomize is
False, the user cannot make changes.

After AllowCustomize is set to True, customization takes place
through the Customize Toolbar dialog box, as shown in Figure 4.11.
This dialog box becomes available to the user in one of two ways:

á The user double-clicks on the ToolBar control.

á The Customize method of the toolbar is called.

If you will be allowing a user to make changes to a toolbar, you
should consider using two additional methods: SaveToolbar and
RestoreToolbar. With these two methods, you can save settings from
the toolbar in the Windows Registry and then read them back at a
later time to restore the appearance of a toolbar either to the original
settings or to the user’s personal settings when the application is
restarted.

F IGU R E 4 .11
The Customize Toolbar dialog box.

07 002-8 CH 04 3/1/99 7:53 AM Page 152

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 153

The SaveToolbar method has the following syntax:

Toolbar1.SaveToolbar(key As String, subkey As String, value
➥As String)

The RestoreToolbar has the following syntax:

Toolbar1.RestoreToolbar(key As String, subkey As String,
➥value As String)

The key and subkey arguments are the key and subkey of the
Windows Registry at which you are storing information or from
where you are retrieving information. The value argument is the
information that you are saving or reading.

Using the StatusBar Control
The StatusBar control is another ActiveX Control available through
the Windows Common Controls components. With the StatusBar,
you can easily display information about the date, time, and other
details about the application and the environment to the user.

Panel Object and Panels Collection
A StatusBar is made up of Panel objects, each of which displays
different types of information. All the Panel objects are contained
in the Panels Collection of the StatusBar. The appearance and
purpose of each Panel is determined by the Style property of that
Panel. The following styles are available:

á sbrText (0) The Panel will display text information. The
information displayed is in the Text property of the Panel.

á sbrCaps (1) The Panel will contain the string “Caps”. It will
be highlighted if Caps Lock is turned on or disabled if Caps
Lock is turned off.

á sbrNum (2) The Panel will contain the string “Num”. It will
be highlighted if Num Lock is turned on or disabled if Num
Lock is turned off.

á sbrIns (3) The Panel will contain the string “Ins”. It will be
highlighted if Insert mode is turned on or disabled if Insert
mode is turned off.

á sbrScrl (4) The Panel will contain the string “Scrl”. It will
be highlighted if Scroll Lock is turned on or disabled if Scroll
Lock is turned off.

07 002-8 CH 04 3/1/99 7:53 AM Page 153

154 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Figure 4.12 shows an example of a status bar displaying all the dif-
ferent styles.

F IGU R E 4 .12
Different styles of the Panel object.

As with the other controls discussed in this chapter, the properties of
the StatusBar and the Button objects can be set either through the
Property Pages dialog box at design time or at runtime. The proper-
ties of the StatusBar control can be set on the General tab, as shown
in Figure 4.13.

The Style and SimpleText properties of the toolbar determine the
appearance of the control at runtime. The Style property can have
one of two values: Simple or Normal. When the Style property is
Simple, only one panel of the StatusBar is visible, and the text in
the SimpleText property is displayed. When the Style property is
Normal, the StatusBar appears with multiple panels.

á sbrTime (5) The Panel will display the current time in the
system format.

á sbrDate (6) The Panel will display the current date in the
system format.

á sbrKana (7) The Panel will contain the string “Kana”. It
will be highlighted if Kana (a special character set only avail-
able in the Japanese PC market) is enabled or disabled if Kana
is disabled.

07 002-8 CH 04 3/1/99 7:53 AM Page 154

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 155

The use of ToolTips is available to you with the StatusBar control.
Behavior of ToolTips for the StatusBar is similar to the behavior of ToolTips
for the ToolBar control (discussed earlier in “Using the ToolBar Control”).

, F IGURE 4 .13
General properties of the StatusBar.

, F IGURE 4 .1 4
Custom Properties of the Panel object.

Further properties of the Panel objects give more control over the
appearance of a StatusBar control. These properties can be set on
the Panels tab of the Property Pages dialog box, as shown in Figure
4.14, or at runtime.

07 002-8 CH 04 3/1/99 7:53 AM Page 155

156 Par t I VISUAL BASIC 6 EXAM CONCEPTS

An individual ToolTipText property is available for each panel of the
StatusBar control. When the ShowTips property of the StatusBar is set
to True and the user rests the mouse pointer over a panel in the
StatusBar, the ToolTipText is displayed at the mouse pointer.

Several other Panel properties affect the appearance of each panel.
The Alignment property determines whether text displayed in a panel
is left-justified, right-justified, or centered. The MinWidth property
specifies the minimum width of a panel. The ScaleMode of the con-
tainer on which the StatusBar is located determines the units for the
MinWidth. Each panel also has a Width property that determines the
starting width of the object.

The AutoSize property of a panel can also have an impact on its
width. This property can have the following values:

á sbrNoAutoSize (0) The panel size will not be changed
automatically.

á sbrSpring (1) If the size of the StatusBar increases as the
size of the container grows, the width of the Panel will also
increase. As a StatusBar grows smaller, the size of the Panel
will not go below the MinWidth value.

á sbrCntents (2) The Panel will be resized to fit its contents
but will never fall below the MinWidth.

Another property that affects a panel’s appearance is the Picture.

Unlike the other controls discussed in this chapter, the StatusBar
does not get images from an ImageList.

If you wish to include images—either bitmaps or icons—in a panel, you
can add them through the Property Pages dialog box by specifying the
file directly. You can also add them at runtime with the LoadPicture
function, which takes the image file path as its argument, or by setting
the Picture property to one of the ListImages in an ImageList control
or to the appropriate bitmap property of some other control.

Add and Remove Methods
The Add method of the Panels Collection can be used to add panels
to the StatusBar at runtime. The syntax is similar to the other Add
methods discussed in this chapter:

StatusBar1.Panels.Add(index, key, text, style, picture)

07 002-8 CH 04 3/1/99 7:53 AM Page 156

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 157

Index and Key are the unique identifiers that enable you to access a
particular Panel object. The Text argument is the text that appears in a
panel. How a Panel object appears and what data it contains is deter-
mined by the Style argument. Finally if you want to add an image in
the new panel, you can use the LoadPicture function in the Picture
argument to include that image along with any other text that appears.

Panels can be removed at runtime by using the Remove method of the
StatusBar. To remove a Panel object, you would use the following:

StatusBar1.Remove index

where the Index argument is either an integer equal to the Index
property of the panel that you are removing or a string value equal
to the Key of the panel.

Using the Controls Collection
The Controls Collection is a built-in collection belonging to a form
and is maintained by Visual Basic. The Controls Collection contains
references to all the controls on that form. Each member of the col-
lection points to a different object on that form—for example, a
TextBox, ComboBox, ListView, and so on.

Each form in a project has its own Controls Collection that you can
use to navigate through the different controls on a form. You can
refer to each control within the collection as follows:

Form.Controls(index)

where Form is the form name, and Index is an integer value referring
to the desired control. Since the Controls Collection is zero-based,
Index values range from 0 up through a number that is one less than
the total number of controls on the form. If you have 10 controls on
a form, the Index values for the Controls Collection would range
from 0 through 9.

You will usually use in a Controls Collection when you need to
process all the controls or the majority of the controls on a given form.
You can loop through a Controls Collection either with a For Next
loop, as in Listing 4.5, or with a For Each loop, as in Listing 4.6.

07 002-8 CH 04 3/1/99 7:53 AM Page 157

158 Par t I VISUAL BASIC 6 EXAM CONCEPTS

LISTING 4.5

LOOPING THROUGH A CONTROLS COLLECT ION WITH A

FOR NEXT LOOP

For I = 0 To Form1.Controls.Count - 1
‘ process Form1.Controls(I)

Next

LISTING 4.6

LOOPING THROUGH A CONTROLS COLLECT ION WITH A

FOR EACH LOOP

For Each obj In Form1. Controls
‘ process obj

Next

A common use of the Controls Collection is to clear all the controls
on a form. If the user wants to reset all the fields on a data entry
form, you can code a Clear button with code such as that found in
Listing 4.7.

LISTING 4.7

CODE TO RESET ALL FIELDS ON A DATA ENTRY FORM

Private Sub cmdClear_Click()

Dim objControl As Control
Dim sTemp As String

For Each objControl In Me.Controls

If TypeOf objControl Is TextBox Then
‘ clear the text
objControl.Text = “”

ElseIf TypeOf objControl Is ComboBox Then
‘ reset the listindex
objControl.ListIndex = -1

ElseIf TypeOf objControl Is Label Then
‘ leave labels as is

ElseIf TypeOf objControl Is CommandButton Then
‘ leave commandbuttons as is

07 002-8 CH 04 3/1/99 7:53 AM Page 158

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 159

ElseIf TypeOf objControl Is MaskEdBox Then
‘ clear the masked edit control
sTemp = objControl.Mask
objControl.Mask = “”
objControl.Text = “”
objControl.Mask = sTemp

Else
‘ leave any other control alone

End If
Next

End Sub

This code in the Listing loops through all the controls on a form
and clears each control based on its type. To clear a TextBox control,
for example, you would set the Text property to a 0-length string.
To clear a CheckBox, you would set the value property to
vbUnchecked.

Notice that the code in the Listing uses an If statement to deter-
mine the type of control being cleared. You must make sure you
know the type of control you reference to avoid runtime errors.
Errors occur if you try to reference a property of a control that is not
a valid property. If the first control on a form is a TextBox, you can
clear that control by using:

Me.Controls(0).Text = “”

If, on the other hand, the first control is a CheckBox that does not
have a Text property, with the same code, you will get a runtime
error from Visual Basic. The Clear button code example avoids this
problem by checking for specific control types within the Controls
Collection. The syntax for the If statement is as follows:

If TypeOf objectname Is objecttype Then
‘ code

EndIf

where objectname is the object or control (that is TextBox, ComboBox,
and so forth) on which you are working and objecttype is the class
of the object. Using this If structure before you reference a control
through the Controls Collection will help you avoid runtime errors.

07 002-8 CH 04 3/1/99 7:53 AM Page 159

160 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Techniques for Adding and Deleting
Controls Dynamically
Occasionally you will create forms for which you do not always have
a fixed number of controls. You may need to add controls at runtime
or remove some of the controls that you have created. Visual Basic
lets you create and destroy controls dynamically at runtime based on
the needs of your application.

With VB6, you have at your disposal two major techniques for
dynamic control creation:

á Control arrays

á Direct manipulation of the Controls Collection through the
Add and Remove methods

We discuss these techniques in the following two sections.

Adding and Deleting Controls Dynamically
Using Control Arrays
You must follow several rules to be able to create and remove con-
trols with control arrays.

First you must have a control of the type that you will be adding
placed on the desired form at runtime. If you will be adding TextBox
controls to a form, for example, you must have at least one text box
drawn on that form at design time. That control can be invisible,
and there are no restrictions for the size or placement of that control,
but it must be on the form at design time. This control will be the
template for text boxes that you will add at runtime.

The second requirement for using dynamic control arrays is that the
template object that you draw at design time must be part of a con-
trol array. Usually it is the only control of its type with its Index
property set to a value of 0. Continuing with the text box example,
you can have a form with only one text box as a template, and that
text box must have its Index property set to some integer value (typi-
cally 0 or 1). If your application required it, you might have addi-
tional text boxes with Index values of 1, 2, 3, and so on. As long as
you have a control array with at least one object in it, you can create
additional instances of that object dynamically at runtime.

07 002-8 CH 04 3/1/99 7:53 AM Page 160

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 161

After you have built a form with a control that has its Index property
set, you can add additional controls to the control array at runtime.

Assume, for example, that you have an application with one form,
Form1, and one text box, Text1. Text1 has an Index value of 0. At
runtime, you can create additional instances of Text1 on your form
with code such as:

Load Text1 (index)

where Index is an integer value that will be used as the index of the
new text box. When you run the application and want to create the
first dynamic instance of Text1, you would use:

Load Text1 (1)

because Index value 0 is already in use by the Template control.

After you have loaded the new control on the form, you must set the
appearance as desired. You have to set the Visible property to True,
if you want the control to appear to the user. Also you must change
either the Left or Top properties in order to place the control on the
form (otherwise the control will show up in exactly the same spot as
the previous control). Finally you can change the Height, Width, and
any other property that can be altered at runtime.

Code for dynamically adding labels to a control array might look
like the code in Listing 4.8.

LISTING 4.8

LOADING LABELS INTO A CONTROL ARRAY

‘ load a new control into the control array
i = i + 1
Load lblTemplate(i)

‘ position the new control on the form and add a caption
lblTemplate(i).Left = lblTemplate(0).Left
lblTemplate(i).Top = lblTemplate(i - 1).Top + _

lblTemplate(i - 1).Height + 100
lblTemplate(i).Caption = “index = “ _

& Str$(i)

‘ make the control visible
lblTemplate(i).Visible = True

N
O

T
E Index Property Is Blank by Default

By default, the Index property of a
control is blank, meaning that it is
not part of a control array.

07 002-8 CH 04 3/1/99 7:53 AM Page 161

162 Par t I VISUAL BASIC 6 EXAM CONCEPTS

After you have added controls to a control array on a form, you may
need to remove them at some point. To remove a control that you
have dynamically added to a control array, you simply code the
following:

Unload Text1(index)

where Text1 is the name of the control you loaded previously, and
Index is the integer value of that control’s Index property.

It is important to remember that you cannot use the Unload statement
to remove a control on the form that was added at design time—this
will cause a runtime error. Only controls added dynamically can be
removed with Unload.

Also, you can’t add a control twice using the same Index value, and
you can’t delete a control with an Index value that isn’t in use. Trying
either one of these stunts in code will generate a runtime error.

Adding and Deleting Controls Dynamically
Using the Controls Collection
The Add and Remove methods of the Controls Collection are new to
VB6. You can use these methods to add and delete controls from a
form instead of using the control array technique described in the
previous section.

Following is an overview of the general steps that you need to take in
order to dynamically add and remove controls with the Controls
Collection (more detailed discussion is given in the following sections):

1. Find out the control’s ProgID, a unique string used by the
Windows operating system (and stored in the Windows
registry) for identifying the control’s type.

2. If the control is an intrinsic VB control, declare an object vari-
able of the appropriate control type using WithEvents and pro-
gram the resulting object’s event procedures. If the control is
an intrinsic VB control, then ignore steps 3, 6, and 7 that only
apply to non-intrinsic controls.

3. If the control is an ActiveX control (i.e., not an intrinsic VB
control) then you must declare the type of its object variable as
VBObjectExtender and place code in its ObjectEvent proce-
dure to trap for the various events that you’re interested in.

07 002-8 CH 04 3/1/99 7:53 AM Page 162

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 163

4. Use the Add method of the Controls Collection to initialize the
control with the ProgID that you determined in step 1, and set
the result of the method to the object variable you declared in
step 2 or 3. Set the control’s Visible property to True and set
any other properties that need to be changed. If the control is
an ActiveX control, you’ll need to refer to its members through
the Object property of the control object variable.

5. Use the Remove method of the Controls Collection to remove
the control from the Controls Collection when your program
is finished using the control.

6. If an ActiveX control is in the Toolbox but is not otherwise
referenced in your project with a design time instance on the
surface of a form, then you must make sure that your project’s
properties are set appropriately to allow information about
unused ActiveX controls to remain in the project.

7. If an ActiveX control requires a license, then you must detect
the control’s license ID in your design time test environment
and use that license ID to initialize the control in the compiled
application that you distribute to end users. In order to do this
legally, you must be licensed to use and distribute this control.

We discuss these steps in the following six sections.

Getting a Control’s ProgID
A Control’s ProgID, as mentioned above, is a unique system-wide
string that the Windows operating system can use to identify your
control’s type. You must know the ProgID of any control that you
want to add to the Controls Collection because the Add method will
require it as an argument.

For VB intrinsic controls the ProgID is usually formed by combin-
ing the characters VB. with the VB name of the control’s type
(CommandButton, TextBox, or Label for example). So, for example,
the ProgID for CommandButtons is VB.CommandButton and the
ProgID for Labels is VB.Label.

If you want to add an ActiveX control (a non-intrinsic control) to the
Controls Collection, you’ll either need to have some documentation at
hand or you’ll need to do some investigation in the Windows Registry.

07 002-8 CH 04 3/1/99 7:53 AM Page 163

164 Par t I VISUAL BASIC 6 EXAM CONCEPTS

In order to find the ProgID for a control’s type in the Windows
Registry, you can run Regedit from the Start/Run menu option of
your Windows desktop. Perform an Edit/Search in Regedit for the
name of the control. Repeat the search with the F3 key until you
find the ProgID entry (see Figure 4.15). You can use this key with
the Add method.

F IGU R E 4 .15
Finding a control’s ProgID in the Windows
Registry using the Regedit utility.

N
O

T
E Limitations on the Use of WithEvents

You can only use the WithEvents key-
word in the General Declarations sec-
tions of designer-type objects, such
as forms, UserControls, and Active
Documents. If you try to use
WithEvents in the General
Declarations of a Standard (.bas)
Module or in a local variable declara-
tion within any kind of procedure,
you’ll receive a compiler error.

Declaring an Intrinsic Control and Programming Its
Events
Having determined the ProgID for your intrinsic control, you can
declare a variable of the desired control type, as in the examples of
Listing 4.9:

LISTING 4.9

DECLARATIONS OF OBJECT VARIABLES FOR INTRINS IC

VB CONTROLS THAT WILL BE ADDED TO THE

CONTROLS COLLECT ION AT RUNTIME

Option Explicit
Private WithEvents cmdMyButton As CommandButton
Private WithEvents txtMyTB As TextBox
Private WithEvents lblMyLabel As Label

07 002-8 CH 04 3/1/99 7:53 AM Page 164

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 165

Notice that the three examples all use the WithEvents keyword. This
means that you’ll be able to find the declared objects in a code win-
dow’s drop-down list and that each object will further provide its
event procedures in the rightside drop-down of the code window for
you to program, as illustrated in Figure 4.16.

F IGURE 4 .16
Once you’ve declared your control using
WithEvents, you can see the control and its
events in the drop-down lists of the Code
window.

You can then write your own event-handling code in the event
procedures.

Declaring an ActiveX Control and Programming Its
Events
You can also declare an ActiveX (non-intrinsic) control using the
WithEvents keyword and then write program code to react to its events.

However, the techniques that you must use to program with an
ActiveX control and its events are quite different from those used
for an intrinsic control.

First, you must declare the control’s object variable as of type
VBObjectExtender. Use the WithEvents keyword in the declaration if
you wish to program with the control’s events.

In order to program the control’s event procedures, you will
have to use a general event handling procedure belonging to the
VBObjectExtender control object known as the ObjectEvent procedure.

07 002-8 CH 04 3/1/99 7:53 AM Page 165

166 Par t I VISUAL BASIC 6 EXAM CONCEPTS

You can find this procedure among the object’s event procedures by
navigating to it in the Code window, just as you would navigate to an
intrinsic control object’s event procedures (see the previous section).

The ObjectEvent procedure takes a single parameter known as Info.
The Info parameter’s type is EventInfo. The EventInfo type contains
two properties:

á Name This property gives the name of the Event that has fired.

á EventParameters The fact that its name is a plural word
should tip you off that the EventParameters property
is a collection of EventParameter objects. Like all VB
collection objects, EventParameters has a Count property.
If Info.EventParameters.Count is greater than 0, then the event
that’s just fired has parameters. Each EventParameter object has
a Name property and a Value property. If you know the name of
a parameter that interests you, then you can use that name in a
string variable to index the Info object’s EventParameters col-
lection and so read or write the value of the parameter in ques-
tion (use the Value property of the EventParameter object).

The example in Listing 4.10 shows code that will tell you the name
of any event that fires for the control that the event procedure
belongs to. If the event supports one or more parameters (the code
checks the Count property of the EventParameters collection), then
the code will show the names and values of those parameters by
looping through the EventParameters collection.

LISTING 4.10

ObjectEvent PROCEDURE CODE THAT WILL DISPLAY THE

NAME OF ANY EVENT THAT FIRES, AS WELL AS THE

NAMES AND VALUES OF ANY PARAMETERS THAT

THE EVENT SUPPORTS

Private Sub mscCalendar_ObjectEvent(Info As EventInfo)
‘Display the name of the event
‘that has just fired
Me.Print Info.Name

‘If the event has any parameters
If Info.EventParameters.Count > 0 Then

‘set up a variable to hold each
‘object visited in the For...Each loop
Dim evinf As EventParameter

07 002-8 CH 04 3/1/99 7:53 AM Page 166

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 167

‘Loop through the EventParameters collection
For Each evinf In Info.EventParameters

‘For each Parameter object found
‘Display its name and value
Me.Print , evinf.Name, evinf.Value

Next evinf
End If

End Sub

The code in Listing 4.11 was written for an MSCalendar control’s
ObjectEvent procedure and will prevent the user from setting the
date to the first of the month. The code in the Calendar control’s
ObjectEvent procedure checks to see if the BeforeUpdate event has
fired. If the event at hand is the BeforeUpdate event, then the code
checks to see if the user is trying to set the day of the month to the
first. If the user is indeed trying to set the day of the month to the
first, then the code uses the Info object’s EventParameters Collection
to set the Cancel parameter’s value to True. Setting the Cancel para-
meter to True will cancel the user’s action.

LISTING 4.11

ObjectEvent PROCEDURE CODE FOR AN MS CALENDAR
CONTROL THAT WILL PREVENT THE USER FROM

SETT ING THE DAY OF THE MONTH TO THE FIRST

Private Sub mscCalendar_ObjectEvent(Info As EventInfo)
‘Get the name of the event that has fired
Dim strEventName As String
strEventName = UCase$(Trim$(Info.Name))

‘If it’s the BeforeUpdate event
If strEventName = “BEFOREUPDATE” Then

‘If the user is trying to set the
‘day-of-month to be the first, then
If mscCalendar.object.Day = 1 Then

‘Set the Cancel parameter to True
‘to undo the user’s change
Info.EventParameters(“Cancel”).Value = True

End If
End If

End Sub

Note in Listing 4.11 that any reference to the control’s custom
members (refer to the Day property in the example) must be made
through the Object property of the VBObjectExtender variable.

07 002-8 CH 04 3/1/99 7:53 AM Page 167

168 Par t I VISUAL BASIC 6 EXAM CONCEPTS

If the code referred to standard members (such as Top, Left, or
Visible), it would not use the Object property. In fact you would
receive a runtime error if you attempted to refer to a standard prop-
erty through the Object property.

Adding and Removing a Control in the Controls
Collection
Once you’ve declared the intrinsic or ActiveX control object and
programmed its events, you can add it to the Controls Collection
with a line of the format:

Set objvariable = Controls.Add(strControlType,
➥strControlName)

where objvariable is the name of the variable holding the control’s
instance, strControlType is a string containing the ProgID for this
control’s type, and strControlName is a string containing a unique
name for the control (can be the same as objvariable).

Once you’ve added the control, you need to set its object variable’s
properties appropriately to the needs of the application and set the
Visible property to True. The method for referring to a control
object’s members varies slightly, depending on whether the control is
an intrinsic or an ActiveX control:

á If the control is an intrinsic VB control, then simply refer to
the control’s members with the familiar objvariable.member
syntax. Listing 4.12 gives an example that sets the properties of
an intrinsic control that’s just been added to the Controls
Collection.

LISTING 4.12

REFERRING TO AN INTRINS IC CONTROL’S MEMBERS

Set cmdbutton = Controls.Add(_
“VB.CommandButton”, _
“CmdButton”)

cmdbutton.Caption = “XXXXX”
cmdbutton.Left = 500
cmdbutton.Top = 500
cmdbutton.Visible = True

07 002-8 CH 04 3/1/99 7:53 AM Page 168

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 169

á If the control is an ActiveX control, then you must refer to the
control’s custom members through the control’s object property
with syntax in the format objvariable.object.member. Listing
4.13 gives an example that sets the properties of an ActiveX
control that’s just been added to the Controls Collection. Note
in the example that you do not use the Object property when
referring to a standard property of the VB environment. You
only use the Object property when referring to custom mem-
bers. Referring to custom members without the Object prop-
erty or to standard members with the Object property will
cause a runtime error.

LISTING 4.13

REFERRING TO AN ACTIVEX CONTROL’S STANDARD AND

CUSTOM MEMBERS

‘Add the control
Set mscCalendar = Controls.Add(_

strControlType, _
“mscCalendar”)

‘Set a custom property
mscCalendar.object.Day = 15

‘Set standard properties
mscCalendar.Top = 600
mscCalendar.Left = 500
mscCalendar.Visible = True

See Exercise 4.9 for examples of the manipulation of both intinsic
and ActiveX control object members.

When you’re finished with the control, you can take it out of the
Controls Collection with a line of the format:

Controls.Remove objvariable

where objvariable is the name of the variable holding the control’s
instance.

Exercise 4.9 illustrates the use of the Add and Remove methods of the
Controls Collection.

07 002-8 CH 04 3/1/99 7:53 AM Page 169

170 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Keeping a Reference in the Project to an ActiveX
Control
When you create an exe or run your project in the IDE, VB6 by
default removes references to ActiveX controls that are in the Toolbox
but not used by the program. VB is able to remove this extraneous
reference information by checking to see whether instances of a con-
trol exist on the surfaces of forms or other container objects.

However, VB6 cannot detect when an ActiveX control of a particu-
lar type is going to be added to the control array, because the type of
such a control is declared as VBObjectExtender. The control object
is therefore late bound and the compiler cannot verify its existence
in the project.

Thus, the VB6 compiler may remove information about a control
type that you want to add to the Controls Collection if you have
placed the control in the Toolbox and you have not put design time
instances of that control in your project.

When your code attempts to initialize such a control, the compiler
will give you an error message warning that a reference is lacking (see
Figure 4.17).

F IGU R E 4 .17
Compiler error for a deleted reference to an
ActiveX control.

The warning illustrated in Figure 4.17 also tells you what to do in
order to keep the reference to the control in your application:

07 002-8 CH 04 3/1/99 7:53 AM Page 170

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 171

Change the default compiler behavior by un-checking the option
labeled Remove information about unused ActiveX Controls in the
Make tab of the Project Properties dialog box (see Figure 4.18).

If you un-check this option, then you will not receive the message of
Figure 4.17 again.

Of course another way to avoid this situation is by simply removing
the control from the Toolbox if you don’t plan to place design time
instances of it in your project (uncheck the control’s library in the
Project Components dialog). The system will still recognize your
reference to the control’s ProgID in the Controls.Add method and
will instantiate the correct control type.

Managing the License for an ActiveX Control
Many ActiveX controls cannot be freely distributed to end users but
instead require a license before the system will allow them to be used
in applications.

VB will raise a runtime error if an ActiveX control requires a license
key and you attempt to add an instance of that ActiveX control to
the Controls Collection without providing the license key (see
Figure 4.19).

F IGURE 4 .1 8▲
The Make tab of the Project Properties dialog
showing the option that controls references to
unused ActiveX controls.

, F IGURE 4 .19
A runtime error caused by the lack of a license
key for an ActiveX control added to the Controls
Collection.

07 002-8 CH 04 3/1/99 7:53 AM Page 171

172 Par t I VISUAL BASIC 6 EXAM CONCEPTS

To provide a license key to the runtime environment, you must
determine the contents of the key and then add the key to the
Licenses Collection before trying to add an instance of the control
to the Controls Collection. Add the key to the Licenses collection
with a call to its Add method using the following syntax:

Licenses.Add Controltype, LicenseKey

where ControlType is the string representing the control’s ProgID and
LicenseKey is the string representing the license key for that type of
control.

So how do you find out the license key for a particular control type?

In your development environment, you can make a call to
Licenses.Add that automatically adds the control’s License key to the
Licenses Collection without having to know the License key before-
hand, and at the same time provides the license key in a string that
you can examine. The syntax for such a call would be:

StrLicenseKey = Licenses.Add(ControlType)

where strLicenseKey is a string variable that will hold the license key
for the control type. When you run this line in your development
environment, you can then examine the contents of strLicenseKey
(using a Debug.Print message or some other display technique) to
find out the contents of the license key for that control type.

When you release your product to end users, you can change your
code to the first syntactic format listed above to allow your applica-
tion to load the control on the user’s workstation. You would hard-
code the key that you discovered as the second argument to the
Licenses.Add method.

More on Creating Data Input Forms
and Dialog Boxes
This section examines the use of VB Form objects within a project.
Topics covered include:

07 002-8 CH 04 3/1/99 7:53 AM Page 172

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 173

á Loading form objects into memory and unloading them

á Showing and hiding forms from the screen

á Showing how VB Form objects are stored

When a project’s design specifies multiple forms, it is the programmer’s
job to ensure a clean, easy-to-use interface. The knowledge of how forms
are loaded into memory, the effect when forms leave memory, when
to expect a form to be displayed, and when it is removed are critical
elements in designing a professional-looking and behaving application.
Also knowing how information is stored at design time will help to
ensure forms that can be used throughout various projects or moved
from one version of VB to another.

Forms are used to contain other controls for user interaction. When
one object has the capability to host other controls, this object is
known as a Container. When controls are placed on a form, they are
affected when the form is moved or resized. This allows the form to
act as a Container object. The Picture control is also a Container
and can have other controls placed on it.

This section looks at how to load and unload forms from memory,
how to show and hide forms from the screen, and how design time
forms are stored.

Loading and Unloading Forms
Visual Basic projects have a special object that can be automatically
loaded when the program is run. This object is referred to as the
Startup object. Figure 4.20 shows an example of a Startup object. The
Startup object can now vary depending on the type of project you
are creating. A form can be selected, the Sub Main procedure, or—
new in VB5 and VB6—nothing. You would specify Nothing when
the program does not require an interface. An example of this type of
project might be an ActiveX component or an ActiveX control.

F IGURE 4 .20
Selecting the project Startup object.

07 002-8 CH 04 3/1/99 7:53 AM Page 173

174 Par t I VISUAL BASIC 6 EXAM CONCEPTS

When a form is specified as the Startup object, that form automati-
cally loads into memory when the application starts. No other form
loads unless it is referenced in program code or is explicitly loaded
into memory.

Use the Load statement to load a form into memory without making
it visible yet. The Load statement will take only one argument: the
name of the object to be loaded. Take a look at the following code:

Load Form1
Load frmTest

The Load statement in both cases accepts a valid object name. This
causes the object to load into memory. Although the object loads
into memory, this does not mean that the object will be visible to
the user. This enables the programmer to load multiple forms that
may be required and to prepare them with information before dis-
play. Once loaded into memory, the form’s controls and any pro-
gram code can be used.

When working with forms in VB, it is important to note that any
reference to an object will cause that object to load. The Load state-
ment does not have to be explicitly used before an object can be
used. An example of this would be if a form’s Caption property were
set, as follows:

Form1.Caption = “My Notepad”

Notice that this is the only line of code that you need to be con-
cerned with. There is no Load statement before the Caption property
is set. This code directly sets the form’s property. This single line of
code automatically causes the Form1 object to be loaded into mem-
ory. This is often referred to as implicit loading. Because the object
must be loaded to set the property, VB does exactly that.

Implied loading can often cause problems when working on a multi-
form project. The programmer does not notice that one form calls or
sets information on another form. The form then automatically
loads. Later when you attempt to unload by name all forms that you
remember using, your project continues to run.

The End statement can be used to force the application to term-
inate, regardless of which forms were explicitly or implicitly loaded.

07 002-8 CH 04 3/1/99 7:53 AM Page 174

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 175

This is a fail-safe in case the program missed a reference or
miscounted how many forms were loaded.

However, the End statement will have an undesirable effect because it
will end the application so abruptly that the QueryUnload and Unload
events of forms will not have a chance to run.

For a more acceptable method to unload all forms, see the section in
this chapter “Using the Forms Collection to Unload All Forms.”

When an individual form is no longer required, you can unload it
from memory. This will release the graphic components from mem-
ory. The following code unloads two forms:

Unload Form1
Unload frmTest

The Unload statement accepts a valid object name. This causes the
design time graphic components of a form to be released. Although
the form has been unloaded from memory, it is very important to
note that any Public procedures or variables belonging to the form
are still in memory. The graphical controls are no longer available,
but any Public members of the form can still be called, using the
syntax for calling any object variable’s members, formname.procname.
Remember, a form’s Public procedures and variables are considered
to be members (i.e., methods and properties) of the instance of the
form object. Of course what’s just been said for Public variables also
goes for a form’s Custom Properties implemented with Property Get
and Property Let/Set procedures.

Load and Unload are used to control the memory status of a form.
These two statements always appear before the name of the object to
be affected. They are often confused with the Show and Hide methods
that take place after the object name. Show and Hide are used to con-
trol whether a form is visible to the user.

After you unload a form, the form’s Public procedures and its Public
variables will still be resident as mentioned above. To completely
reset the contents of these elements, call the line

Set FormName = Nothing

in your code just after calling the Unload statement.

07 002-8 CH 04 3/1/99 7:53 AM Page 175

176 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Showing and Hiding a Form
Loading and unloading only bring the form into memory or remove
the form from memory. If the programmer wants to display the
form for the user to interact with, another set of commands must be
used. The Show and Hide methods affect the form’s visibility. Unlike
the Load and Unload statements, which you write in code before the
form name, Show and Hide follow standard method syntax and
precede the object name, separated from it by a period (.).

When a form is to appear on-screen for the user to interact with, the
Show statement causes the form to appear. Hide will make the form
invisible, but allows it to remain in memory.

If the form is to be directly shown to the user, only the Show method
is required. The loading of the Form object will take place automati-
cally. The following lines of code are all that is required to both load
the form and have it displayed:

Form1.Show

To understand why the form does not have to be explicitly loaded,
first always remember that any programmatic reference to an object
will cause it to automatically load. That explains why using the object
name followed by the Show method causes the form to load first and
then display onscreen. For further discussion of implicit loading, see
the previous section in this chapter “Loading and Unloading Forms.”

Calling a form’s Show method will also cause the form to become the
application’s active form—that is the form where focus resides in the
application. Usually the form itself does not have focus but rather a
control on the form. This is because a form object itself cannot get
focus unless the form contains no controls that are currently able to
receive focus.

If the form is no longer required to be on-screen, it can be removed
from display by just using the Hide method. This keeps the form
loaded but removes it from display. The following code demon-
strates this:

Form1.Hide
frmTest.Hide

07 002-8 CH 04 3/1/99 7:53 AM Page 176

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 177

The first line of code removes the form named Form1 from the on-
screen display. The second line of code removes the object named
frmTest. Both prevent user interaction with the form and help you
avoid a very busy screen.

Forms can be hidden instead of being unloaded. If a form is hidden
without being unloaded and destroyed, then the values of controls
will remain as the user entered them. Other code in the project can
then refer to the contents of the controls on that form.

If the form were unloaded, this would re-initialize the controls on
the form. Every time the user wanted the settings, they would either
have to be loaded from an external source or reset by the user.

The relationship between Show and Hide methods and the Loading
and Unloading of forms is also discussed in Chapter 6, “Writing
Code that Processes Data Entered on a Form,” in the sections
“Show/Hide Methods Versus Load/Unload Statements” and “How
Significant Form Methods Affect Form Events.” It is also discussed
in this chapter in the previous section “Loading and Unloading
Forms.”

Design-Time Storage of Form Objects
If you know how Form objects are stored, you will be able to move
them from one project to another or from one version of VB to
another.

After a form has been designed and saved, the information from the
form is separated into two components. The first component is a
text description of the form itself—all objects contained on the
form, all object properties and their values, as well as any code asso-
ciated with the form and the objects. This text-based information is
stored in an ASCII text file with the extension .FRM. Figure 4.21
shows a sample of a text-based .FRM file. Any word processor or
text editor can open this file.

07 002-8 CH 04 3/1/99 7:53 AM Page 177

178 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The second file is .FRX. It contains all graphics-related information
required by the form. If a Picture control or Image control is used,
and a bitmap graphic is referenced by the control, that image must
be stored internally. This information is stored in the separate .FRX
file and is in a binary format. The .FRM file will contain references
to the .FRX file and a number indicating the image to be referenced
for specific controls.

Knowing how the form objects are stored after designing them can
be very useful. If a form is taken to another project and doesn’t seem
to load properly, you could open the text file and determine whether
that form uses paths for files that are not the same in the new envi-
ronment. Often as forms are moved between projects, the references
to various controls are not always the same. You can use a text editor
to open the file and verify the references that should be included
within that project.

Another reason that you may need to look at the form’s text file
would be that of an old form from a previous version of Visual Basic
being used within a newer version. By opening the text file with an
editor, any problem lines can be removed.

F IGU R E 4 .21
Sample .FRM file containing the form
information.

07 002-8 CH 04 3/1/99 7:53 AM Page 178

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 179

The same technique is probably even more useful when taking Form
objects from a newer version of VB and going to an older version of
the software.

This section has covered how forms are brought into memory and
removed from memory. If you need to display a form, use the Show
method. Use the Hide method to make a form invisible. The storage
of the design-time form is separated into a text-description file with
the extension .FRM. Graphics information is stored in an .FRX file.
Both files together implement the form.

Using the Forms Collection
This section discusses the use of VB’s Forms Collection. Topics cov-
ered include using methods and properties of the collection, refer-
encing individual forms, looping through the collection, verifying
loaded forms, and unloading forms from the collection.

In Visual Basic, a collection is just a group of objects. If you have
more than one form in a project, you would have a Forms
Collection that you can use to easily manipulate all forms or just one
specific form.The Forms Collection is a built-in or intrinsic collec-
tion of VB. Another example of a collection built into VB is the
Controls Collection that will return all the controls contained on the
specified form.

The Forms Collection contains the loaded forms of all VB form
types. MDI Parent forms, MDI Child forms, and non-MDI forms
are all included in the collection, along with any forms created at
runtime.

The Forms Collection only contains the forms that are currently
loaded in memory. If a project contains multiple forms and only the
Startup form has been loaded, the collection will only have one
item. To be included in the Forms Collection, all forms must be
loaded. They do not have to be shown onscreen, only loaded.

07 002-8 CH 04 3/1/99 7:53 AM Page 179

180 Par t I VISUAL BASIC 6 EXAM CONCEPTS

If a form is the unloaded from memory, that form is no longer part
of the Forms Collection. The collection will reduce its count by one,
and that form will no longer be available in the collection.

Using Methods and Properties of the Forms
Collection
Most VB collections have various methods or properties that
will return information regarding the collection of objects.
The Forms Collection has only one property, Count. This property
gives the total number of forms currently loaded by the application.

To find the total number of forms in the project, just use code such
as the following:

iFormCount = Forms.Count

To test the Forms.Count property in VB, use a single form and place
one command button on the form. Open the code window for the
command button and type the code shown in Listing 4.14.

LISTING 4.14

PROGRAMMING WITH THE FORMS.COUNT PROPERTY

Sub Command1_Click()
Msgbox “The Forms Collection has “ & _

Forms.Count & _
“ forms currently”, _
vbInformation, “Forms Count”

End Sub

This code will show a message box with a string that contains the
number of forms in the collection. Remember that only loaded
forms are in the collection. Any form that has not been loaded or
that has been unloaded will not be part of the collection.

Using Specific Items Within the Forms
Collection
Each object in the collection can also be referred to by its
specific ordinal number. This is an item number auto-
matically assigned as the new items are added to the collection.

07 002-8 CH 04 3/1/99 7:53 AM Page 180

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 181

When referring to the ordinal number of a form, you must always
remember that the Forms Collection is 0-based. The first item in the
collection will always have the ordinal value of 0. The following lines
demonstrate using the item value:

Forms(0).Caption
Forms(1).Name
Forms(2).Width

This code assumes that a VB project has three forms and that all
forms have been loaded into memory. The first line will return the
Caption of the very first item (item 0) in the collection. The second
line will return the Name property of Form(1). The third line will
return the value of the last form’s width.

These code examples show how easy referencing specific items in the
collection can be. This can be an alternative method to using the
specific form names in a given project. With the Forms Collection,
you also do not have to know the name of a given form to control it.
This will assist in manipulating forms generated at runtime.

Looping Through the Forms Collection
Another way to use the Forms Collection is with various looping
techniques. By using For...Next, For...Each, or Do...While state-
ments, the programmer can loop through the collection to affect all
the forms, search for specific forms, and search for specific properties
or even values. This will assist in searching for information without
having to program every form name individually.

A simple example would be to retrieve each form’s Caption, as shown
in Listing 4.15.

LISTING 4.15

LOOPING THROUGH THE FORMS COLLECT ION WITH

FOR...NEXT

Dim iLoop as Integer
For iLoop = 0 to Forms.Count - 1

MsgBox Forms(iLoop).Caption
Next iLoop

07 002-8 CH 04 3/1/99 7:53 AM Page 181

182 Par t I VISUAL BASIC 6 EXAM CONCEPTS

This code declares an integer variable for looping and then sets up
the For...Next statement. Notice iLoop = 0. You must start at 0
because collections are 0-based. Because you will not always know
the amount of forms in the collection, you can take the Forms.Count
and subtract 1 from the total. You must remove 1 because the Count
starts at 1 and the Collection starts at 0. When this sample code is
run, a message box displays with the Caption property of every form
in the collection.

An alternative to the For... Next loop would be the For...Each loop,
which does not depend on an integer counter (see Listing 4.16).

LISTING 4.16

LOOPING THROUGH THE FORMS COLLECT ION WITH

FOR...EACH

Dim frmCurr as Form
For each frmCurr in Forms

MsgBox FrmCurr.Caption
Next frmCurr

This is probably preferable to the For...Next loop because you don’t
have to keep track of position in the collection.

Using the Forms Collection to Verify
Whether a Form Is Loaded
When a form is referenced in code, it automatically loads the form
into memory. An advantage of the Forms Collection is that it con-
tains only forms that have been loaded into memory. This enables the
programmer to test for a specific form by looping through the collec-
tion and testing the Name property of every item in the collection.

An example of this code is found in Listing 4.17.

LISTING 4.17

VERIFY ING WHETHER A PARTICULAR FORM IS LOADED

Sub Command1_Click()
Dim frmCurr as Form
For each frmCurr in Forms

07 002-8 CH 04 3/1/99 7:53 AM Page 182

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 183

If frmCurr.Name = “Form3” Then
MsgBox “Form3 has been loaded”

End If
Next frmCurr

End Sub

This code declares a form variable for looping and then sets up the
For...Each statement. Inside the For...Each statement is an If test.
With this code you are looking through each item in the collection
and testing the property frmCurr.Name. This allows frmCurr to repre-
sent every form that is loaded in the collection. If the Name property
is equal to Form3, a message box displays informing us that Form3 has
been loaded into memory.

This code sample requires a project with at least three forms. The
default form names are expected, and the Form_Load event is respon-
sible for loading all forms into memory. Remember that if the forms
are not loaded at the moment the code runs, they will not be
included in the collection.

Using the Forms Collection to Unload All Forms
Another common use of the Forms Collection is to unload all forms.

Although the End statement would provide a faster, simpler way to
terminate the application, it can have unwanted effects because a call
to End will immediately terminate the application without allowing
any further events (such as Unload events) to run. Looping through
the Forms Collection to unload all members might seem like a more
complicated way to do the task, but it allows normal processing of
Unload and other events.

The code of Listing 4.18 shows one way to control the loop. First,
you must determine the total number of elements in the collection
then reduce that number by one to accommodate for that fact that
the collection is 0-based. The loop unloads collection members in
reverse order from the highest-numbered member to the lowest. This
is due to the fact that, after each unload of a collection member, the
number of members in the collection decreases by one.

07 002-8 CH 04 3/1/99 7:53 AM Page 183

184 Par t I VISUAL BASIC 6 EXAM CONCEPTS

LISTING 4.18

UNLOADING ALL FORMS WITH A DESCENDING

FOR...NEXT LOOP

Sub cmdClose_Click()
Dim iLoop As Integer
Dim iHighestForm as integer
iHighestForm = Forms.Count — 1
For iLoop = iHighestForm To 0 Step — 1

Unload Forms(iLoop)
Next iLoop

End Sub

A more elegant way to unload all forms would be with a For...Each
loop, as in the example of Listing 4.19.

LISTING 4.19

UNLOADING ALL FORMS WITH A FOR...EACH LOOP

Sub cmdClose_Click()
Dim frmCurr as Form
For each frmCurr in Forms

Unload frmCurr
Next frmCurr

End Sub

Both of the above methods assume that at least one form has been
loaded in the collection and that a command button named
cmdClose is on one of the loaded forms. After run, all forms should
be unloaded, and the project will terminate if no other forms are in
memory.

07 002-8 CH 04 3/1/99 7:53 AM Page 184

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 185

This chapter covered the following topics:

á Adding an ActiveX control to the ToolBox

á Programming the ImageList control

á Programming the TreeView control

á Programming the ListView control

á Programming the ToolBar control

á Programming the StatusBar control

á Using the Controls Collection

á Adding and deleting controls with control arrays

á Adding and deleting controls with the Controls Collection

á Managing visibility and loading of forms

á Using the Forms Collection

CHAPTER SUMMARY

KEY TERMS
• ActiveX control

• BMP

• Controls Collection

• Collection

• Forms Collection

• ICO

• Intrinsic control

• OCX

• Pixel

• Prog ID

• ToolBox

• ToolTip

• Twip

07 002-8 CH 04 3/1/99 7:53 AM Page 185

186 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Exercises

4.1 Using the ListView and ImageList
Controls

In this exercise, you use a ListView and two ImageList
controls to display a list of items. The ImageList con-
trols will contain images that will be shown in the
ListView. You will bind the controls together and allow
a user to add ListItems to the form.

You will put the ImageList controls on a separate form
because you will use that form in projects for several of
the other exercises.

As a reference, use sections “The ImageList Control”
and “The ListView Control.”

Estimated Time: 30 minutes

1. Start a new project in Visual Basic and create a
form named frmListView like the one in Figure
4.22. Add the Microsoft Windows Common
Controls Library 6.0 (comctl32.ocx) to the
Toolbox using the Project Components menu
option. The form will contain two ImageList
controls, a ListView (with a default name of
ListView1), OptionButtons that will be used to
change the appearance of the list, and text boxes
for the user to enter the Key and Index values of
ListImages. Rename the two ImageList controls
on the Form to imglstNormal and imglstSmall.

2. Add images to the ImageList controls. Right-click
on the ImageList control named imglstNormal and
select Properties. Choose 32×32 and then click on
the Images tab. Now insert several images into the
ImageList and also be sure to enter in some unique
text for the Key property of each image. Choose
icon (*.ico) files from either the Visual Basic graph-
ics directories or by selecting any other *.ico files
from your PC. This ImageList will contain the reg-
ular icons for ListView1 (see Figure 4.23).

3. For the ImageList control named imglstSmall (for
small icons), choose 16×16 as a size but don’t
insert any images manually. Instead add code to
the Form_Load event procedure that will traverse all
the ListImages in the first control, imglstNormal,
and, for each control encountered, will add a new
ListImage to imglstSmall, making sure to use the
same Picture and Key properties from the first
ImageList.

F IGURE 4 .2 2▲
Form and controls for Project 4.1.

F IGURE 4 .2 3▲
Manipulating imglstNormal at design time.

07 002-8 CH 04 3/1/99 7:53 AM Page 186

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 187

A P P LY YO U R K N O W L E D G E

4. Bind ListView1 to the ImageLists. Bring up
the Custom Properties window for ListView1.
Click on the Image Lists tab. Select imglstNormal
for the normal icons and imglstSmall for small
icons, as in Figure 4.24.

9. Run and test the application.

10. If you want to put more information in the
ListView for each item, add ColumnHeaders to
the ListView from the Custom Properties dialog
box and add extra TextBoxes to the form.

4.2 Using a TreeView Control

In this exercise, you create a program to execute basic
operations on a TreeView control.

This exercise covers information from the section “The
TreeView Control.”

Estimated Time: 30 minutes

1. Start a new project in Visual Basic and create a
form named frmTreeView like the one in Figure
4.25. Add the Microsoft Windows Common
Controls Library 6.0 (comctl32.ocx) to the
Toolbox using the Project, Components menu
option. The form will contain: an ImageList con-
trol; a TreeView control; OptionButtons that will
be used to determine the way a new node will be
inserted; three text boxes for the user to enter the
Key, Text, and Index values of the ListItems (and
three Labels to the left of each to explain their
respective contents); and Labels that will hold
information about the last selected TreeView node.

2. Assign icons to the ImageList control and make
the TreeView point to the ImageList by setting its
ImageList property.

3. Name one of the Labels lblSelectedNodeIndex
and another lblSelectedNodeText. These labels
will hold the Text and Index of the Node that
will be used as a reference point when new Nodes
are inserted.

F IGURE 4 .24
Manipulating the ListView’s design-time properties.

5. Add code to the OptionButtons that will change
the appearance of the ListView between Normal,
Small Icons, List, and Report by setting the
View property of ListView1.

6. Use text boxes to allow the user to enter the
Index value for a specific ListImage of the
ImageList.

7. Place code in the Add button that will insert an
item into ListView1 based on the contents of the
three TextBox controls.

8. Use the Add method of the ListItems Collection
to do this. Use the input from the form to set the
Key, Text, Normal Icon, and Small Icon properties.

07 002-8 CH 04 3/1/99 7:53 AM Page 187

188 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

4. In the NodeClick event of the TreeView control,
set the lblSelectedNodeIndex.Caption property
to be the Node’s Index property, and set
lblSelectedNodeText.Caption property to be the
Node’s Text property.

5. In the Click event of the CommandButton, first
check to see which OptionButton is checked to
determine which option to use as the Relation
argument to the Nodes collection’s Add method. If
there are no nodes already in the TreeView, or if
lblSelectedNodeIndex contains a non-numeric
value, add a node without specifying the first two
parameters. If there are already nodes in the
TreeView parameter, let the first parameter be the
value in lblSelectedNodeIndex and the second
parameter be the option specified by the Relation
Optionbuttons.

6. Run and test the application.

4.3 Creating a Toolbar

In this exercise, you create a toolbar, add buttons, and
change settings to see how a toolbar appears and per-
forms at runtime. You will be able to standardize but-
tons, use button groups, and add separators to space
out buttons on the toolbar.

This exercise covers information from the section “The
ToolBar Control.”

Estimated Time: 20 minutes

1. Start a new project in Visual Basic with a single
default startup form, as in Figure 4.26. Add the
Microsoft Windows Common Controls Library
6.0 (comctl32.ocx) to the Toolbox using the
Project, Components menu option. Add an
ImageList and a toolbar to the form.

F IGU R E 4 .25▲
The form for Exercise 4.2.

F IGURE 4 .2 6▲
The form for Exercise 4.3.

2. Add some icons to the ImageList control with the
Custom Properties dialog box (see the section
“The ImageList Control” for help and also see
Exercise 4.1). You can select any icons that you
have available.

07 002-8 CH 04 3/1/99 7:53 AM Page 188

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 189

A P P LY YO U R K N O W L E D G E

3. Open the Property Pages dialog box for the tool-
bar. On the General tab, set a reference to your
ImageList.

4. Go to the Buttons tab and add a button to the
control. Set Style to be the Default. Enter an
image number and add any text you wish.

5. Add another button to the control and set Style
to be a Separator. Then add three more buttons
and set their Style to ButtonGroup. To the three
buttons in the group, add images and text.

6. Add another separator button and then add two
more buttons. For these two, set Style to Check.
Again add images and text to the buttons.

7. Run the application. Click on the buttons one at
a time to see how they perform. Click on the
buttons in the group. Can you select more than
one at a time? Click the button that is a Check
button. Does it stay depressed after it is clicked?
Click on it again.

4.4 Creating a StatusBar

In this exercise, you create a StatusBar control in an
application, as discussed in the section “Using the
StatusBar Control.”

Estimated Time: 20 minutes

1. Start a new project in Visual Basic with a single
default startup form, as in Figure 4.27. Add the
Microsoft Windows Common Controls Library
6.0 (comctl32.ocx) to the Toolbox using the
Project, Components menu option. Add a
StatusBar to the form. Also add a Label, a
TextBox, and two CommandButtons to the form
and name them, respectively, lblPanelText,
txtPanelText, cmdAddPanel, and cmdClearPanels.

2. Call up the Custom Properties dialog box of the
StatusBar and add several panels. Experiment
with the various properties and run the applica-
tion to test them.

3. Add the following code to the form replacing
anything that might already be there. Run and
test the project.

Option Explicit

Private Sub cmdAddPanel_Click()
If txtPanelText.Text <> “” Then

Dim pnl As Panel
Set pnl = StatusBar1.Panels.Add(,

➥txtPanelText, txtPanelText, sbrContents)
pnl.Style = sbrText
pnl.MinWidth = 100
pnl.AutoSize = sbrContents
pnl.Enabled = True

End If
End Sub

Private Sub cmdClearPanels_Click()
StatusBar1.Panels.Clear

End Sub

Private Sub StatusBar1_PanelClick(ByVal Panel
➥As ComctlLib.Panel)

Panel.Enabled = Not Panel.Enabled
End Sub

F IGURE 4 .2 7
The form for Exercise 4.4.

07 002-8 CH 04 3/1/99 7:53 AM Page 189

190 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

4.5 Using the Controls Collection

In this exercise, you use the Controls Collection of a
form to clear input fields. You will code a For Each
loop to cycle through all the controls on a form, and
you will use the If TypeOf statement to clear the value
of the controls on the form.

Refer to the section “Using the Controls Collection”
for help with this exercise.

Estimated Time: 20 minutes

1. Open a new project in Visual Basic. Add several
input controls including TextBoxes, CheckBoxes,
OptionButtons, and ComboBoxes, as in Figure 4.28.
Add at least one item to each ComboBox.

Use a For Each loop to navigate through the
Controls Collection. Be sure to check the class of
each control by using the If TypeOf statement to
make sure you are clearing each one properly.

3. Run the application. Fill in all the input fields.
Select values from the OptionButtons and
ComboBoxes. Check the CheckBoxes.

4. Click on the Clear button. Did all the controls
clear? Did they clear without any runtime errors?

4.6 Loading and Unloading Forms

In this exercise, you create a two-form project that will
load and unload forms. The Forms Count property will
also be used to show the forms that are loaded. This
exercise will also show how unloaded form code stays
resident in memory.

Estimated Time: 45 minutes

To create this project, follow these steps:

1. Start Visual Basic 6.

2. Create a Standard EXE project with its default
startup form.

3. Add a second form to the project.

4. On Form1, create five command buttons as shown
in Figure 4.29.

5. Change the Command1 button caption to Show
Form2.

6. Open the Code window for the Show Form2
button on Form1 and enter the following code:

Sub Command1_Click()
Form2.Show

End Sub

7. Change the Command2 button caption to Count
Forms.

F IGU R E 4 .28
The form for Exercise 4.5.

2. Add a command button to the form. Add
code to the command button that will loop
through all the controls on the form, see
“Using the Controls Collection,” and clear
each input control that was added in step 1.

07 002-8 CH 04 3/1/99 7:53 AM Page 190

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 191

A P P LY YO U R K N O W L E D G E

8. Open the Code window for the Count Forms
button on Form1 and enter the following code:

Sub Command2_Click()
MsgBox “The Forms Collection contains “ _

& Forms.Count & “ loaded forms.”
End Sub

9. Change the Command3 button caption to Unload
Form2.

10. Open the Code window for the Unload Form2
button on Form1 and enter the following code:

Sub Command3_Click()
Unload Form2

End Sub

11. Change the Command4 button caption to
Form2.Test.

12. Open the Code window for the Form2.Test but-
ton on Form1 and enter the following code:

Sub Command4_Click()
Form2.Test

End Sub

13. Change the Command5 button caption to
Form2.Caption.

14. Open the Code window for the Form2.Caption
button on Form1 and enter the following code:

Sub Command5_Click()
Form2.Caption = “Hello World”

End Sub7

15. Open the Code window for Form2. Under the
General Declaration section, enter the following
code:

Public Sub Test()
Msgbox “Code from Form2”

End Sub

16. Run the project.

17. Click on the Show Form2 button. Form2 should be
displayed with nothing on it.

18. Return to Form1 and click the Count Forms but-
ton. The message box should indicate that the
Forms Collection contains two loaded Forms.

19. Click on the Unload Form2 button. Form2 should
be unloaded from memory at this point.

20. Click on the Count Forms button. The message
box should indicate that the Forms Collection
contains one loaded form.

21. Click on the Form2.Test button. The message
box should indicate the message Code from
Form2. Remember that Form2 has been unloaded
at this point.

22. Click on the Count Forms button to see how
many forms are currently loaded.

23. When the message box appears, it indicates that
only one form has been loaded. Procedures are
not unloaded from forms. It is only program-
matic reference to the form’s properties that will
cause the load to occur.

F IGURE 4 .29
The forms for Exercise 4.6.

07 002-8 CH 04 3/1/99 7:53 AM Page 191

192 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

24. Click on the Form2.Caption button. This will
reference Form2’s Caption property and set it to
“Hello World”.

25. Click on the Count Forms button. The message
box should indicate that the Forms Collection has
two loaded forms although Form2 is not visible.

26. Close Form1. Notice that the VB environment is
still in runtime. This is due to Form2 being loaded
but not shown.

27. Press the End button to end the application.

This exercise demonstrated how loading and unloading
forms is performed and the effect that unloading has
on form-level code. The Forms Collection was used to
prove how many forms were present in memory.

4.7 Using the Forms Collection

In this exercise, you use the Forms Collection to return
information about the forms that have been loaded.

Estimated Time: 45 minutes

To create this project, use the following steps:

1. Start Visual Basic 6.

2. Create a Standard EXE project with a standard
default startup form.

3. Add three additional new forms. There should be
a total of four forms, as shown in Figure 4.30.

4. Add four command buttons to Form1.

5. Change Command1’s button caption to Count
Forms.

6. Change Command2’s button caption to Show Forms.

7. Change Command3’s button caption to Set
Captions.

8. Change Command4’s button caption to End.

9. Open the Code window for Count Forms and
enter the following code:

Sub Command1_Click()
MsgBox “The Forms Collection contains “ _

& Forms.Count & “ loaded forms.”
End Sub

10. Open the Code window for Show Forms and enter
the following code:

Sub Command2_Click()
Form2.Show
Form3.Show

End Sub

11. Open the Code window for Set Captions and
enter the following code:

Sub Command3_Click()
Dim iLoop as Integer
For iLoop = 0 to Forms.Count — 1

Forms(iLoop).Caption = “I have set
➥Form” & iLoop & “‘s caption.”

Next iLoop
End Sub

F IGURE 4 .3 0
The forms for Exercise 4.7.

07 002-8 CH 04 3/1/99 7:53 AM Page 192

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 193

A P P LY YO U R K N O W L E D G E

12. Open the Code window for End and enter the
following code:

Sub Command4_Click()
Dim frmCurr as Form
For Each frmCurr in Forms

Unload frmCurr
Next frmCurr
End

End Sub

13. Run the project.

14. Move Form1 to the top-right corner of the screen.
This will allow the new forms to be created and
not be placed right on top of Form1.

15. Click on Count Forms. A message box should
indicate that the Forms Collection has only one
form.

16. Click on Show Forms. Forms 2 and 3 should now
be loaded and displayed, but Form 4 has not
been loaded.

17. Click on Count Forms. A message box should
indicate that the Forms Collection now has three
forms. Form 4 was not loaded and is not part of
the collection.

18. Click on Set Captions. This should loop
through all forms in the collection, starting at
item 0 and increasing to the total amount of
forms. Each form should now have a caption
with its item number as part of the form name.

19. Click on End and the keyword END will close all
forms and end the application.

This exercise demonstrated using the Forms Collection
to count the total amount of loaded forms and using
an item number to set specific form’s properties.

4.8 Adding and Deleting Controls
Dynamically With a Control Array

In this exercise you use a control array to dynamically
add, manipulate, and remove controls at runtime, as
discussed in the section “Adding and Deleting Controls
Dynamically Using Control Arrays.”

Estimated Time: 45 minutes

To create this project, use the following steps:

1. Create a VB Project and add a second form to the
project in addition to the first default form. On
the surface of Form1, place CommandButtons,
cmdAdd and cmdRemove, with appropriate Captions
as shown in Figure 4.31.

In Form1’s Load event procedure, write the line

Form2.Show

F IGURE 4 .3 1
The forms for Exercise 4.8.

07 002-8 CH 04 3/1/99 7:53 AM Page 193

194 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

2. On Form2’s surface place a Label and a TextBox
control. Change the Index property of each con-
trol to 0 and the Visible property of each control
to False.

3. In Form1’s General Declarations section, declare
a Private variable to keep track of the number of
elements in the control array:

Option Explicit
Private iSequence As Integer ‘keep track of
➥ctrls created

4. In cmdAdd’s Click event procedure, put code to
load and re-position a Label and TextBox control
array element, augmenting the form-wide variable
to keep track of the number of elements loaded:

Private Sub CmdAdd_Click()
Static lNewTop As Long ‘top for next

➥ctrl
Static lNewLeft As Long ‘left side of

➥next ctrl
Static lMaxWidth As Long ‘keep track of

➥widest ctrl so far
iSequence = iSequence + 1
Dim sCaption As String

‘Add new controls to the control arrays
Load Form2.Label1(iSequence)
Load Form2.Text1(iSequence)

‘Top & left are next available positions
➥for label
Form2.Label1(iSequence).Top = lNewTop
Form2.Label1(iSequence).Left = lNewLeft

‘Position matching textbox in relation to
➥label
Form2.Text1(iSequence).Left = lNewLeft + _
Form2.Label1(iSequence).Width
Form2.Text1(iSequence).Top = lNewTop

‘form unique label from sequence #
sCaption = “Control” & iSequence
Form2.Label1(iSequence).Caption = sCaption

‘make visible
Form2.Label1(iSequence).Visible = True
Form2.Text1(iSequence).Visible = True

‘Adjust top for next label-text pair
lNewTop = lNewTop +

➥Form2.Label1(iSequence).Height

‘But if it will be past the form
If lNewTop > Form2.ScaleHeight Then

‘Put next label-text pair at top of form
lNewTop = 0

‘and put its left side to right of
➥current

‘column of controls
lNewLeft = Form2.Label1(iSequence).Width

➥+ _
Form2.Text1(iSequence).Width + lNewLeft

End If

‘No more changes if form is full
If lNewLeft > Form2.ScaleWidth Then
cmdAdd.Enabled = False

End If
End Sub

5. In cmdRemove’s Click event procedure, put code
to unload the highest elements in the Label and
TextBox control arrays and decrement the number
of elements:

Private Sub cmdRemove_Click()
If iSequence < 1 Then Exit Sub
Unload Form2.Label1(iSequence)
Unload Form2.Text1(iSequence)
iSequence = iSequence - 1

End Sub

6. Run the application to test the loading of control
array elements. Form2 should look like Figure
4.32. Then click the Remove button to repeat-
edly remove control array elements.

07 002-8 CH 04 3/1/99 7:53 AM Page 194

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 195

A P P LY YO U R K N O W L E D G E

4.9 Adding and Deleting Controls
Dynamically With the Controls
Collection

In this exercise, you use the Controls Collection to
dynamically add, manipulate, and remove controls at
runtime, as discussed in the section “Adding and
Deleting Controls Dynamically Using the Controls
Collection.”

Estimated Time: 45 minutes

To create this project, use the following steps:

1. Add a CommandButton to the form named
cmdAddIntrinsic, and set its Caption to “Add an
Intrinsic VB Control” (see Figure 4.33). Declare
a form-wide variable of type CommandButton and
add code to cmdAddIntrinsicVB_Click() as fol-
lows:

Option Explicit
Dim WithEvents cmdbutton As CommandButton

Private Sub cmdAddIntrinsicVB_Click()
Set cmdbutton = Controls.Add

➥(“VB.CommandButton”, “CmdButton”)
cmdbutton.Caption = “XXXXX”
cmdbutton.Left = 500
cmdbutton.Top = 500
cmdbutton.Visible = True
cmdAddIntrinsicVB.Enabled = False

End Sub

2. Since you declared cmdButton using WithEvents,
you can navigate to it in the Object list of a Code
window. Do so and open its Click event proce-
dure, adding the following test code:

Private Sub cmdbutton_Click()
MsgBox “XXXXX”

End Sub

3. Add two more declarations to the General
Declarations of this form, as follows:

Dim WithEvents mscCalendar As
➥VBControlExtender
Dim dt As Date

F IGURE 4 .32▲
The runtime appearance of the second form in Exercise 4.8
after it has been filled with control array elements.

F IGURE 4 .3 3▲
The form for Exercise 4.9.

07 002-8 CH 04 3/1/99 7:53 AM Page 195

196 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

4. Add two more CommandButtons named
cmdAddAXNoLicense and cmdRemoveAXNoLicense to
the form, setting their captions as shown in
Figure 4.33. In their Click event procedures,
enter the following code:

Private Sub cmdAddAXNoLicense_Click()
Dim ctrl As Object
Dim strControlType As String
strControlType = “MSCal.Calendar.7”
Set mscCalendar = Controls.Add

➥(strControlType, “mscCalendar”)
mscCalendar.Top = 600
mscCalendar.Left = 500
mscCalendar.Visible = True
DoEvents
dt = DateSerial(mscCalendar.object.Year,

➥_
mscCalendar.object.Month,

➥mscCalendar.object.Day)
cmdRemoveAXNoLicense.Enabled = True
cmdAddAXNoLicense.Enabled = False

End Sub

Private Sub cmdRemoveAXNoLicense_Click()
Controls.Remove mscCalendar
Set mscCalendar = Nothing
Me.Cls
Me.Print dt
CmdRemoveAXNoLicense.Enabled = False

End Sub

5. In the Make tab of the Project Properties dialog,
check the box labeled “Remove information
about unused ActiveX controls,” as shown previ-
ously in Figure 4.18.

In the Project Components dialog, find the com-
ponent for MSCalendar and check it to include it
in the Toolbox.

6. Run the application and note the error message
when you click cmdAddAXNoLicense as illustrated
previously in Figure 4.17. To remedy this
problem, stop the application and choose the
Project Properties option from the Toolbox.

In the Make tab of the Project Properties dialog,
uncheck the box labeled “Remove information
about unused ActiveX controls,” as illustrated
previously in Figure 4.18. Re-run the application
and note that you’re now able to add and remove
an instance of the Calendar control.

7. In the Code window for the form, find the object
mscCalendar, and then find that object’s
ObjectEvent event procedure. In the ObjectEvent
procedure, enter the following code.

Private Sub mscCalendar_ObjectEvent(Info As
➥EventInfo)

If UCase$(Trim$(Info.Name)) =
➥“AFTERUPDATE” Then

dt = DateSerial(mscCalendar.object.
➥Year, _

mscCalendar.object.Month,
➥mscCalendar.object.Day)

End If
End Sub

8. Run the application and note that now the date
displayed at the top of the form when the calen-
dar is removed correctly reflects the last date cho-
sen by the user.

9. Add a button to the form named
cmdAddAXNeedsLicense and give it the caption
“Add an ActiveX Control Needing a License.”
Also add a TextBox named txtLicense to the form
(see Figure 4.33). In the Click event procedure of
cmdAddAXNeedsLicense, add the following code:

Private Sub cmdAddAXNeedsLicense_Click()
Dim ctrl As Object
Dim strControlType As String
strControlType =

➥“MSFlexGridLib.MSFlexGrid.1”
txtLicense = Licenses.Add(strControlType)
Set ctrl = Controls.Add(strControlType,

➥“fgdMY”)
ctrl.Top = 600
ctrl.Left = 500
ctrl.Visible = True
cmdAddAXNeedsLicense.Enabled = False

End Sub

07 002-8 CH 04 3/1/99 7:53 AM Page 196

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 197

A P P LY YO U R K N O W L E D G E

10. Run the application and click the new
cmdAddAXNeedsNewLicense CommandButton, noting
that the TextBox is filled with license information
for the control when you add the MSFlexGrid. If
you were to distribute this application to end
users, you would need to include the license string
in your application as the second argument to
Licenses.Add. The line would read:

Licenses.Add(strControlType, strLicense)

where strLicense represented the licensing string
shown at design time in the TextBox.

11. Comment out the line

‘txtLicense = Licenses.Add(strControlType)

and re-run the application. Notice that this time,
you receive an error message complaining that
the control needs a license.

Review Questions
1. What VB menu option must you use to add an

ActiveX control to the ToolBox?

2. What are the four ways that items in a ListView
can be displayed?

3. What image formats can be loaded together in
an ImageList control. For example, can 16×16
icons be loaded with 32×32 icons? Can icons
(*.ico files) be loaded with bitmaps (*.bmp) files?

4. What two properties of the ToolBar and Buttons
Collections control the availability of ToolTips?

5. If you include a Panel on a StatusBar control to
display the current time, what is the best way to
update that time while the application is running?

6. How many Controls Collections are there in a
Visual Basic application?

7. If you intend to dynamically create a TextBox
control from a control array at runtime, what
two things must you do at design time for this to
work?

8. When using Form objects in a VB project, the
Load statement is used to bring the form into
memory. The Show statement is used to display
the form on-screen. Are there any other state-
ments that will cause a Form object to be loaded
into memory?

9. Assume that a project contains a main form and
an options form. Assuming that the user can alter
the settings on the options form, would you use
the Hide method or the Unload statement to
ensure that the options form and its controls
could still be referenced after the form is no
longer visible?

10. When you create a form at design time and then
save it, what are the file format and file extensions
that are used to save the information contained
on that form?

11. When creating multiple instances of a form at
runtime, what is the keyword used to reference
the currently running object?

12. What is the keyword used to create a runtime
version of a form that was created at design time?

13. The Forms Collection contains references to
Visual Basic Form objects. Does the collection
contain references to forms that were created at
design time, runtime, or both?

14. VB collection objects usually have various meth-
ods and properties. How many properties and
methods does the Visual Basic Forms Collection
have? What are their names?

07 002-8 CH 04 3/1/99 7:53 AM Page 197

198 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

15. The Forms Collection contains all forms that have
been loaded into memory. When programming
in VB, you might need to refer to the individual
properties of a particular form. What does the
collection provide to the programmer for the
control of individual collection members?

16. What is the role of the ObjectEvent in program-
ming with the Controls.Add method?

17. Describe the object model of the ObjectEvent
procedure’s Info parameter.

18. How can you tell which event was fired for a non-
intrinsic control that you’ve added to the Controls
Collection with the Controls.Add method?

Exam Questions
1. ActiveX controls are implemented in files with

the extension:

A. OCX

B. VBX

C. VBX and OCX

D. OLB and OCX

2. What three properties affect the sort order of
ListItems in a ListView control? (pick three)

A. SortKey

B. SortItem

C. Sorted

D. SortOrder

3. What image file formats can be loaded into the
ImageList control? (Select all correct answers.)

A. *.ico

B. *.gif

C. *.jpg

D. *.bmp

4. If you want to have images displayed on the but-
tons of a toolbar, how do you add these images to
the control?

A. With the LoadPicture() function

B. From an ImageList control

C. From a *.bmp file

D. All of these

5. What are the areas of a StatusBar control in
which information is displayed?

A. Node objects

B. Status objects

C. ListItem objects

D. Panel objects

6. If you are removing controls from your form
dynamically (at runtime), what controls can you
remove?

A. Controls you have created dynamically.

B. Any controls on the form.

C. Any controls that are part of a control array.

D. You cannot remove controls dynamically.

7. If you are using a Controls Collection of a form
to loop through and clear controls, how do you
determine the class of each control?

A. Using the Select Case Type statement.

B. Checking the Name property of each control
for standard control prefixes.

07 002-8 CH 04 3/1/99 7:53 AM Page 198

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 199

A P P LY YO U R K N O W L E D G E

C. Using the If TypeOf statement.

D. You don’t need to check the class of a control
before clearing it.

8. What types of objects are contained in an
ImageList control, and what is the collection
that holds these objects?

A. Image objects and the Images Collection

B. Picture objects and the Pictures Collection

C. Bitmap objects and the Bitmaps Collection

D. ListImage objects and the ListImages
Collection

9. When you add new nodes to a TreeView control,
you can specify a Relationship argument that
determines placement of the new node in rela-
tion to the Relative argument. Which of these
is not a valid relationship?

A. tvwFirst

B. tvwNext

C. tvwChild

D. tvwAfter

10. Values of what data type can be used as the key
value for an object in the ListItems Collection
of a ListView?

A. String

B. Integer

C. Long

D. Variant

11. How are columns added to a ListView control?

A. By incrementing the Columns property.

B. By using the InsertColumn method.

C. By adding ColumnHeader objects to the
ColumnHeaders Collection.

D. Columns cannot be added to a ListView
control.

12. Which property of a Button object in a toolbar
will determine the way in which a button per-
forms (that is as a separator, part of a group,
check, and so forth)?

A. Action

B. Style

C. Type

D. Context

13. If you want to reference all the controls on a
form, Form1, which two For statements enable
you to do this?

A. For I = 1 to Form1.Controls.Count

B. For I = 0 to Form1.Controls.Count - 1

C. For Each obj in Form1.Controls

D. For Each obj in Form1.Controls.Count

14. In the following code, which statement best
describes the order of events that happen after this
line of code is executed. Assume a VB project with
two forms, Form1 and Form2. Form1 is the startup
object.

Sub Command1_Click()
Form2.Caption = “Visual Basic Notes”

End Sub

A. When executed, the code will generate
Compile Error: Variable not defined.

B. Form2 is automatically loaded, the caption is
set, and Form2 is shown.

07 002-8 CH 04 3/1/99 7:53 AM Page 199

200 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

C. Form2 is automatically loaded, the caption is
set, and Form2 is not shown.

D. Form2 is automatically loaded, the caption is
set, and Form2 is automatically unloaded.

E. When executed, the code will generate Compile
Error: Method or data member not found.

15. Visual Basic allows a form to be loaded into
memory without directly displaying the form.
What statement is used to load a form without
showing it?

A. Load

B. Unload

C. Show

D. Hide

E. Dim

16. In the following code, which statement best
describes the order of events that occur while this
code is executing. Assume that the project con-
tains two forms, and that this procedure is in the
Load event of the startup Form object.

Sub Form_Load()
frmSplash.Show
frmMain.Show
Unload frmSplash

End Sub

A. The Splash form shows, Main form shows,
Splash form unloads.

B. The Splash form loads, Main form loads,
Splash form unloads.

C. The Splash form loads and shows, Main form
loads and shows and causes a compile time
error.

D. The Splash form loads and shows, Main form
loads and shows, Splash form unloads.

E. The Splash form shows, Main form shows,
Splash form causes a compile time error.

17. Visual Basic allows a Form object to be removed
from the screen, but allows it to stay loaded in
memory. This allows other components of the
application to refer to controls, properties, and
methods of the form. What statement in VB will
remove a form from view but keep it in memory?

A. Load

B. Unload

C. Dim

D. Show

E. Hide

18. Form objects can be loaded into memory and used
by an application. Using the following code, what
type of loading is being performed by VB?

Sub Main()
frmSetup.Show

End Sub

A. Forced

B. Manual

C. Implied

D. Inferred

E. Explicit

19. A VB application can define the very first object
used when the program is run. This is referred to
as the startUp object. Where in the VB IDE can
the project’s startUp object be specified?

A. Project, Components

B. Project, Project Properties

C. Project, References

07 002-8 CH 04 3/1/99 7:53 AM Page 200

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 201

A P P LY YO U R K N O W L E D G E

D. Tools, Options

E. Tools, Settings

20. An application can create Form objects dynamically
at runtime. To create dynamic forms, a Form object
must be used as the template for the new object.
What is the keyword used to create a dynamic
runtime form based on another Form object?

A. Me

B. The

C. Object

D. New

E. Option

21. From the following code, select all lines that would
create a form at runtime based on a design time
Form object template called frmMainTemplate.
Assume that the project startup object is a Sub
Main procedure and that this line of code will cre-
ate the first form.

A. Dim frmMainTemplate as frmMainTemplate

B. Dim frmMainTemplate as New
frmMainTemplate

C. Set x as frmMainTemplate

D. Dim x as New frmMainTemplate

E. Set x = New frmMainTemplate

22. In the following code, which statement best
describes the order of events that occur while this
code is executing. Assume that the project con-
tains two forms and that this procedure is in the
Load event of the startup Form object.

Sub Form_Load()
frmSplash.Show
frmMain.Show
Unload frmSplash

End Sub

A. The Splash form shows, Main form shows,
Splash form unloads.

B. The Splash form loads, Main form loads,
Splash form unloads.

C. The Splash form loads and shows, Main form
loads and shows and causes a compile time
error.

D. The Splash form loads and shows, Main form
loads and shows, Splash form unloads.

E. The Splash form shows, Main form shows,
Splash form causes a compile time error.

23. When a Form object is created dynamically at
runtime, all properties, methods, and events will
be usable. What keyword can be used to refer to
the active object rather than the object name?

A. Me

B. Friend

C. You

D. Var

E. None of these

24. VB allows a set of similar objects to be grouped
together. This allows easier access to the similar
objects and also simplifies program code that can
affect all members of the group. What is the term
used to describe this function grouping?

A. Friends

B. Enemies

C. Procedures

D. Scopes

E. Collections

07 002-8 CH 04 3/1/99 7:53 AM Page 201

202 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

25. Groups of objects simplify control and provide
common functions. Which are groups of objects
found within Visual Basic?

A. Variables

B. Friends

C. Controls

D. Variants

E. Forms

26. When a collection is created in Visual Basic, a
method can be used to determine how many
objects are in the collection. What default
method is used to determine this number?

A. Number

B. Item

C. Total

D. Count

E. Base

27. The following code sample is missing a line of
code. This code is to be used to unload all forms
from the Forms Collection. Which line of code
will complete this sub procedure best? Assume
that the project contains six forms and that this
procedure is in a command button on one of the
forms:

Sub cmdClose_Click()
Dim iLoop As Integer
xxxx

Unload Forms(iLoop)
Next iLoop

End Sub

A. For iLoop = 0 To Forms.Count Step + 1

B. For iLoop = 0 To Forms.Count - 1

C. For iLoop = Forms.Count To 0

D. For iLoop = Forms.Count - 1 To 0 Step - 1

E. For iLoop = Forms.Count To 0 Step - 1

28. On the Project Properties Make tab, the option
Remove Information about unused ActiveX
Controls

A. Should be unchecked to prevent a runtime
error when adding an element to the Controls
Collection, if that control type is available in
the Toolbox but has no design time instance
on the form.

B. Should be checked to prevent a runtime error
when adding an element to the Controls col-
lection, if that control type is available in the
Toolbox but has no design time instance on
the form.

C. Should be unchecked to prevent a runtime
error when adding an element to the Controls
collection, if that control type is not available
in the Toolbox.

D. Should be checked to prevent a runtime error
when adding an element to the Controls col-
lection, if that control type is not available in
the Toolbox.

29. When you use the Controls.Add method, you
must specify the ProgID for (pick the best answer)

A. Any ActiveX control type that is not included
in the Toolbox

B. Any ActiveX control type

C. All control types

D. Intrinsic control types

30. If ctrl is an object variable representing an ActiveX
control object that has been added to the Controls
collection, and Viscosity is a custom property of
that object, which two lines will cause an error?

07 002-8 CH 04 3/1/99 7:53 AM Page 202

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 203

A P P LY YO U R K N O W L E D G E

A. ctrl.Object.Visible = True

B. ctrl.Object.Viscosity = 30

C. ctrl.Visible = True

D. ctrl.Viscosity = 30

31. When you dynamically add controls to the
Controls collection, you must use the
VBObjectExtender data type for programming with

A. Any ActiveX control that is not included in
the Toolbox

B. Any ActiveX control

C. All controls

D. Intrinsic controls

32. A license key to use with the Controls.Add
method (pick all that apply)

A. Can be most efficiently found by searching
the Window Registry.

B. Is the second argument to the Licenses.Add
method.

C. Must be licensed to you in order for you to
use it legally with software that you distribute
to end users.

D. Need not be specified on user machines that
already have the control licensed.

Answers to Review Questions
1. Project Components. See “Adding an ActiveX

Control to the ToolBox.”

2. The four styles of the ListView are Icon, Small
Icon, List, and Report. They are set by using the
View property of the object. See “Using the
ListView Control.”

3. Only a single image format can be used in an
ImageList. 16×16, 32×32, 48×48 icons, and
bitmaps must be loaded into separate ImageLists.
After an image of one format is loaded, images of
different formats cannot be loaded. See “Using
the ImageList Control.”

4. The ShowTips property of the toolbar dictates
whether ToolTips are displayed. The ToolTipText
property of the Button object on the toolbar iden-
tifies the text that will be displayed when the user
rests the mouse pointer over a button. See “Using
the ToolBar Control.”

5. There is no need to use code that will update the
current time in a StatusBar panel. The StatusBar
itself will keep the time current while the applica-
tion is running. See “Using the StatusBar
Control.”

6. Each Visual Basic application has one Controls
Collection per form. Controls Collections are cre-
ated and maintained for you automatically. See
“Using the Controls Collection.”

7. To create text boxes dynamically, you must place
at least one text box on your form at design time,
and you must also set the Index property of that
control to 0 to create a control array. See “Adding
and Deleting Controls Dynamically Using
Control Arrays.”

8. The Load statement and Show statement will both
load a Form object into memory. Load will load
the form but not show it. Show will automatically
load the form and display the form onscreen.
Another way to load a form into memory is to
simply refer to that form. Any programmatic ref-
erence to a Form’s intrinsic properties will force
VB to load the indicated form. See “Loading and
Unloading Forms.”

07 002-8 CH 04 3/1/99 7:53 AM Page 203

204 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

9. The Unload method will remove a form from
memory. When the form is reloaded, all controls
contained on the form will be re-initialized.
Therefore the Hide method would allow the
Options form to be set by the user, hide it from
the display, and still allow the programmatic ref-
erence to the controls as set by the user. See
“Showing and Hiding a Form.”

10. When forms are created then saved, two files can
be generated. The first file is an .FRM ASCII
text file that contains information related to
the form, the form’s objects, properties of the
objects, and any source code for those objects.
The second file is a binary file that contains
graphic information related to the form. If a
picture control is used, an .FRX file will contain
the graphics information required by the
control. See “Design Time Storage of Form
Objects.”

11. The keyword used to reference the currently
running object is ME. This enables the program-
mer to reference multiple instances without
having to worry about design time names and
runtime object variables. If the design time
name were used, that would be the only object
that would be affected. See “Removing Runtime
Forms.”

12. The keyword used to create a runtime version of
an object created at design time is NEW. An object
variable is dimensioned as a NEW object. This tells
VB to create another instance of the Form object
at run time. The following code demonstrates
this syntax: Dim x as New Form1. See “Creating
a Runtime Form.”

13. The Forms Collection contains references to
forms that are loaded into memory through
design time and runtime actions. If a project con-
tains multiple forms but a particular form is not
loaded into memory, the Forms Collection will
not contain a reference to that form. See
“Overview of the Forms Collection.”

14. The Visual Basic Forms Collection has only one
property, Count, and it returns the total number
of forms that are currently loaded in memory. See
“Using Methods and Properties of the Forms
Collection.”

15. A VB Collection provides an item number that is
an ordinal index value assigned to each individual
object as it is added to the collection. You can use
the item number to programmatically access indi-
vidual forms and their associated properties. For
instance you could refer to the Caption property
of the first Form in the collection with the syn-
tax: Forms(0).Caption. See “Using Specific Items
Within the Forms Collection.”

16. ObjectEvent is an event procedure for objects
of type VBObjectExtender. When you add an
ActiveX control to a form with Controls.Add,
you can declare the control to be of type
VBObjectExtender using the WithEvents keyword.
You can then program the ObjectEvent procedure
to react to events raised by the control. See
“Declaring an ActiveX Control and Programming
Its Events.”

17. The ObjectEvent event’s single parameter, Info,
is a complex object variable containing a Name
property and a Collection of EventParameter
objects. See “Declaring an ActiveX Control and
Programming Its Events.”

07 002-8 CH 04 3/1/99 7:53 AM Page 204

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 205

A P P LY YO U R K N O W L E D G E

18. You can tell which event was fired for a
non-intrinsic control that was added using
Controls.Add by looking at the name passed in
the Info parameter (Info.Name).

Answers to Exam Questions
1. A. ActiveX controls are implemented in files with

the extension OCX. The VBX extension was
used for 16-bit controls in older versions of VB.
TLB files are Type Library files and don’t imple-
ment ActiveX controls. For more information see
the section “Adding an ActiveX Control to the
ToolBox.”

2. A, C, D. The Sorted, SortKey, and SortOrder
properties determine whether and how ListItems
will be sorted in a ListView. For more informa-
tion see the section “Using the ListView
Control.”

3. A, D. Icons (*.ico) and bitmaps (*.bmp) files can
be loaded into the ImageList control. For more
information see the section “Using the ImageList
Control.”

4. B. Images used by the ToolBar control can only
come from an ImageList control that has been
placed on the same form. For more information
see the section “Using the ToolBar Control.”

5. D. Status information is displayed in one or
more Panel objects on a StatusBar. For more
information see the section “Using the StatusBar
Control.”

6. A. You can only remove controls that you have
created dynamically. For more information see
the section “Adding and Deleting Controls
Dynamically Using Control Arrays.”

7. C. The If TypeOf statement can be used to deter-
mine the class of an object. It is important to
check the type before referencing any properties
or method of an object to avoid runtime errors.
For more information see the section “Using the
Controls Collection.”

8. D. An ImageList contains ListImage objects.
ListImage objects are referenced through the
ListImages Collection. For more information see
the section “Using the ImageList Control.”

9. D. The valid relationships are tvwFirst, tvwLast,
tvwNext, tvwPrevious, and tvwChild; tvwAfter is
not a valid relationship. For more information see
the section “Using the TreeView Control.”

10. A. Key values of the ListItems Collection (and all
collections) must be strings. For more information
see the section “Using the ListView Control.”

11. C. The number of columns in a ListView control
is controlled by the number of objects in the
ColumnHeaders Collection. For more information
see the section “Using the ListView Control.”

12. B. The Style property controls the behavior
of a button. Valid values include tbrDefault,
tbrCheck, tbrButtonGroup, tbrSeparator, and
tbrPlaceholder. For more information see the
section “Using the ToolBar Control.”

13. B,C. If you use a For I = ... statement, the
index value of Controls Collection ranges from 0
to n-1, where n is the number of controls on the
form. For more information see the section
“Using the Controls Collection.”

14. C. Any reference to a form object will cause
an implied load in Visual Basic. After Form2
has been loaded, the Caption property is set.

07 002-8 CH 04 3/1/99 7:53 AM Page 205

206 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

The form has been referenced, but the Show
method was not executed. This form will remain
loaded but not shown. For more information see
the section “Loading and Unloading Forms.”

15. A, D. The Load statement can be used to explic-
itly load a Form object into memory. If the Hide
method of the form is used, an implied Load
would happen first followed directly by hiding
the form. Both could provide the desired result of
loading a form into memory. For more informa-
tion see the section “Loading and Unloading
Forms.”

16. D. Before a form can be shown it must be loaded
into memory. Although the Load statement has
not been used to explicitly load the form, the
Show method uses implied loading. This allows
the form to be directly shown to the user. The
proper order of events would be to load the form
and then show the form. After the two forms are
shown, the Splash form is then unloaded. For
more information see the section “Showing and
Hiding a Form.”

17. E. The Hide statement can be used to remove a
form object from the screen view but keep it
loaded in memory. The Unload statement will
remove it from the screen and will also remove it
from memory. For more information see the sec-
tion “Showing and Hiding a Form.”

18. C. If an explicit Load statement is not used before
using an object, Visual Basic uses implicit load-
ing. Any programmatic reference to an object will
cause that object to be loaded into memory. For
more information see the section “Loading and
Unloading Forms.”

19. B. To specify the startup object of a VB project,
the VB IDE provides the Project, Project
Properties dialog boxes. The startup object
combo box can be found under the General tab.
The menu selection Tools, Options is where the
startup form could be selected in Visual Basic
4.0. For more information see the section
“Loading and Unloading Forms.”

20. D. The keyword New is used to create a runtime
Form object based on a template form. This
instructs VB to create another new object based
on the object name following the New keyword.

21. B, D. When dimensioning an object variable, it
can have any name you choose. The key is to
Dim 'var' as New object. The New keyword will
create a runtime object from the ofject name
following New. Both answers are correct, but
both use a different object variable name.

22. D. Before a form can be shown, it must be
loaded into memory. Although the Load state-
ment has not been used to explicitly load the
form, the Show method uses implied loading. This
allows the form to be directly shown to the user.
The proper order of program actions would be to
load the form and then show the form. After the
two forms are shown, the Splash form is then
unloaded. For more information see the section
“Showing and Hiding a Form.”

23. A. The keyword used to refer to the active run-
time object is ME. Instead of using the object
name, the more generic keyword ME can be used
to control and manipulate the active object.

07 002-8 CH 04 3/1/99 7:53 AM Page 206

Chapter 4 CREATING DATA INPUT FORMS AND DIALOG BOXES 207

A P P LY YO U R K N O W L E D G E

Friends are a special type of procedure and are
not used for object reference. For more informa-
tion see the section “Removing Runtime Forms.”

24. E. Visual Basic allows groups of similar objects
to be used together in a collection. A Friend is a
special type of procedure. Procedures are a
generic term to classify code. Scope is used to
refer to the lifetime of a variable or procedure.
These are not related to collections. For more
information see the section “Overview of the
Forms Collection.”

25. C, E. Similar objects that are grouped together
are referred to as collections. Visual Basic pro-
vides the Controls and Forms intrinsic collec-
tions to keep the similar objects together. Friends
are a type of procedure. For more information
see the section “Overview of the Forms
Collection.”

26. D. The method of a collection used to determine
how many objects are in the collection is Count.
As objects are added, the Count property is used
to keep track of the loaded objects. The Count
property is included by default in new collec-
tions. Other methods can be programmed in, if
required. For more information see the section
“Using Methods and Properties of the Forms
Collection.”

27. D. For iLoop = Forms.Count - 1 To 0 Step -
1 would correctly complete the code in the
example. The form’s Count property returns the
total number of loaded forms in the collection.
However the collection’s first item index is 0,
which means that the highest index in the
Forms collection would be Forms.Count—1.
Therefore your For loop must start at the value
of Forms.Count—1 and count down to 0.

The Step—1 is used to cause the for loop count
down by increments of one. All other code will
produce a subscript out of range error. The Forms
and Controls Collections always start at element
0; as items are removed, other items are reorga-
nized to lower numbers. When deleting elements
from a collection you should therefore begin at
the highest number and work down to the low-
est. For more information see the section “Using
the Forms Collection to Unload All Forms.”

28. A. On the Project Properties Make tab, the
option Remove Information about unused
ActiveX Controls should be unchecked to prevent
a runtime error when adding an element to the
Controls Collection, if that control type is avail-
able in the Toolbox but has no design time
instance on the form. B is incorrect because
checking the option will cause an error when
your code tries to add an instance of the control
to the Controls collection. C. and D. are incor-
rect because there is no problem of this nature
when the control does not appear in the Toolbox.
See “Keeping a Reference in the Project to an
ActiveX Control.”

29. C. When you use the Controls.Add method, you
must specify the ProgID for all controls. When
specifying the ProgID for most intrinsic controls,
the ProgID is a string composed of “VB.” plus
the programmatic name of the control type (for
example “VB.CommandButton” or “VB.Label”).
You can find the ProgID for ActiveX controls by
looking in vendor documentation or by searching
the Windows Registry. See “Getting a Control’s
ProgID.”

07 002-8 CH 04 3/1/99 7:53 AM Page 207

208 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

30. A, D. If ctrl is an object variable representing an
ActiveX control object that has been added
to the Controls collection, and Viscosity is acus-
tom property of that object, then you will get an
error by running either of the two lines:

ctrl.Object.Visible = True

or

ctrl.Viscosity = 30

This is because Top is a standard property and
should not be accessed through the Object prop-
erty that provides access to Custom Properties.
Viscosity, on the other hand, is a custom prop-
erty and so must be referred to through the
Object property. See “Declaring an ActiveX
Control and Programming its Events” and
“Adding and Removing a Control in the Controls
Collection.”

31. B. When you dynamically add controls to the
Controls Collection, you must use the
VBObjectExtender data type for programming
with any ActiveX control. When you program
with intrinsic controls, you can use the object
model provided for the control by the VB envi-
ronment. See “Declaring an ActiveX Control and
Programming its Events.”

32. B, C. A license key to use with the Controls.Add
method is the second argument to the
Licenses.Add method and must be licensed to
you in order for you to use it legally with soft-
ware that you distribute to end users. A. is incor-
rect because, while it is possible to find the
license key in the Windows Registry, this is a very
tedious method compared to using the return
value of Licenses.Add when running the applica-
tion in your design environment. D. is incorrect
because you must provide the license key by
invoking Licenses.Add on all user machines. See
“Managing the License for an ActiveX Control.”

07 002-8 CH 04 3/1/99 7:53 AM Page 208

OBJECT IVE

5C H A P T E R

Writing Code that
Validates User Input

This chapter helps you prepare for the exam by cover-
ing the following objective and its subobjectives:

Write code that validates user input (70-175
and 70-176).

• Create an application that verifies data
entered by a user at the field level and the
form level.

• Create an application that enables or dis-
ables controls based on input in fields.

. Input validation is an important part of any com-
puter application that requires user interaction. In
its broadest sense, the concept applies to anything
that the application does to ensure that data entered
by the user is acceptable for the purposes of the
application.

Input validation can take place at various times in
the data entry cycle. For example, the programmer
can:

• Constrain the user’s entry of data before it
begins by providing very restricted data input
fields that permit only valid choices. The most
common way to do this is to provide standard
controls that do not permit free keyboard entry,
such as drop-down lists, option buttons, and
check boxes.

• Constrain the user’s entry of data at the moment
that it occurs by monitoring every keystroke for
validity and rejecting unwanted input as it’s
typed. For instance, a particular entry field might
seem to the user to ignore anything but numeric
characters.

• React to the user’s entry of data after the user is
finished, accepting or rejecting the contents of a
data field when the user attempts to leave the
field or close the screen.

08 002-8 CH 05 3/1/99 7:54 AM Page 209

OBJECT IVE OUTL INE

. Input validation can also have varying degrees of
user participation. For instance, the program can

• Automatically correct a user’s mistakes without
asking the user’s opinion.

• Warn the user of incorrect input and prompt the
user to correct the input before allowing the user
to continue with other activities.

The first exam subobjective for this chapter, verify-
ing data entered by a user at the field level and the
form level, deals mostly with the immediate valida-
tion of user input from the keyboard. In order to
cover this objective, we discuss the three main
Keystroke events, KeyUp, KeyDown, and KeyPress.
These events can fire at the level of individual con-
trols and also at the level of the form, thus allowing
two levels of validation.

An application also usually validates field-level data
when the user finishes entry in each field and
attempts to leave the field by setting focus away
from it. We also discuss the Validate event and
CausesValidation property (new to VB6) that you
can employ in this type of validation.

The second exam sub-objective for this chapter,
enabling or disabling controls based on input in
fields, typically involves a more global type of cross-
validation between data entered in two or more
controls. We discuss these techniques in the section
entitled “Enabling Controls Based on Input.”

Keystroke Events at Field and Form
Level 212

The KeyPress Event 212

The KeyDown and KeyDown Events 214

KeyPress Versus KeyDown and KeyDown 216

Enabling Two-Tier Validation With the
Form’s KeyPreview Property 216

Field-Level Validation Techniques 217

The Validate Event and CausesValidation
Property 218

The Change Event and Click Events 220

An Obsolete Technique: Validation With
GotFocus and LostFocus Events 221

Enabling Controls Based on Input 222

Miscellaneous Properties for Validation 224

MaxLength 224

Data-Bound Properties 224

Chapter Summary 227

08 002-8 CH 05 3/1/99 7:54 AM Page 210

STUDY STRATEGIES

. Memorizing the meaning and use of the para-
meters of the three Keystroke events, KeyPress,
KeyUp, and KeyDown. See the first half of this
chapter as well as Exercise 5.1 and 5.2.

. Getting used to the Shift parameter of the
KeyUp and KeyDown events if you’re not familiar
with programmatic manipulation of bit masks.
You should study and manipulate the examples
in Exercise 5.1.

. Understanding the difference between the
KeyPress event on one hand and the KeyUp and
KeyDown events on the other hand. See the
section entitled “KeyPress Versus KeyUp and
KeyDown.”

. Understanding the meaning and use of the
form’s KeyPreview property. See the section enti-
tled “Enabling Two-Tier Validation With the
Form’s KeyPreview Property” and Exercise 5.1.

. Understanding the use of the CausesValidation
property and the Validate event and the relation
between these two members. If you’ve done
data validation with earlier versions of VB, be
aware that these are new features in VB6.
See the section titled “The Validate Event and
CausesValidation Property” for more discussion
of how Microsoft may treat this on the exam.

. Understanding techniques for enabling or dis-
abling controls based on user input. See the
section in this chapter entitled “Enabling
Controls Based on Input” and Exercise 5.3.

08 002-8 CH 05 3/1/99 7:54 AM Page 211

212 Par t I VISUAL BASIC 6 EXAM CONCEPTS

KEYSTROKE EVENTS AT FIELD AND
FORM LEVEL

The first line of defense against user error is to catch problems as the
user presses each key. The following sections discuss how to use three
Keystroke events to intercept, interpret, and modify each keystroke.

You can validate keyboard input on two different levels in VB:

á You write validation code in the Keystroke events of each sepa-
rate control. The validation code in a control’s Keystroke event
runs when that control has focus and the user presses keys on
the keyboard.

á The form also has the same Keystroke events that can intercept
all keyboard input while that form is the application’s active
form. When form-level key handling is active, the form’s
Keystroke events receive the keystroke before the currently-
active control’s Keystroke events receive it. By default, form-level
Keystroke handling is not enabled. We discuss how to imple-
ment form-level Keystroke handling in the section “Enabling
Two-Tier Validation With the Form’s Keypreview Property.”

The KeyPress Event
The KeyPress event happens after the KeyDown event but before the
KeyUp event. It detects the ASCII value of the character generated by
the pressed key.

The KeyPress event procedure’s single parameter is KeyAscii.
KeyAscii is an integer representing the ASCII value of the character
generated by the user’s key press.

For instance, if the user keys an uppercase “A,” then the KeyPress
event fires and the KeyAscii parameter will have a value of 65 (since
65 is the ASCII code for uppercase “A”).

If you write code in the KeyPress event that changes the value of
KeyAscii, then the system will see the newly assigned character as
the character that the user has just typed.

If you change the value of KeyAscii to 0, then the system will not
see a keystroke, and you have in effect discarded the keystroke.

08 002-8 CH 05 3/1/99 7:54 AM Page 212

Chapter 5 WRITING CODE THAT VALIDATES USER INPUT 213

The preceding discussion implies the following general technique for
handling user keyboard input in the KeyPress event procedure:

1. Use the Chr function to convert KeyAscii to a character value.

2. Manipulate or evaluate the character.

3. Use the Asc function to convert the changed character back to
its corresponding integer value, or determine the desired
ASCII value in some other way.

4. Assign the new ASCII value to the KeyAscii parameter.

In Listing 5.1, all characters keyed in by the user are converted to
lowercase in the following steps:

1. Convert KeyAscii to its character equivalent with the Chr
function.

2. Convert the newly derived character to lowercase.

3. Convert the lowercase character back to an ASCII value with
the Asc function and reassign the lowercase ASCII value back
to KeyAscii.

LISTING 5.1

CHANGING THE CASE OF A CHARACTER IN THE KEYPRESS
EVENT PROCEDURE

Private Sub txtPassword_KeyPress(KeyAscii As Integer)
Dim KeyChar As String
KeyChar = Chr$(KeyAscii) ‘convert to character
KeyChar = LCase(KeyChar) ‘change to lowercase
KeyAscii = Asc(KeyChar) ‘reassign changed ASCII

End Sub

Listing 5.2 uses a similar technique to allow the user to input only
digits. The code checks to see whether the user has keyed in a
numeric character. If not, the code discards the character by chang-
ing the value of KeyAscii to 0.

Notice that the outer branch condition in the listing (KeyAscii > 31)
allows lower-numbered ASCII characters to pass through. This is
necessary because some of the control keys, such as Backspace, gen-
erate low ASCII codes (Backspace generates ASCII 8). If the event
procedure discarded these characters, then the user would not be
able to use Backspace or some other keys.

08 002-8 CH 05 3/1/99 7:54 AM Page 213

214 Par t I VISUAL BASIC 6 EXAM CONCEPTS

LISTING 5.2

DISCARDING SELECTED KEYSTROKES IN THE KEYPRESS
EVENT PROCEDURE

Private Sub txtPassword_KeyPress(KeyAscii As Integer)
Dim KeyChar As String
If KeyAscii > 31 Then ‘ignore low-ASCII characters like

➥BACKSPACE
KeyChar = Chr(KeyAscii)
If Not IsNumeric(KeyChar) Then

KeyAscii = 0
End If

End If
End Sub

The KeyPress event only fires if the key that is pressed generates an
ASCII character. There are many keys on the keyboard that do not
generate ASCII characters including all of the function keys and
most of the cursor movement keys. To detect those key presses, you
must use the KeyUp and KeyDown events.

The KeyUp and KeyDown Events
The KeyDown and KeyUp events happen when the user respectively
presses and releases a key on the keyboard. Their event procedures
take the following two parameters:

á KeyCode contains an integer code for the physical key that the
user pressed. You can check for a particular key by comparing
KeyCode with one of the special VB internal constants for phys-
ical key codes. Each constant name begins with the string
“vbKey” followed by an obvious name for the key (the letter of
the key if it’s an alphabetic key or some other obvious name
for other keys). Examples of vbKey constants would be vbKeyA,
vbKeyW, vbKeyF1, vbKeyPgUp, and so forth.

á Shift indicates if any of the three shift keys (Alt, Ctrl, or Shift)
is pressed at the moment. This parameter works in the same
way as the Shift parameter for the MouseDown and MouseUp
event procedures. That is, Shift is an integer representing a bit
mask. You can extract information concerning the state of each
of the three control keys by ANDing the Shift parameter with
one of the three VB constants for the control keys.

08 002-8 CH 05 3/1/99 7:54 AM Page 214

Chapter 5 WRITING CODE THAT VALIDATES USER INPUT 215

In Listing 5.3, the KeyDown event procedure is used to detect when
the user keys Shift+F10. Note the use of internal VB constants to
detect the keystroke and the state of the Shift key.

LISTING 5.3

DETECT ING A SHIFTED KEYSTROKE IN THE KEYDOWN
EVENT PROCEDURE

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)
Dim blnIsShift As Boolean
blnIsShift = Shift And vbShiftMask
If blnIsShift And (KeyCode = vbKeyF10) Then

‘take some action for Shift+F10
End If

End Sub

In the event procedure code, you can modify the values of the
KeyCode and Shift parameters to change the keystroke information
that the system sees, just as you can modify the KeyAscii parameter
in the KeyPress event procedure.

F IGURE 5 .1
Finding the names of VB KeyCode constants in
the Object Browser.

N
O

T
E How to Discover the Names of VB

Keystroke Constants When in
design mode, you can see the names
of the internal VB keystroke constants
by invoking the Object Browser with
the F2 key, choosing All Libraries or
VBRun from the Libraries/Projects
list, and then choosing
KeyCodeConstants from the Classes
list, as shown in Figure 5.1.

08 002-8 CH 05 3/1/99 7:54 AM Page 215

216 Par t I VISUAL BASIC 6 EXAM CONCEPTS

KeyPress Versus KeyUp and KeyDown
KeyDown and KeyUp don’t detect exactly the same information as
KeyPress.

KeyPress detects a character in its KeyAscii parameter, but KeyDown
and KeyUp detect a physical keystroke in their KeyCode parameter.
While the difference may seem subtle, it’s a difference with practical
consequences:

á KeyUp and KeyDown can detect keystrokes not recognized by
KeyPress, such as function, editing, and navigation keys.

á KeyPress can distinguish between different ASCII characters
generated by the same physical keystroke. For instance,
KeyPress’ KeyAscii parameter gives two different values for “A”
and “a.” On the other hand, KeyUp and KeyDown’s KeyCode para-
meter gives only one value for these two characters since the
physical keystroke is the same (Of course with a little extra
logic, you could use the Shift parameter to figure out whether
the Shift key were being held). In addition, different country-
specific keyboard mappings will generate difference ASCII
codes for the same physical key.

To summarize,

á You should use KeyDown or KeyUp when you need to detect key-
strokes that don’t necessarily have an ASCII representation,
such as the function keys or the arrow keys, or whenever you
are interested in the physical keystroke as such.

á When you’re interested in the actual character that was gener-
ated by the keystroke, you should use KeyPress.

Enabling Two-Tier Validation With the
Form’s KeyPreview Property
VB forms have KeyPress, KeyUp, and KeyDown events with behavior
exactly like that of the same events for individual controls.

By default, a form’s three Keystroke events are not enabled. Even
if you wrote code in the event procedures of Form_KeyPress,

N
O

T
E The Caps Lock Key The Caps Lock

key generates its own KeyDown and
KeyUp events.

08 002-8 CH 05 3/1/99 7:54 AM Page 216

Chapter 5 WRITING CODE THAT VALIDATES USER INPUT 217

Form_KeyUp, or Form_KeyDown, nothing would happen. In order to
enable these form events, you must set the form’s KeyPreview prop-
erty to True (its default value is False).

Once you’ve set the form’s KeyPreview property to True and placed
code in its Keystroke events, you have enabled two-tier keyboard val-
idation. In other words, keyboard information will pass through two
successive sets of validation routines: the form’s Keystroke routines
and then the keystroke routines for the control that currently has the
focus.

When KeyPreview is True, the form’s Keystroke events will run first.
If the form’s Keystroke event procedures modify the keystroke infor-
mation, then the control’s Keystroke events will receive that modi-
fied information and not the original keystroke information.

So, for example, if a form’s KeyPress event procedure changes all
characters to uppercase, then no control on the form will ever see a
lowercase character in its KeyPress event.

Use common sense to decide whether to put keystroke validation
code at the form or the control level. If you need some validation to
take place for all keystrokes on the entire form (e.g., all characters in
all fields need to be uppercase), then that validation should happen
in the form-level Keystroke event procedures. Control-specific vali-
dation should happen in control Keystroke event procedures.

FIELD-LEVEL VALIDATION TECHNIQUES

Field-level validation (as opposed to form-level validation) has to do
with the verification of data entered into an individual field.
Typically (but not always), field-level validation is performed with-
out regard to the contents of other fields on the form. The appropri-
ate times to perform field-level validation are:

á As the user enters individual keystrokes into the field
(Keystroke events as described in previous sections).

á When the user attempts to leave the field—since we presume
that the user considers the field entry to be complete (Validate
event).

á When the field changes for any reason (Change event).

08 002-8 CH 05 3/1/99 7:54 AM Page 217

218 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The Validate Event and
CausesValidation Property
The Validate event and the accompanying CausesValidate property
are new to VB6 and give programmers a much-needed replacement
for older, more cumbersome techniques of field validation. (See the
section in this chapter entitled “An Obsolete Technique: Validation
With GotFocus and LostFocus Events”.)

The Validate Event
In general, the best time to validate a field’s contents is when the
user attempts to leave the field. The Validate event fires whenever
the user attempts to set focus to another field on the same form or
when the form unloads from memory while the current field has
focus. A programmer can evaluate the state of the data at that point
and react to any error in the data either by:

á Programmatically correcting the data error.

á Setting the Validate event procedure’s Cancel parameter to
True in order to prevent focus from leaving the control, thus
forcing the user to fix whatever problem was encountered.

You should take the following steps to implement field-level valida-
tion with the Validate event:

1. Determine which controls (such as CancelButtons) should not
trigger the Validate event when the user tries to set focus to
them and set the CausesValidation property of these controls
to False (default is True).

2. Write validation code (or call your own validation routines) in
the Validate event procedure of all controls where you need to
have validation in place.

3. If your validation code decides that the control’s data is not
valid, you can either:

• Fix the problem right there in the validation code.

• Force the focus to remain in the current control (presum-
ably so that the user can rectify the problem) by setting the
value of the Validate event’s Cancel parameter to True.

T
IP

Don’t Let Knowledge of Obsolete
Techniques Trip You Up You
should be aware that the older
validation technique using GotFocus
and LostFocus is no longer recom-
mended in VB6. However, the exam
might assume knowledge of the
older technique.

E
X

A
M

08 002-8 CH 05 3/1/99 7:54 AM Page 218

Chapter 5 WRITING CODE THAT VALIDATES USER INPUT 219

Listing 5.4 illustrates the use of the Validate event procedure to per-
form validation and to decide whether or not to keep focus on the
current control.

LISTING 5.4

USING THE VALIDATE EVENT PROCEDURE

Private Sub txtAge_Validate(Cancel As Boolean)
If Not IsNumeric(txtAge.Text) Then

Cancel = True
ElseIf txtAge.Text < 21 Then

Beep ‘give the user some minimal feedback
MsgBox “Enter an age greater than 21”
Cancel = True

‘Following is not needed. Placed here for clarity
Else

Cancel = False
End If

End Sub

The CausesValidation Property
The CausesValidation property deserves further explanation as its
use can be a bit confusing on first acquaintance.

Imagine that the Validate event of a control ran whenever the user
attempted to set focus away from the current control to another con-
trol on the form.

At first glance this would not seem to be a problem. After all you want
to make sure that the control’s contents are always validated, don’t you?

But consider for a moment the case where the user is currently on a
control such as a TextBox with incorrect data (a misspelled password,
for instance) and has clicked on a Help button in a toolbar or on a
Cancel button to abort data entry on this form.

In such a case, do you really want validation to occur? If validation does
occur on the TextBox control whenever a user clicks the Cancel button,
then it’s possible that focus will remain on the original control (if there is
a validation problem). In that case the Cancel button’s Click event pro-
cedure code will never run, and the user will be permanently trapped
with focus on the offending control (until of course the user becomes so
frustrated that he or she reboots the machine or uses Task Manager to
stop your application).

08 002-8 CH 05 3/1/99 7:54 AM Page 219

220 Par t I VISUAL BASIC 6 EXAM CONCEPTS

This is where the CausesValidation property comes to the rescue. By
default, a control’s CausesValidation property is True, meaning that
other controls’ Validate event will fire when users attempt to set
focus to the current control.

You should set CausesValidation to False on controls where the user
should always be able to set focus, regardless of whether there is a
problem with data validation on some other control. For example a
Cancel button should probably have its CausesValidation property
set to False, because once the user decides to cancel a data entry ses-
sion, the validity of individual data fields does not matter.

The Change Event and Click Events
Change events (of TextBoxes, for instance) or Click events (e.g. for
OptionButtons, CheckBoxes, ComboBoxes, and ListBoxes) happen on
many standard VB controls whenever control contents changes for
any reason, including:

á Changes caused by user input;

á Changes caused by program code or system actions;

á Changes that happen in the underlying data of a bound
control.

These events are most useful when you need to constantly monitor
the overall state of data validity on the form, perhaps because you
wish to decide whether particular controls (such as an OK button)
should be enabled. In order to implement this type of behavior, you
should write a general validation routine that checks the validity of
the entire form and then call it from the appropriate Click or Change
event procedures.

For more detailed discussion of these techniques, see the section
entitled “Enabling controls based on input” and Exercise 5.3.

The Change event is less useful for keystroke validation, due to the
fact that it fires so often (every time even a single character changes)
but has no built-in way to cancel changes. You should leave key-
stroke validation to the KeyPress, KeyUp, and KeyDown event proce-
dures, as described in previous sections of this chapter.

08 002-8 CH 05 3/1/99 7:54 AM Page 220

Chapter 5 WRITING CODE THAT VALIDATES USER INPUT 221

An Obsolete Technique: Validation
With GotFocus and LostFocus Events
The technique discussed in this section is no longer recommended
with VB6. However, this technique can make its appearance on the
certification exam in the form of “trick questions” to trip up the
unwary programmer with experience in VB5 and earlier versions.

Here we outline the technique without going into details of imple-
mentation.

In order to “pull back” the focus to a control that has a validation
problem, VB6 uses the Validate event and the CausesValidate prop-
erty as discussed in previous sections.

However, in versions of VB before VB6 the Validate event and
CausesValidate property did not exist for standard controls such as
the Textbox.

In earlier versions of VB, a technique for retaining focus on a
control was:

1. Perform a validation check in the LostFocus event procedure.

2. If the validation fails, call the control’s SetFocus method to
keep focus on the control.

Although the technique sounds simple enough, there were a number
of complicating factors that the programmer had to take into account:

Because the system was between two controls, calling the SetFocus
method of the control being validated could cause the LostFocus
event of a second control to fire. What if the second control in turn
had similar validation code in its LostFocus event procedure? If there
were a validation failure in the second control as well, then the sec-
ond control would also try to “grab” focus back from the first con-
trol. The first control in turn would fire its LostFocus event a second
time, and so on, in an infinite loop. To handle this problem of the
dueling LostFocus event procedures, it was necessary to put a global
flag variable in the application that would be set during a LostFocus
event procedure’s validation. In that way, other controls’ validation
code could check this flag and would not run if another control’s
validation were already pending.

T
IP

Trick Questions on Validation With
GotFocus and LostFocus Events
Watch out for questions based on
VB5 that assume this is still a valid
technique.

E
X

A
M

08 002-8 CH 05 3/1/99 7:54 AM Page 221

222 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A second problem was caused by the fact that there were some con-
trols (such as Cancel CommandButtons, for example) that should
always be allowed to receive focus from another control on the form
even if there were a validation problem. Thus, it would be necessary
to put more logic in validation routines to ignore the validation logic
if the proposed target control were always allowed to receive focus.

If the above seems less than robust or overly complex to you, you are
not alone in your opinion. In the release of VB6, Microsoft heeded
the desires of many VB programmers and provided the Validate
event and the CausesValidation property (see the previous sections
in this chapter) to put a stop to control validation madness.

The GotFocus/LostFocus technique just discussed in this section is
therefore no longer necessary or recommended.

ENABLING CONTROLS BASED ON
INPUT

A data entry screen often requires some of its controls to be selec-
tively enabled, depending on the state of the rest of the data on the
screen. Some examples of such selectively enabled controls might be:

á A drop-down list of credit card types enabled only if the user
selects the option button for “credit card” from the option but-
ton group for type of payment.

á An OK button. This button signals that the user is finished
with data input and that the data can be processed. The but-
ton should only be enabled if the data on all other fields is
complete and valid.

In the first example above, the control that we wish to enable
depends on just one other control or group of controls to be
enabled. In the case of the example, it would be sufficient to put a
line of code enabling or disabling the ListBox in the Click event of
each type of payment option button as in Listing 5.5.

08 002-8 CH 05 3/1/99 7:54 AM Page 222

Chapter 5 WRITING CODE THAT VALIDATES USER INPUT 223

LISTING 5.5

CODE TO ENABLE A LISTBOX BASED ON A USER’S

0PTIONBUTTON CHOICE

Private Sub optCash_Click()
lstCreditCard.Enabled = False

End Sub

Private Sub optCreditCard_Click()
lstCreditCard.Enabled = True

End Sub

Private Sub optDebitCard_Click()
lstCreditCard.Enabled = False

End Sub

If the control to be enabled is a TextBox, you have the choice of two
properties for disabling user input: the Enabled property and the
Locked property. The two properties can be compared as follows:

á The Enabled property is True by default. When Enabled is
False, the user can’t set focus to the control and the control or
its contents appear grayed out to the user.

á The Locked property (TextBoxes only) is False by default.
When Locked is True, the user can still set focus to the control
but can’t make changes. The contents don’t appear grayed out
and the user can scroll through the contents if they are larger
than the area of the TextBox. The Locked property is useful
when you can’t predict how big the contents of the TextBox
will be, and you need to prevent user input but still want the
user to be able to view all the contents.

In the example of the OK button, however, whether or not the button
should be enabled depends on the validity of all the other fields on the
screen. In some cases, it might depend on one or more relations
between those fields. For instance, if “credit card” is chosen as the
form of payment, then “credit card type” must not be left undefined.

In order to allow your application to decide whether or not to enable
an OK button, you could follow these steps:

1. Write a Function procedure that performs all necessary data vali-
dation checks for the screen and returns a True or False result.

08 002-8 CH 05 3/1/99 7:54 AM Page 223

224 Par t I VISUAL BASIC 6 EXAM CONCEPTS

2. Call this Function from all event procedures where data
changes (such as, Change event procedures for TextBoxes and
Click event procedures for OptionButtons, CheckBoxes, and
List and Combo boxes), and set the OK button’s Enabled prop-
erty in accordance with the return value of the Function.

Exercise 5.3 illustrates how to implement this type of validation by
selectively enabling controls in validation code.

MISCELLANEOUS PROPERTIES FOR
VALIDATION

The following properties will save you the work of writing validation
code since they will automatically enforce certain data-entry con-
straints on the user.

MaxLength
The TextBox control’s MaxLength property allows you to specify the
maximum number of characters that the user can enter into a
TextBox. If the user tries to enter more than the maximum allowed,
then the input is ignored.

If you set MaxLength’s value to 0 (its default value), then there is no
maximum length and the user can enter as many characters as
desired (up to the 32K limit on the Text property’s size).

Data-Bound Properties
These properties are only useful when the controls to which they
belong are bound to data:

á DataChanged is a property that allows the programmer to dis-
tinguish between changes made to a bound control’s contents
by the underlying data engine (caused by data navigation or
updates from other users) versus changes made in the applica-
tion by users or program code.

á DataFormat allows the programmer to specify a mask for for-
matting data when it is retrieved from and stored to the under-
lying data structure.

08 002-8 CH 05 3/1/99 7:54 AM Page 224

Chapter 5 WRITING CODE THAT VALIDATES USER INPUT 225

NEEDS
Your users need a data entry form that will allow
them to input basic sales and marketing informa-
tion about a customer such as name, age, and
form of payment.

The data needs to be validated so that it is logi-
cally consistent and complete.

REQU IREMENTS
Implement a way for parts of the application out-
side the form to tell if all data on the form was
successfully entered (typically, a Public Boolean

variable on the form).

Identify the discrete pieces of information (fields)
that the user needs to enter in this form.

Identify the fields that will require free-form key-
board input from the user (TextBoxes) and the
fields that require data constrained to a few
choices or a range of choices (ComboBoxes,
ListBoxes, OptionButtons, and CheckBoxes).

Identify the form-wide constraints on keystroke
input:

• Should all alphabetic characters be upper-
case?

• Should certain function-shift key combina-
tions have a consistent meaning for the
entire form?

Identify field-level constraints on keystroke input:

• Should certain fields (such as age) accept
only numeric input?

• Should certain function-shift key combina-
tions have meaning that is specific to a cer-
tain field or fields?

CASE STUDY: A SIMPLE DATA ENTRY FORM

Identify field validation rules and write routines
that will handle this validation:

• Numeric ranges

• Constraints on character information such
as maximum and minimum length

• Constraints that depend on the contents of
other fields.

Call the field validation routines from the appropri-
ate Validate, Click, or Change event procedures.

Identify CommandButtons that will allow the user to
exit the form and either accept or reject the data.
(Typically, you’ll want an OK and a Cancel button.)
Determine how you’d like these buttons to behave.

Identify data states that should trigger the
enabling or disabling of various controls.

D ES IG N SPEC I F IC AT IO N S
You might come up with a solution that looks like
that in Figure 5.4 in Exercise 5.3. The form and
its controls implement data input with validation
constraints as follows:

• Form. Force all alphabetic characters to
uppercase. Implement a form-level help key
combination (not the F1 key). The form will
also implement a Public Boolean variable
(custom form property) that indicates
whether the form has been closed with all
valid data.

• Age. Use a TextBox control that limits input
to numeric characters only. It should still
allow the Backspace key to have effect.
There should be a validation routine for
age that takes into account maximum and
minimum ages that the user can input.

continues

08 002-8 CH 05 3/1/99 7:54 AM Page 225

226 Par t I VISUAL BASIC 6 EXAM CONCEPTS

You should call this routine from the
Validate event procedure of the TextBox. If
the routine indicates that the data is not
correct, then the Validate event procedure
should set its Cancel parameter to True.

• Name. Use a TextBox control that requires a
string of a certain minimum length. There
should be a validation routine that takes
this into account. You should call this rou-
tine from the Validate event procedure of
the TextBox. If the routine indicates that the
data’s not correct, then the Validate event
procedure should set its Cancel parameter
to True.

• Type of Payment. Because there is a lim-
ited number of types of payment, you
should consider using a group of option
buttons to indicate type of payment.

• Credit Card. Because there is a limited
number of Credit Card types that your com-
pany accepts, you should consider using a
ListBox or ComboBox to indicate Credit Card
type. Don’t use OptionButtons because the
types of Credit Cards accepted by your com-
pany is susceptible to change in the future,

CASE STUDY: A SIMPLE DATA ENTRY FORM

and it’s easier to add items to a ListBox or
ComboBox. This ListBox or ComboBox should
only be enabled when Type of Payment is
Credit Card. You should put code in the
Click event procedure of each Type of
Payment OptionButton to determine whether
or not this control will be enabled.

• Cancel Button. This button should always
be available to the user. Therefore you
should set its CausesValidation property to
False. The code in the Click event proce-
dure will set the form’s Public Boolean to
False and unload or hide the form.

• OK Button. This button should only be
available if all data on the form is valid.
Therefore you should write a general
validation routine that checks all controls on
the form, enabling the OK button if all con-
trols are valid, but otherwise disabling it. You
should then call this general validation rou-
tine from all events that signal a change to
data. On this form, that would include the
Change event of all TextBoxes and the Click
event of the OptionButtons and the ListBox
or ComboBox. The code in the Click event
procedure will set the form’s Public Boolean

to True and unload or hide the form.

continued

08 002-8 CH 05 3/1/99 7:54 AM Page 226

Chapter 5 WRITING CODE THAT VALIDATES USER INPUT 227

This chapter covered the following topics:

á Keystroke validation using the KeyUp, KeyDown, and KeyPress
events.

á Enabling keystroke validation at the form level with the
KeyPreview property.

á Using the Validate event and the CausesValidation property
to enable validation of field contents.

á Enabling and disabling controls on a form based on user
input.

KEY TERM
• Input Validation

CHAPTER SUMMARY

08 002-8 CH 05 3/1/99 7:54 AM Page 227

228 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Exercises

5.1 Keystroke Events at Field and Form Level

Estimated Time: 30 minutes

This exercise gives you some exposure to the KeyPress
and KeyUp/KeyDown events. You also see how the form’s
KeyPreview property can be used to manage two-tier
keystroke validation. Once you’ve finished this exercise,
you should keep the results of your work for Exercise
5.2, which builds on the results of this exercise.

1. Begin a new VB project with a single form. Place
controls on the form as shown in Figure 5.2. Use
the Properties Window to change the control
properties listed in Table 5.1.

TextBox Name txtAge

Text 0

TextBox Name txtName

Text <Blank>

CheckBox Name chkKeyPreview

Caption KeyPreview

2. Put code to allow only numeric input for age in
the KeyPress event of txtKeyPress, as follows:

Private Sub txtAge_KeyPress(KeyAscii As
➥Integer)

Dim KeyChar As String
KeyChar = Chr(KeyAscii)

If KeyAscii > 31 Then ‘ignore low-ASCII
➥chars like BACKSPACE

‘throw out non-numeric characters
If Not IsNumeric(KeyChar) Then

KeyAscii = 0
End If

End If
End Sub

3. Run the application and test the input validation
for the Age TextBox. In particular, verify that only
numeric keystrokes are accepted. Verify that the
Backspace key works as a user would normally
expect (to delete the character to the left). Try
disabling the logic that allows the lower ASCII
characters to pass (the outer If…End If pair in the
code given above). Note that the Backspace key
no longer works. Then re-enable the logic.

4. Also verify that the Name TextBox (which has no
validation logic attached to its Keystroke events)
allows both upper and lowercase character input.

5. Code the Form_Load event procedure and the
CheckBox control’s Click event procedure for
management of the form’s KeyPreview property,
as follows:

F IGU R E 5 .2
The form for Exercise 5.1.

TABLE 5.1

CONTROL PROPERTIES TO SET FOR

EXERCISE 5.1

Control Property New Value

Label Name lblAge

Caption &Age

Label Name lblName

Caption &Name

Control Property New Value

08 002-8 CH 05 3/1/99 7:54 AM Page 228

Chapter 5 WRITING CODE THAT VALIDATES USER INPUT 229

A P P LY YO U R K N O W L E D G E

Private Sub Form_Load()
chkKeyPreview.Value = IIf(Me.KeyPreview,

➥vbChecked, vbUnchecked)
End Sub

Private Sub chkKeyPreview_Click()
Me.KeyPreview = IIf(chkKeyPreview.Value

➥= vbChecked, True, False)
End Sub

6. Put the following code in the form’s KeyPress
event to force all characters to uppercase (note
the final comment which shows an alternate,
more efficient way to code the routine):

Private Sub Form_KeyPress(KeyAscii As
➥Integer)

‘Convert KeyAscii to a character
Dim KeyChar As String
KeyChar = Chr$(KeyAscii)

‘Convert the resulting character to
➥uppercase

KeyChar = UCase(KeyChar)

‘Reassign the new character’s Ascii code
‘back to Keyascii
KeyAscii = Asc(KeyChar)

‘Of course, we could do it all in one line,
‘as follows (but example is less clear):
‘KeyAscii = Asc(UCase(Chr$(KeyAscii)))

End Sub

7. Run the application again. Type upper and low-
ercase characters into the Name TextBox with the
KeyPreview CheckBox checked, and then with it
unchecked.

8. Next provide the following KeyPress event pro-
cedure code for the form and txtAge:

Private Sub Form_KeyDown(KeyCode As Integer,
➥Shift As Integer)

Dim blnIsShift As Boolean
blnIsShift = Shift And vbShiftMask
If blnIsShift And (KeyCode = vbKeyF9)

➥Then
Me.Cls
Me.Print “Form-level Shift+F9”

End If
End Sub

Private Sub txtAge_KeyDown(KeyCode As
➥Integer, Shift As Integer)

Dim blnIsShift As Boolean
blnIsShift = Shift And vbShiftMask
If blnIsShift And (KeyCode = vbKeyF9)

➥Then
Me.Print “Control-level Shift+F9”

ElseIf KeyCode = vbKeyF3 Then
Me.Print “Control-level F3”

End If
End Sub

9. Note the effects of pressing F9, Shift+F9, F3, and
Shift+F3 with and without the form’s KeyPreview
property enabled.

Keep this project around for use in Exercise 5.2.

5.2 Field-Level Validation Techniques

This exercise builds on the previous exercise to add
field content validation with code in the Validate event
procedure and the use of separate validation routines.

Estimated Time: 35 minutes

1. Using the project created in the previous exercise,
add the following code to implement general vali-
dation functions for Age and Name. Notice the
use of optional parameters in the functions and
form-wide constants to provide default values
when those parameters are not supplied. We also
add a Public variable that will keep track of
whether or not this is closed with all data vali-
dated:

Option Explicit

Public DataIsOK As Boolean

Private Const DEFAULT_MAX_AGE = 150
Private Const DEFAULT_MIN_AGE = 21
Private Const DEFAULT_MIN_NAME_LENGTH = 3

Private Function IsValidAge _
(vAge As Variant, _
Optional MAXAGE As Variant, _
Optional MINAGE As Variant) _
As Boolean

08 002-8 CH 05 3/1/99 7:54 AM Page 229

230 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

If IsMissing(MAXAGE) Then
MAXAGE = DEFAULT_MAX_AGE

End If

If IsMissing(MINAGE) Then
MINAGE = DEFAULT_MIN_AGE

End If
If IsNumeric(vAge) Then

vAge = Val(vAge)
IsValidAge = (vAge >= MINAGE) And

➥(vAge <= MAXAGE)
Else

IsValidAge = False
End If

End Function

Function IsValidName(sName As String,
➥Optional MinLength As Variant) As Boolean

If IsMissing(MinLength) Then
MinLength = DEFAULT_MIN_NAME_LENGTH

End If
IsValidName = (Len(Trim$(sName)) >=

➥MinLength)
End Function

2. Enter the following code to call the validation
functions from the Validate event procedures of
txtName and txtAge:

Private Sub TxtAge_Validate(Cancel As
➥Boolean)

Const MAXAGE = DEFAULT_MAX_AGE
Const MINAGE = DEFAULT_MIN_AGE
Cancel = Not IsValidAge((txtAge.Text),

➥MAXAGE, MINAGE)
If Cancel Then

Beep ‘give the user some minimal
➥feedback

MsgBox “Enter an age between “ &
➥MINAGE & “ and “ & MAXAGE

End If
End Sub

Private Sub txtName_Validate(Cancel As
➥Boolean)

Const MINCHARS = DEFAULT_MIN_NAME_LENGTH
Cancel = Not (IsValidName(txtName.Text,

➥MINCHARS))
If Cancel Then

Beep
MsgBox “Enter a name that is at least “

& MINCHARS & “ characters long.”
End If

End Sub

3. Run the application to make sure that the valida-
tion routines cause the appropriate behavior. Enter
names that are too short and ages that are outside
the allowed range. Notice that you cannot set focus
outside a TextBox if you don’t enter valid data.

4. Add a CommandButton to the form as shown in
Figure 5.3. Rename the CommandButton to
cmdCancel and give it the Caption “&Cancel.”
For the moment, do not modify its
CausesValidation property. Verify that
CausesValidation remains at its default value of
True. Enter the following code in the
CommandButton’s Click event procedure:

Private Sub cmdCancel_Click()
DataIsOK = False
Unload Me

End Sub

F IGURE 5 .3
The form for Exercise 5.2.

5. Run the application. Notice that you can’t click
the CommandButton until the TextBox that cur-
rently has the focus contains valid data. Of
course this is not the behavior that you want for
the user interface. The user should always be able
to cancel input without having to enter valid
data anywhere. In the next step, you’ll set the
CommandButton’s CausesValidation property to fix
this problem.

08 002-8 CH 05 3/1/99 7:54 AM Page 230

Chapter 5 WRITING CODE THAT VALIDATES USER INPUT 231

A P P LY YO U R K N O W L E D G E

6. Stop the application and change the
CommandButton’s CausesValidation property to
False. You might also want to change the
CommandButton’s Cancel property to True (this
will allow the Esc key to execute the
CommandButton’s Click event procedure code).

7. Test the application and note that the user is
now able to click the Cancel button even with-
out entering valid data in the current control.
Also, verify that the Esc key causes the form to
unload.

Again, save this project for use in the next exercise.

5.3 Selectively Enabling Controls

In this exercise, you’ll build on the application from
the previous exercises to add a group of option buttons
to indicate Form of Payment. Then you’ll add a drop-
down list (for Credit Card Type) and a CommandButton
(an OK button) that will be enabled only at certain
times. The Credit Card Type list should only be
enabled when Form of Payment is Credit Card. The
OK button will be enabled only when all data on the
screen is complete and valid.

You’ll add the code that allows the application to
determine when these controls should be enabled.

Estimated Time: 20 minutes

1. Add a ListBox and a second CommandButton as
well as a Frame with three OptionButtons to the
project from the previous exercises as illustrated
in Figure 5.4. Table 5.2 details the property val-
ues that you should set for these new controls.

TABLE 5.2

CONTROL PROPERTIES TO SET FOR

EXERCISE 5.3

Control Property New Value

Frame Name fraTypeOfPayment

Caption Type of Payment

OptionButton Name optCash

Caption Cash

OptionButton Name optDebitCard

Caption Debit Card

OptionButton Name optCreditCard

Caption Credit Card

Label Name lblCreditCard

Caption Credit Card

F IGURE 5 .4
The form for Exercise 5.3.

Note that you can make multiple entries into a
ListBox by pressing Ctrl-Enter between each
entry. If you press Enter by itself, you will exit
the ListBox.

continues

08 002-8 CH 05 3/1/99 7:54 AM Page 231

232 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

ListBox Name lstCreditCard

List American Express

Diners’ Card

Visa

MasterCard

Discover

Sorted True

CommandButton Name cmdOK

Caption &Ok

Default True

2. Place code in the OK button’s Click event proce-
dure that will hide the form, setting its Public
flag variable to indicate that the data on the form
is valid:

Private Sub cmdOK_Click()
DataIsOK = True
Me.Hide

End Sub

3. Add a function named ValidPaymentForm to
check the relative status of the newly added
OptionButtons and ListBox to see if together they
constitute valid payment information. (Basically,
either Cash or Debit Card must be chosen as the
Form of Payment or, if Credit Card is the Form
of Payment, then a Credit Card Type must also
be chosen from the ListBox.) The Function
should read as follows:

Private Function ValidPaymentForm() As
Boolean

If optCash.Value Or optDebitCard.Value
➥Then

ValidPaymentForm = True

ElseIf optCreditCard.Value And
➥lstCreditCard.ListIndex > -1 Then

ValidPaymentForm = True
Else

ValidPaymentForm = False
End If

End Function

4. Add a sub named EnableOKButton. This routine
checks all the possible field validations on the
screen (Name, Age, and Payment). If all informa-
tion is valid, then the OK button is enabled.
Otherwise it is disabled:

Private Sub EnableOKButton()
Dim blnOKFlag As Boolean
blnOKFlag = True
If Not IsValidName((txtName.Text),

➥DEFAULT_MIN_NAME_LENGTH) Then
blnOKFlag = False

ElseIf Not IsValidAge((txtAge.Text),
➥DEFAULT_MAX_AGE, DEFAULT_MIN_AGE) Then

blnOKFlag = False
ElseIf Not ValidPaymentForm() Then

blnOKFlag = False
End If
cmdOK.Enabled = blnOKFlag

End Sub

5. Call the EnableOKButton Sub in the Click event
procedure of the ListBox and in the Change event
procedures of both TextBoxes:

Private Sub lstCreditCard_Click()
EnableOKButton

End Sub

Private Sub txtAge_Change()
EnableOKButton

End Sub

Private Sub txtName_Change()
EnableOKButton

End Sub

6. Also call the EnableOKButton Sub in the Click
event procedure of each OptionButton. Add code
to each of these event procedures that will deter-
mine whether or not the Credit Card list is
enabled based on the Form of Payment chosen by
the user:

TABLE 5.2

CONTROL PROPERTIES TO SET FOR

EXERCISE 5.3

Control Property New Value

continued

08 002-8 CH 05 3/1/99 7:54 AM Page 232

Chapter 5 WRITING CODE THAT VALIDATES USER INPUT 233

A P P LY YO U R K N O W L E D G E

Private Sub optCash_Click()
lstCreditCard.Enabled = False
EnableOKButton

End Sub

Private Sub optCreditCard_Click()
lstCreditCard.Enabled = True
EnableOKButton

End Sub

Private Sub optDebitCard_Click()
lstCreditCard.Enabled = False
EnableOKButton

End Sub

7. Run the application to verify the new behavior.
The OK button should stay disabled until all
data on the form is valid. If some data later
becomes invalid, the OK button should once
again turn gray.

8. In the Form_Load event, write a line to set the
Credit Card ListBox control’s Enabled property
to False. Verify that the Credit Card Listbox is
only enabled when the Credit Card option is
clicked.

9. Verify that the OK button remains gray when
the Credit Card option is chosen without any
item chosen in the ListBox.

Review Questions
1. Why do you no longer need to use GotFocus and

LostFocus events for field validation in VB6, as
you did in previous versions of VB?

2. When might you disable a TextBox named
txtName with txtName.Locked = True instead
of using txtName.Enabled = False?

3. What’s the relation between the
CausesValidation property and the Validate
event?

4. What’s the default value of a form’s KeyPreview
property, and what’s the significance of this
property?

5. What’s the difference between the KeyPress event
on the one hand and the KeyUp and KeyDown
events on the other?

Exam Questions
1. A sufficient condition to fire a control’s Validate

event is:

A. The user must make a change to the control’s
contents and the control’s CausesValidation
property must be True.

B. The user must make a change to a control’s
contents and set focus to another control on
the same form whose CausesValidation prop-
erty is True.

C. The user must set focus to another control on
the same form and the CausesValidation prop-
erty of the control losing focus must be True.

D. The user must set focus to a control whose
CausesValidation property is True.

2. To process keystrokes at the form-wide level, you
must

A. Set the form’s KeyPreview property to True.

B. Program the form’s KeyUp, KeyDown, or
KeyPress events.

C. Set the form’s KeyPreview property to True
and program at least one of the form’s
KeyDown, KeyUp, or KeyPress events.

D. Set the form’s KeyPreview property to True and
program at least one of the KeyDown, KeyUp, or
KeyPress events of a control on the form.

08 002-8 CH 05 3/1/99 7:54 AM Page 233

234 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

3. The timing of the KeyPress event is

A. before KeyDown but after KeyUp

B. before KeyUp but after KeyDown

C. after both KeyDown and KeyUp

D. before both KeyDown and KeyUp

4. The KeyPress event receives a parameter that is

A. of type Byte and gives the ASCII value of the
character corresponding to the key just
pressed

B. of type Long and gives the code for the physi-
cal key pressed on the keyboard

C. of type Integer and gives the ASCII value of
the character corresponding to the key just
pressed

D. of type String and gives the character corre-
sponding to the key just pressed

5. You can programmatically cancel a user’s key-
stroke entry by

A. setting the parameter of the KeyPress event to 0

B. setting the parameter of the KeyPress event to
Chr(0)

C. setting the parameter of the KeyPress event to
Asc(0)

D. setting the parameter of the KeyPress event to
Chr$(0)

6. A line of code in the KeyUp or KeyDown event pro-
cedure that checks to see if Ctrl was one of the
shift keys being held down when F3 was pressed
would read:

A. If (Shift = vbCtrlMask) And (KeyCode =

➥vbKeyF3) Then

B. If KeyCode = vbKeyControl + vbKeyF3 Then

C. If (KeyCode = vbKeyF3) And (Shift And
➥vbCtrlMask) Then

D. If (Shift And vbCtrlMask) And (KeyCode
➥And vbKeyF3) Then

7. The most appropriate strategy for implementing
field-level validation in VB would be:

A. programming the controls’ Keystroke, Change,
GotFocus, and LostFocus events

B. programming the controls’ Keystroke, Change,
and Validate events

C. setting the form’s KeyPreview property to True
and programming the controls’ Keystroke
events

D. setting the form’s KeyPreview property to
False and programming the controls’
Keystroke events

8. How would you make sure that the user enters a
whole number in a TextBox?

A. Discard inappropriate keystrokes in the KeyUp
or KeyDown event procedure.

B. Use the IsNumeric function in the Validate
event procedure.

C. Use the IsNumeric function in the Change event
procedure.

D. Discard inappropriate keystrokes in the
KeyPress event procedure.

9. You are writing an application for distribution to
many different countries that are likely to have
different keyboard mappings. You have a situa-
tion where you need to detect whether the user
has keyed a specific ASCII character. The best
place to detect the character would be

08 002-8 CH 05 3/1/99 7:54 AM Page 234

Chapter 5 WRITING CODE THAT VALIDATES USER INPUT 235

A P P LY YO U R K N O W L E D G E

A. in the Change event procedure

B. in the KeyUp or KeyDown event procedure

C. in the Validate event procedure

D. in the KeyPress event procedure

Answers to Review Questions
1. GotFocus and LostFocus events are no longer

necessary for field validation in VB6, because
VB6 has introduced the Validate event for con-
trols. See “Field-Level Validation Techniques.”

2. You can prevent changes to a TextBox by setting
its Locked property to True when there might be
more data in the TextBox than the user could see
and you wanted to allow the user to set focus to
the TextBox to scroll through the data. See
“Enabling Controls Based on Input.”

3. A control’s Validate event will fire when the user
attempts to set focus to another control whose
CausesValidation property is True. See “The
Validate Event and CausesValidation Property.”

4. The form’s KeyPreview property by default is
False. Setting it to True enables the form’s KeyUp,
KeyDown, and KeyPress events. See “Enabling
Two-Tier Validation With the Form’s KeyPreview
Property.”

5. The KeyPress event detects a character while the
KeyUp and KeyDown events detect physical key-
strokes. See “KeyPress Versus KeyUp and
KeyDown.”

Answers to Exam Questions
1. D. A control’s Validate event fires when the user

sets focus to another control on the same form
whose CausesValidation property is True. B
would also cause the Validate event to fire, but
the user does not have to make a change in order
for the event to fire. A and C are incorrect,
because the current control’s CausesValidation
property has nothing to do with whether its
Validate event fires (firing of the Validate event
depends on the control that is receiving focus,
not the control that loses focus). See “The
Validate Event and CausesValidation Property.”

2. C. To process keystrokes at the form-wide level,
you must set the form’s KeyPreview property to
True and program at least one of the KeyDown,
KeyUp, or KeyPress events. While A and B are
both necessary, neither one is sufficient to imple-
ment form-level keystroke handling. D is wrong
because the Keystroke events of controls can
never process keystrokes at the form level. See
“Keystroke Events at Field and Form Level.”

3. B. The timing of the KeyPress event is before
KeyUp but after KeyDown. See “The KeyPress
Event.”

4. C. The KeyPress event receives a parameter that
is of type Integer and gives the ASCII value of
the character corresponding to the key just
pressed. See “The KeyPress Event.”

5. A. You can programmatically cancel a user’s key-
stroke by setting the KeyPress event’s parameter
(known as KeyAscii) to 0. B. and D. are incor-
rect, because the Chr function returns a String or
variant String, and KeyAscii must be set to an
integer value. C. is incorrect, because the Asc
function requires a String argument. See “The
KeyPress Event.”

08 002-8 CH 05 3/1/99 7:55 AM Page 235

236 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

6. C. A line of code in the KeyUp or KeyDown event
procedure that checks to see if Ctrl was one of
the shift keys being pressed when F3 was pressed
would read:

If (KeyCode = vbKeyF3) And (Shift And
➥vbCtrlMask) Then

To find out whether a particular key press caused
the KeyUp or KeyDown event to fire, you must check
the value of the KeyCode parameter, comparing it
with the appropriate VB internal constant (in this
case, vbKeyF3). To check the state of the shift keys
(Ctrl, Alt, and Shift) in the KeyUp or KeyDown events,
you must use the Shift parameter. The Shift para-
meter is a bit mask containing information about
the state of all three shift keys. To extract informa-
tion about a single shift key, you can AND the corre-
sponding VB internal constant for the key with the
Shift parameter, as the correct answer does with
(Shift AND vbCtrlMask. Answer A is incorrect
because you cannot compare the Shift parameter
with an internal constant to get meaningful infor-
mation. B is incorrect because the KeyCode parame-
ter does not store information about the state of the
shift keys. D is incorrect because it extracts informa-
tion incorrectly from the KeyCode parameter. See
“The KeyUp and KeyDown Events.”

7. B. The most appropriate strategy for implementing
field-level validation in VB would be programming
the controls’ Keystroke, Change, and Validate
events. Answer A reflects techniques that have
become obsolete in VB6 with the introduction of
the new Validate event and CausesValidation
property. Answers C and D are incorrect because
the form’s KeyPreview property has nothing to do
with field-level validation. See “Field-Level
Validation Techniques.”

8. D. The best way to validate that a user enters a
whole number in a TextBox is to discard inappro-
priate keystrokes in the KeyPress event procedure.
The user’s erroneous keystrokes are simply ignored,
thereby providing the most transparent validation.
A is less appropriate because it’s harder to check for
a range of keystrokes in the KeyUp and KeyDown
event procedures. B (using the Validate event)
would work, but it would allow the user to enter
many erroneous keystrokes before validation. Note
that the question asks about a WHOLE number.
The Validate event might work better for num-
bers that could take a decimal point. C is not
appropriate at all, because you have no way of
rejecting individual keystrokes in the Change event.
See “The KeyPress Event,” “The KeyUp and
KeyDown Events,” and “Field-Level Validation
Techniques.”

9. D. The best way to detect whether the user has
keyed a particular ASCII character is in the
KeyPress event. The KeyPress event’s single para-
meter, KeyAscii, is an integer value giving the
ASCII code of the character generated by the
pending keystroke. B is not the best choice
because the KeyUp and KeyDown events’ KeyCode
parameter refers to the physical keystroke, not to
the character generated by the keystroke. The
Change and Validate events are inappropriate for
the reasons discussed in the answer to question 8.
See “The KeyPress Event,” “The KeyUp and
KeyDown Events,” and “Field-Level Validation
Techniques.”

08 002-8 CH 05 3/1/99 7:55 AM Page 236

OBJECT IVE

6C H A P T E R

Writing Code that
Processes Data

Entered on a Form

This chapter helps you prepare for the exam by cover-
ing the following objective and its subobjective:

Write code that processes data entered on a
form (70-175 and 70-176).

• Given a scenario, add code to the appropri-
ate form event. Events include Initialize,
Terminate, Load, Unload, QueryUnload, Activate,
and DeActivate.

. The seven form events named in the exam sub-
objective for this chapter are all very familiar to VB
programmers. Programmers can monitor, react to,
and control the various phases of a form’s life by
placing code in these events’ corresponding event
procedures.

09 002-8 CH 06 3/1/99 7:59 AM Page 237

STUDY STRATEGIESOUTL INE

. Read the VB help screen for each of the events
listed in the objective.

. Write an application to experiment with the tim-
ing and usage of each of the events. At a mini-
mum, you should put a Debug.Print statement
in each event procedure. Exercise 6.1 gives a
good basis for such a program.

. Make sure to also experiment with the parame-
ters of the Unload and QueryUnload events (see
Exercise 6.2 for ideas).

. Memorize (by reading the section “Relative
Timing of Form Events” and by experimenting on
your own) the order and timing of these events.

Relative Timing of Form Events 239

Initialize, Load, and Activate Events 240

The Initialize Event 240

The Load Event and the Activate Event 241

Deactivate, Unload, QueryUnload, and
Terminate Events 243

The DeActivate Event 243

The QueryUnload Event 243

The Unload Event 245

The Terminate Event 246

Activate/DeActivate Versus GotFocus/
LostFocus Events 246

Show/Hide Methods Versus Load/
Unload Statements 247

Using the Unload and QueryUnload
Events in an MDI Application 248

Form Methods and Their Effect on
Form Events 249

Implicitly Loading a Form 249

Show and Hide 249

Manipulating a Form from Another
Form’s Load Event Procedure 250

Chapter Summary 254

09 002-8 CH 06 3/1/99 7:59 AM Page 238

Chapter 6 WRITING CODE THAT PROCESSES DATA ENTERED ON A FORM 239

INTRODUCTION

This chapter deals with the following:

á The important events of forms

á When form events fire

á How to effectively program with form events

A VB form supports many events to help you efficiently manage the
phases of a form’s lifetime within the application.

It’s useful to know about programming form events because they
often mark important moments in an application’s runtime session,
such as:

á When a form first becomes available in memory

á When a user changes attention between forms

á When a form leaves memory

These events can become quite important for tying together parts of
your application, for startup and cleanup operations, and for provid-
ing more global validation of user changes to controls on a form.

RELATIVE TIMING OF FORM EVENTS

You might wish to refer to this section as you read the following sec-
tions on individual form events.

The following events will occur in the order listed when a form first
loads into memory:

1. Initialize

2. Load

The following events will occur in the order listed when a form
becomes the active form in the application (depending on the circum-
stances, this might happen right after the form loads into memory):

1. Activate

2. GotFocus (triggered only if there are no enabled or visible
controls on the form)

N
O

T
E Should the Word “Form” Be

Capitalized? In previous versions of
VB, Microsoft’s documentation always
capitalized the word “form.” After all,
forms are objects, just like, say,
TextBoxes or Recordsets. However, in
much (not all) of the newer documenta-
tion, as well as in the published Exam
Objectives, Microsoft has begun to drop
the capitalization of this word.

We may slip up and type “Form” here
and there in this book, but our con-
scious policy is to use the form “form.”

09 002-8 CH 06 3/1/99 7:59 AM Page 239

240 Par t I VISUAL BASICS 6 EXAM CONCEPTS

The following events happen to an active form when another form
in the same application becomes active:

1. LostFocus (triggered only if there are no enabled or visible
controls on the form)

2. DeActivate

The following events will occur in the order listed when a form is
unloaded from memory:

1. QueryUnload

2. Unload

3. Terminate (fires only if you set the form to Nothing in or after
the Unload event)

INITIALIZE, LOAD, AND ACTIVATE
EVENTS

These events fire toward the beginning of the life of a form. However,
the exact circumstances and timing of these events can differ.

Generally, of the three “beginning” events, the Initialize event fires
least often; the Activate event fires most often, while the Load event
fires less often than the Activate event and more often than the
Initialize event.

The Activate event fires most often (at least on a multi-form appli-
cation) because the user can navigate back and forth between forms
many times after the forms are loaded in memory and visible.

If the form is loaded, unloaded, and re-loaded into memory several
times in the application, then the form’s Load event will fire at each
load. The Initialize event, however, might not necessarily fire each
time the form re-loads, because the form instance might not have
been set to Nothing in the previous unload.

The Initialize Event
The Initialize event fires when an instance of the form is created
in your application.

N
O

T
E When Is a Form Instance Destroyed?

For more information on how a form
instance is completely destroyed, see
the section in this chapter on the
Terminate event.

09 002-8 CH 06 3/1/99 7:59 AM Page 240

Chapter 6 WRITING CODE THAT PROCESSES DATA ENTERED ON A FORM 241

Initialize fires just before Load the very first time the form is
loaded into memory during the application’s current session. It may
or may not fire before subsequent Loads of the form, depending on
what else has happened:

á If the form was previously loaded and then unloaded but was
not un-instantiated by having its instance set to Nothing, the
Initialize event will not fire the next time the form is loaded.

á If the form was previously unloaded and then un-instantiated
with

Set formname = Nothing ‘(this also fires Terminate event)

the Initialize event will fire the next time the form loads.

Forms have an Initialize event because Microsoft wants us to see
forms as programmable, customizable object classes, and custom
programmer-created VB classes always sport built-in Initialize and
Terminate events.

You should therefore program a form’s Initialize event procedure
similar to the way you’d program a custom VB class’ Initialize
event procedure. That is, you should initialize custom form properties
here. This might include setting the value of Public form variables
(Public variables in a form are automatically properties of the form)
or of Private variables (Private variables can store intermediate val-
ues of properties that are implemented with Property procedures).

The Load Event and the Activate Event
The Load event fires when the form loads into memory. This event’s
procedure is the customary place for programmers to insert code that
sets form-level Private variables (not associated with custom proper-
ties) and performs other startup processes.

A form receives an Activate event when it becomes the active form.

A form is the active form in an application when the focus in the
application is on the form itself or (more likely) on a control within
the form. This could mean that either the form itself has the focus
or that a control on the form has focus. The user can tell which
form is active because the title bar appears highlighted and the form
usually appears on top of the user’s desktop, as in Figure 6.1.

09 002-8 CH 06 3/1/99 7:59 AM Page 241

242 Par t I VISUAL BASICS 6 EXAM CONCEPTS

Focus can come to the form (and fire the Activate event) either by
user action or through program code. For instance, the user can acti-
vate the form from another form in the application by clicking on
the form with the mouse. Your program can cause a form to become
the application’s active form by calling that form’s Show method or by
calling the SetFocus method of one of the form’s controls.

The Activate event could therefore fire many more times in an
application than either the Load or Initialize events (because it
could fire as often as the user returns to the form with the mouse or
as often as your application makes it the active form).

Sometimes you will need to decide between putting code in the
form’s Activate event procedure and putting it in the Load event
procedure. The following points can serve as guidelines for deciding
between Activate and Load event procedures:

á The Load event procedure fires before the form is established
visually and before the data connections of any data controls
that it contains have been established. You will get runtime
errors if you place code in form_Load that tries to use data con-
nections belonging to the form’s own Data Controls. Code that
attempts graphics output to the form in form_Load will have no
effect unless you set the form’s AutoRedraw property to True.

F IGU R E 6 .1
An Active form on the user’s desktop.

N
O

T
E Forms as an Application’s Startup

Object As mentioned in Chapter 4,
“Creating Data Input Forms and
Dialog Boxes,” a form might be the
application’s startup object. In such a
case, you can count on the startup
form’s Initialize, Load, and
Activate events to run when the
application starts.

09 002-8 CH 06 3/1/99 7:59 AM Page 242

Chapter 6 WRITING CODE THAT PROCESSES DATA ENTERED ON A FORM 243

á The Activate event can fire multiple times once the form is
loaded, so you should be cautious when placing code into the
Activate event procedure if you do not want that code to run
more than once per form session. If such code must go in the
Activate event procedure (say, because it relies on an estab-
lished data connection), then you could put a Boolean Static
variable in the Activate event procedure to keep track of
whether the Activate event has already run.

DEACTIVATE, UNLOAD, QUERYUNLOAD, AND
TERMINATE EVENTS

These events fire toward the end of a form’s life. Their event proce-
dures are therefore good places to put “cleanup” code. Once again,
the exact circumstances and timing of these events can differ.

The DeActivate Event
The DeActivate event fires when a form or a control on the form
loses focus to another object in the application outside the form.
The DeActivate event does not fire when the user navigates to a
completely different application, but only when the user navigates
elsewhere in the current application. The DeActivate event does not
fire when the application closes or when the current form unloads.

The QueryUnload Event
The QueryUnload event fires just before a form unloads from mem-
ory. The QueryUnload event fires just before the Unload event. Its
main purpose is to let you detect why the form is being unloaded
and to programmatically halt unloading if necessary.

The QueryUnload event procedure takes two parameters:

á Cancel This is a True/False value which is False by default.
When Cancel is False, it means that the unloading will con-
tinue. You can set it to True to stop the form from unloading.

N
O

T
E Be Careful With the End Statement.
You can quickly terminate your appli-
cation by putting a one-word state-
ment, “End”, in your code. However
you should be aware that doing so will
abruptly stop any further processing
by the application.

In particular this means that loaded
forms’ QueryUnload, Unload, and
Terminate events will not run. If
you’ve put code in these event proce-
dures to perform cleanup on the envi-
ronment or save pending data, this
code will not run when you call End.

Pressing the VCR stop button on the
VB menu in order to stop your design-
time application is equivalent to call-
ing the End statement.

09 002-8 CH 06 3/1/99 7:59 AM Page 243

244 Par t I VISUAL BASICS 6 EXAM CONCEPTS

á UnloadMode This parameter can take several values, corre-
sponding to how the QueryUnload event was triggered. You can
compare UnloadMode’s value with one of the following VB
internal constants:

• vbformControlMenu. The form’s QueryUnload event was
triggered because the user is closing the form.

• vbformCode. The form’s QueryUnload event was triggered
by code that programmatically closes the form.

• vbAppWindows. The QueryUnload event was triggered
because the Windows session is ending.

• vbAppTaskManager. The QueryUnload event was triggered
because the Windows Task Manager is closing your appli-
cation.

• vbformMDIform. The form is an MDI Child, and the
MDI Parent is closing.

A common use of the QueryUnload event is to prompt the user to
save changes (see Figure 6.2).

F IGU R E 6 .2
A typical use of the QueryUnload event is to
give users a chance to change their minds.

09 002-8 CH 06 3/1/99 7:59 AM Page 244

Chapter 6 WRITING CODE THAT PROCESSES DATA ENTERED ON A FORM 245

You give the user the option to cancel the unload. If the user chooses
to cancel, you can set the Cancel parameter to True, as in Listing 6.1.

LISTING 6.1

SETT ING THE CANCEL PARAMETER IN THE QUERYUNLOAD
EVENT PROCEDURE

Private Sub frmData_QueryUnload(Cancel as Integer, _
UnloadMode As Integer)

Dim intUserChoice As Integer
intUserChoice = MsgBox(“Save Changes?” , _
vbYesNoCancel)
If intUserChoice = vbYes Then

Call SaveData
ElseIf intUserChoice = vbCancel Then

Cancel = True
End If

End Sub

The Unload Event
The Unload event procedure is where programmers usually put
cleanup code. The Unload event fires after the QueryUnload event.
The Unload event procedure takes a single parameter, the Cancel
parameter. Unload’s Cancel parameter works the same as
QueryUnload’s Cancel parameter.

It is possible to stop the form from unloading in the Unload event
procedure by setting Cancel to True. However, since the Unload event
doesn’t receive the QueryUnload event’s UnloadMode parameter, your
Unload event procedure has less information about why the form is
being unloaded than the QueryUnload event procedure has.

For forms which are not MDI Child forms, Unload always happens
immediately after QueryUnload (unless, of course, the unloading was
just cancelled in the QueryUnload by setting the Cancel parameter to
True).

N
O

T
E Timing of QueryUnload and Unload in

MDI Applications. In an MDI appli-
cation, MDI Child forms have a slightly
different timing for QueryUnload and
Unload events. See the section in this
chapter titled “Using the Unload and
QueryUnload Events in an MDI
Application” for more information.

09 002-8 CH 06 3/1/99 7:59 AM Page 245

246 Par t I VISUAL BASICS 6 EXAM CONCEPTS

The Terminate Event
The Terminate event happens when the instance of the form has
been completely unloaded and all the form’s variables have been set
to Nothing. The Terminate event happens only when you explicitly
set the form to Nothing in your code during or after the Unload event
procedure. For example, you could use the statement:

Set Form1 = Nothing

after calling the Unload statement for Form1.

You might use the Terminate event to perform final cleanup opera-
tions for your form.

ACTIVATE/DEACTIVATE VERSUS
GOTFOCUS/LOSTFOCUS EVENTS

As noted earlier, a form is the active form in an application when the
focus in the application is within that form. This could mean that
either the form itself has the focus or that a control on the form has
focus. The user can tell which form is active because the title bar
appears highlighted, and the form usually appears on top of the
user’s desktop.

A form receives an Activate event when it becomes the active form
and a Deactivate event when it loses its active status to another form
in the same application. The Activate and Deactivate event proce-
dures are ideal places to put code that needs to react to the user’s
navigation between forms.

Forms also support GotFocus and LostFocus events, as do controls.
You might think that GotFocus and LostFocus event procedures
would be good places to put code that reacts to a user entering and
leaving a form in a multi-form application.

However, a form’s GotFocus and LostFocus events do not usually fire:
A form can only receive focus if it contains no visible enabled con-
trols. Because most forms have at least one visible enabled control,
GotFocus and LostFocus don’t normally fire on forms when the user
moves between forms in an application.

N
O

T
E Choosing Between the Activate and

Load Events. When a form first
loads into memory and immediately
displays (either because it’s the appli-
cation’s startup form or because, say,
you’ve used the Show method to load
the form), the Activate event hap-
pens after the Load event. The
Activate event procedure is a better
place than the Load event procedure
to put startup code that affects the
form’s appearance (such as calls to
the graphics methods) or code that
manipulates Data-Bound controls.
This is because the Load event hap-
pens a bit too early for some of these
operations to have their proper effect.
In fact, putting some types of code in
the Load event procedure can cause a
runtime error if the code tries to
manipulate runtime properties of con-
trols that aren’t fully initialized.

N
O

T
E Navigation Events Happen Only With

Respect to the Current Qpplication.
Activate, DeActivate, GotFocus, and
LostFocus occur only with respect to
movement between forms within the
current application. When the user
changes to or returns from another
application, none of these events
occur.

09 002-8 CH 06 3/1/99 7:59 AM Page 246

Chapter 6 WRITING CODE THAT PROCESSES DATA ENTERED ON A FORM 247

SHOW/HIDE METHODS VERSUS
LOAD/UNLOAD STATEMENTS

The Load and Unload statements cause a form to load into memory
or to unload from memory respectively. Both statements take the
name of a form or a form variable as their parameter. For example,
the statement

Load frmMain

would cause frmMain to load into memory, and the statement

Unload frmMain

would take it out of memory.

Although the Load statement brings a form into memory, it doesn’t
make the form visible. You must call the form’s Show method or set
its Visible property to True in order to make it visible to the user.

You might ask, since calling the Show method or setting the Visible
property will load the form anyway, why bother ever using the Load
statement?

You might also ask, since calling the Unload statement would make
the form invisible anyway, why bother to ever use the Hide method?

VB provides programmers with both Load and Unload statements
and Show and Hide methods because there are two different strategies
for form management in an application. Which strategy you choose
depends on how your application needs to balance speed of opera-
tion with efficient use of memory. The two strategies are:

á Fast. Load all the forms you’ll need in your application when
your application begins to run. While the application is run-
ning, use only the Show and Hide methods of forms. Use only
the Unload statement when your application is ending.

á Memory Efficient. Load a form (either with the Show
method or a combination of the Load statement and Show
method) only when you need to use it. Immediately unload a
form as soon as you don’t need it in the application.

09 002-8 CH 06 3/1/99 7:59 AM Page 247

248 Par t I VISUAL BASICS 6 EXAM CONCEPTS

When you look at the Fast strategy, it might appear that there would
be a big delay at the beginning of the program as your application
loaded all the forms it was going to use. While this is objectively
true, programmers usually cover up for the fact by supplying a
“splash” screen to show the user flashy graphics as the application
loads the forms. This is such a common technique in Windows pro-
gramming that users have come to accept and even expect a delay of
several seconds when a program begins to run. Once the forms are
loaded, there will be no further delays as the application runs
(because no forms will need to be loaded).

In reality, you’ll find yourself using a combination of both the Fast
and Memory Efficient strategies. Not every VB application, for
example, will be able to load and maintain all of its forms in mem-
ory throughout the entire session of the application.

USING THE UNLOAD AND QUERYUNLOAD
EVENTS IN AN MDI APPLICATION

As we note in “Initialize, Load, and Activate Events”, a form’s
QueryUnload event happens before its Unload event. Both
QueryUnload and Unload event procedures receive a Cancel parameter
that you can programmatically set to True to stop the form from
unloading.

When you attempt to unload the main MDI form in an MDI appli-
cation, VB unloads all the open Child forms first. This means that
the various Unload and QueryUnload events have a special timing rela-
tionship in an MDI application. When there is an attempt to unload
the main MDI form, the order of the Unload and QueryUnload events
is as follows:

1. The MDI form’s QueryUnload event

2. The QueryUnload event of each open Child form

3. The Unload event of each Child form

4. The Unload event of the MDI form

N
O

T
E Another Use of the Hide Method

Even in the Memory Efficient model
described here, there is a good rea-
son to use Hide when the form needs
to disappear instead of calling Unload
immediately:

Consider the situation where you’ve
loaded a form modally from elsewhere
in your code. When the user dis-
misses the form, you might want to
check the state of some of the form’s
controls by following these steps:

From inside the modal form, you
should close it with the Hide method.

In your calling code, check the infor-
mation you need from the form.

Only then should you unload the form.

09 002-8 CH 06 3/1/99 7:59 AM Page 248

Chapter 6 WRITING CODE THAT PROCESSES DATA ENTERED ON A FORM 249

If Cancel is set to True within any of these event procedures, the
entire unloading process stops. If unloading is halted during any of
the QueryUnload event procedures, then none of the Unload events is
triggered, and no form is unloaded. If unloading is halted during any
of the Unload event procedures, then only forms whose Unload events
happened before the one where the Cancel occurred will unload.

FORM METHODS AND THEIR EFFECT
ON FORM EVENTS

The following sections discuss how referring to a form’s members in
code can load a form into memory, and how the form’s Show and
Hide methods relate to the loading and unloading of a form.

Implicitly Loading a Form
A form which is not yet in memory will load into memory automat-
ically whenever you refer to any of its built-in methods or properties
in code, or to any of the methods or properties of a control on the
form. Thus, statements such as

Form1.Caption = “Hello”
Form1.txtCity.Text = “Chicago”
Form1.Show

would cause Form1 to load if it had not already been loaded.

Causing a form to load in this way is known as implicit loading.

Show and Hide
These methods toggle a form’s visibility. Calling a form’s Show
method sets the form’s Visible property to True, and the form then
becomes the application’s active form. After a call to a form’s Hide
method, the form’s Visible property will be False, and the form will
no longer be the application’s active form.

The Show method does more than simply toggle a form’s Visible
property: It also can accept a parameter that indicates the form’s
modal state.

Referring to Custom Members
Won’t Cause Implicit Loading
If you implement custom methods
on a form through custom proce-
dures or custom properties through
Public variables or Property Let/
Get/Set procedures, references to
these items will not cause implicit
loading of the form, and the form’s
Load event will not fire.

The Initialize event, however, will
still fire in these cases.

W
A

R
N

IN
G

09 002-8 CH 06 3/1/99 7:59 AM Page 249

250 Par t I VISUAL BASICS 6 EXAM CONCEPTS

á A modeless form is the default way of managing a form in an
application. When a form displays modelessly, the rest of the
VB application continues any execution it needs to finish, and
the user is able to freely navigate between this modeless form
and any other forms in the application. Since modeless is the
default state, modeless is implied when there is no reference to
the parameter.

Form1.Show
MsgBox “Form1 visible” ‘this line runs immediately

If you wish to provide more clarity in your code, you can use
the vbModeless parameter:

Form1.Show vbModeless

á A modal form demands more attention from the user. If
the form is displayed modally, the user cannot navigate to
other forms in the application. The form remains active until the
form is closed. In addition, the calling procedure that originally
shows the modal form with the call to its Show method will not
resume until the form has been unloaded or hidden by either
user action or code. You can display a form modally by calling
the Show method with the vbModal constant as a parameter:

Form1.Show vbModal
‘Next line won’t run
‘till after Form1 is dismissed
MsgBox “Finished Form1”

See “Show/Hide Methods Versus Load/Unload Statements.”

MANIPULATING A FORM FROM
ANOTHER FORM’S LOAD EVENT
PROCEDURE

It might seem that using a current form’s Load event procedure to
call another form’s methods or loading another form implicitly or
explicitly would be asking for trouble.

However, it’s perfectly possible to do so, and in fact you can accom-
plish some tasks in a simple and elegant fashion by loading and acti-
vating a second form from a first form’s Load event procedure.

09 002-8 CH 06 3/1/99 7:59 AM Page 250

Chapter 6 WRITING CODE THAT PROCESSES DATA ENTERED ON A FORM 251

For instance, consider a form that is the main data input form for an
application. Perhaps this form needs a preliminary dialog box, such
as a login screen, just before it appears. One very simple way to
achieve this effect is by performing the following steps:

1. In the Load event of the main form, put a modal call to the Show
method of the login dialog box form with a statement such as

Secondform.Show vbModal

2. Let the login dialog box expose a custom flag property through
a Public variable or through Property procedures. This prop-
erty will be a Boolean value that indicates whether or not the
login has been successful.

3. Just before the login hides itself, it sets the flag property appro-
priately.

4. The Load event procedure of the main form has not finished
running in all the time that the login dialog box was running
because the login dialog box was running modally, and there-
fore the main form’s Load event procedure was paused.

5. The code in the main form’s Load event that follows the modal
call to the login dialog box can check the dialog box form’s
Boolean flag property to decide what action to take. After
retrieving this information, the calling code in the main form
should manage memory efficiently by setting the login dialog
box form to Nothing.

6. If the main form decides not to unload itself, then it will con-
tinue loading and will become the application’s active form.

Perhaps the key point to bear in mind is step 4 above: Actions you
take to manipulate other forms from within a given form’s Load
event procedure have their effect regardless of where you call them
from. If you call the secondary form modally (as described in step 1
above), then the current form_Load pauses until the secondary form
is dismissed.

Conversely, if you were to call the Show method of a main form and
you were to call up a second form in a modeless state from within
the first form’s Load event, using code such as

Secondform.Show vbModeless

or simply

Secondform.Show

09 002-8 CH 06 3/1/99 7:59 AM Page 251

252 Par t I VISUAL BASICS 6 EXAM CONCEPTS

then the second form would load implicitly (if it were not already
loaded) and would display.

However, the main form’s Load event procedure would continue to
run (because the second form was modeless), and so the first form
would eventually load and display as well. The net result would be
that you would end up with both forms visible, and the first form
would end up as the active form in the application.

NEEDS
Your company needs a small data-entry system
that gets several pieces of discrete information
from a user. Access to this system needs some
simple password protection. Access to the data
would not be considered a serious security
breach, but management would like to keep curi-
ous users from inadvertently changing something
they don’t understand.

REQU IR EMENTS
Your applications designer has specified a small
data maintenance system with the following
features:

• The user can only enter this system by first
negotiating a login screen.

• The login screen will take any reasonable-
length input for UserID.

• The login screen will take an arbitrary pass-
word such as “PASSWORD.”

• If users try to continue without giving an
acceptable login and password, they’ll be

prompted to either try again or to abandon
the system.

• Users can cancel the login attempt and exit
the system at any time.

• The data entry system itself consists of
two data input forms (a main form and a
secondary form).

• After a successful login, the main input
form appears by itself.

• The secondary form can be called up from
the main form.

• Users can freely move between the two
forms.

• Whenever users leave the secondary form,
they will receive a save prompt if there have
been any changes made to the form.

• Users can specify a “remember” option on
the secondary form. When this option is
flagged, users’ last input will be stored
before the secondary form closes and re-
displayed when the secondary form is
re-displayed.

CASE STUDY: A SMALL DATA INPUT SYSTEM WITH LOGIN SECURITY

09 002-8 CH 06 3/1/99 7:59 AM Page 252

Chapter 6 WRITING CODE THAT PROCESSES DATA ENTERED ON A FORM 253

DES IGN SPEC I F ICAT IONS
The points given in the scenario suggest the fol-
lowing implementation strategies:

• Login screen could be implemented as
a modal screen displayed from the Load
event procedure of the main input form
(spec #1 & 7).

• A separate routine could run validation
checks for the login (spec #2 & 3).

• Login screen could have a custom end-
status property indicating how it termi-
nated. Main input form’s Load event could
read this flag after the login terminates to
determine whether or not to unload itself
or continue loading (spec #5 & 7).

• The login screen’s QueryUnload event proce-
dure would determine the state of its end-
status property. Among other things, the
QueryUnload event procedure would deter-
mine how the form is being unloaded and, if
appropriate, call login validation routines.
Code here could prompt users for a retry
when appropriate (spec #4).

• Main data input form would have a
CommandButton to modelessly call the Show

CASE STUDY: A SMALL DATA INPUT SYSTEM WITH LOGIN SECURITY

method of the secondary form (spec #8
and 9).

• The secondary data input screen could have
a Private “dirty flag” variable to determine
whether a save was necessary (spec #10).

• The secondary data input screen could have
code in its Deactivate event procedure to
check the “dirty flag” and determine
whether to prompt the user for a save (spec
#9 & 10) before relinquishing focus from
the form’s controls.

• User input on the secondary form can be
mirrored in one or more custom form prop-
erties. The secondary “remember” option
can be implemented with a CheckBox control.
If it’s not checked, code in the Unload event
procedure will set the secondary form to
Nothing, thus destroying the contents of the
“mirror” properties. If the remember option
is checked, the form will not be set to
Nothing. In the form_Load event, any values
in the “mirror” properties will be loaded into
the appropriate input controls (spec #11).

The design details given in this section are imple-
mented in Exercise 6.2.

09 002-8 CH 06 3/1/99 7:59 AM Page 253

254 Par t I VISUAL BASICS 6 EXAM CONCEPTS

This chapter discussed the important form events: Initialize,
Terminate, Load, QueryUnload, Unload, Activate, and DeActivate,
including the following specific points:

á Relative timing of form events

á Use of the Initialize, Load, and Activate events

á Use of the DeActivate, Unload, QueryUnload, and Terminate
events

á Comparison of the Activate/DeActivate and
GotFocus/LostFocus events

á Show/Hide methods; Load/Unload statements

á Using the Unload and QueryUnload events in an MDI
application

á Implicitly loading a form

á Manipulating a form from another form’s Load event
procedure

CHAPTER SUMMARY

KEY TERMS
• Active form

• Implicit loading

• Modal

• Modeless

• Startup object

09 002-8 CH 06 3/1/99 7:59 AM Page 254

Chapter 6 WRITING CODE THAT PROCESSES DATA ENTERED ON A FORM 255

A P P LY YO U R K N O W L E D G E

Exercises

6.1 Testing the Major Form Events

The purpose of this exercise is to experiment with the
major form events so that you can see for yourself the
relative timing of the events and the situations that
cause each event to fire.

You will use three forms to test the major form events.
One form (Form1) will control the form to be tested
(Form2), and a third form (frmDisplay) will display
diagnostic messages so that you can examine the tim-
ing of various events.

Estimated Time: 45 minutes

1. Start a new project in Visual Basic and create a
form like the one shown in Figure 6.3. The
form will keep the default name of Form1
and will contain CommandButton controls
named cmdLoadform2, cmdformShow,
cmdUnloadform2, cmdform2Hide,
cmdform2Nothing, cmdClearDisplay, and
cmdEndAbruptly, all corresponding to the simi-
larly labeled CommandButtons shown in the figure.
Set the Enabled property of cmdform2Nothing
to False. Set the form’s AutoRedraw property to
True. See Table 6.1 for a list of all the property
settings for the CommandButtons and the form.

TABLE 6.1

PROPERTIES TO ASSIGN TO OBJECTS ON

FORM1

Object Property Value

Form1 AutoRedraw True

CommandButton Name cmdLoadForm2

Caption Load Form2

CommandButton Name cmdForm2Show

Caption Form2.Show

CommandButton Name cmdUnloadForm2

Caption Unload Form2

CommandButton Name cmdForm2Hide

Caption Form2.Hide

CommandButton Name cmdForm2Nothing

Caption Set Form2=Nothing

Enabled False

CommandButton Name cmdClearDisplay

Caption Clear Display

CommandButton Name cmdEndAbruptly

Caption End Abruptly

Object Property Value

F IGURE 6 .3
The forms for Exercise 6.1.

09 002-8 CH 06 3/1/99 7:59 AM Page 255

256 Par t I VISUAL BASICS 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

2. Add a second form and name it frmDisplay. Give
it the appropriate caption and shape as shown in
Figure 6.3. Set its AutoRedraw property to True
(in this way, its output will still be visible even if
another form covers it while it produces graphics
output), its BorderStyle property to 1 - Fixed
Single, and its ControlBox property to False.

3. Add a third form and let its Name default to
form2. Put a single line of code into the follow-
ing event procedures of the form: Activate,
DeActivate, GotFocus, Initialize, Load,
LostFocus, QueryUnload, Terminate, and Unload.
The line of code in each event procedure should
read frmDisplay.Print “EventProcName”

when EventProcName is the name of the event
procedure where you are placing the code (e.g.,
“form_Unload,” “form_Activate,” and so on.)

4. In form2’s Unload event procedure, add another
line of code to enable Form1.cmdform2Nothing:

Private Sub Form_Unload(Cancel As Integer)
frmDisplay.Print “Form2_Unload”
Form1.cmdForm2Nothing.Enabled = True

End Sub

5. In form2’s Terminate event procedure, add a line
of code to disable this same CommandButton:

Private Sub Form_Terminate()
frmDisplay.Print “Form2_Terminate”
Form1.cmdForm2Nothing.Enabled = False

End Sub

6. In the Click event procedures of the
CommandButtons of Form1, add a line of code to
each event procedure as shown in Table 6.2.

TABLE 6.2

LINES OF CODE TO WRITE IN FORM1’S
COMMANDBUTTONS’ CLICK EVENT PROCEDURES

CommandButton Line of code in Click event procedure
procedure

cmdClearDisplayform frmDisplay.Cls

cmdEndAbruptly End

cmdform2Hide form2.Hide

cmdform2Nothing Set form2 = Nothing

cmdform2Show form2.Show

cmdLoadform2 Load form2

cmdUnloadform2 Unload form2

7. Save and run the project. Experiment with vari-
ous command sequences and note the timing of
the various form events as shown on the display
form. If the display form gets too crowded with
information, click the CommandButton on Form1 to
clear the display.

8. Notice the output from Form1’s Load event proce-
dure never appears on its surface while the output
from its Activate event procedure does appear.

9. Notice that form2’s GotFocus and LostFocus
events never fire. Disable all the controls on form2
and then observe the effect of this on the
GotFocus and LostFocus events.

6.2 A Multi-Form Data Input System With
Login Security

This exercise implements the solution specified in the
Case Study section of this chapter. You will create three
forms: a main input form, a login dialog box, and a
secondary input form.

09 002-8 CH 06 3/1/99 7:59 AM Page 256

Chapter 6 WRITING CODE THAT PROCESSES DATA ENTERED ON A FORM 257

A P P LY YO U R K N O W L E D G E

Estimated Time: 60 minutes

1. Start a new project in Visual Basic and create a
form like the one shown in Figure 6.4. Name it
frmMain and make sure it’s the startup object for
this project. Add the controls with captions as
shown in the figure and name them lblData,
txtData, cmdSubDataForm, cmdSave, and
cmdExit.

shown in Figure 6.5. Name the controls
lblUserID, txtUserID, lblPassword, txtPassword,
cmdOK, and cmdCancel. See Table 6.3 for the
initial settings of these controls. In the Click
event procedure of cmdCancel, hide the current
form, setting the contents of the two TextBoxes
to blank strings. In the Click event procedure of
cmdOK, unload the current form.

TABLE 6.3

PROPERTIES TO ASSIGN TO OBJECTS ON

FRMLOGIN

Object Property Value

Form Name frmLogin

Label Name lblUserID

Caption &User ID

TabIndex 0

TextBox Name txtUserID

Text <BLANK>

TabIndex 1

Label Name lblPassword

Caption &Password

TabIndex 2

TextBox Name txtPassword

Text <BLANK>

TabIndex 3

CommandButton Name cmdOK

Caption &Ok

TabIndex 4

CommandButton Name cmdCancel

Caption &Cancel

TabIndex 5

F IGURE 6 .4
The main form for Exercise 6.2.

2. In frmMain’s General Declarations, add a declara-
tion for a Private Boolean variable named
blnDirtyFlag. This variable will track whether or
not there are unsaved changes pending on this
form. Create a Private Sub procedure on the
form named SaveChanges. In this exercise, we
will not actually implement saving changes, so
the only code you will write here will be a line to
set blnDirtyFlag to False (indicating changes
have been saved). In the Change event procedure
for txtData, set blnDirtyFlag to True (to indicate
that there’s now an unsaved change).

3. In frmMain’s Unload event procedure, check to see
whether blnDirtyFlag has been set to True. If it is
True, then use MsgBox to ask users if they want to
save changes. If users reply “Yes”, then invoke the
SaveChanges procedure written in step 2.

4. Add a form to the application and name it
frmLogin. Put controls on its surface like those

09 002-8 CH 06 3/1/99 7:59 AM Page 257

258 Par t I VISUAL BASICS 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

5. In frmLogin’s Initialize event procedure, set the
value of txtUserID to “MCP User” and
txtPassword to a blank string.

6. Declare two Private String variables in frmLogin
named sUserID and sPassword. They will hold
the user’s current entries for UserID and
Password. In the Change event procedures for
txtUserID and txtPassword, update the variables
sUserID and sPassword with the contents of each
respective TextBox.

7. Create a Public Function in frmLogin and call it
LoginIsValid. LoginIsValid will become a custom
method of the form since it’s Public. Let its
return type be Boolean. It will return True if the
string in sUserID is not blank and the string in
password is “PASSWORD” (case should not mat-
ter). Otherwise, it will return False.

8. Put validation code in frmLogin’s QueryUnload
event procedure. If the form is not being
unloaded through VB code, then blank out
txtUserID and txtPassword (this will effectively
render the login invalid). Otherwise (if the form is
being unloaded through code), check the return
value of the LoginIsValid function. If its return
value is False, use MsgBox to ask users if they wish
to retry the login. If they answer that they want to
retry, then cancel the unloading of the form.

9. Back in frmMain’s Load event procedure, put code
to display frmLogin modally. After frmLogin runs,
get the return value of its LoginIsValid method. If
frmLogin.LoginIsValid returns False, then unload
the current form. Otherwise, do nothing and let
frmMain continue to load.

10. Add a third form to the project and name it
frmSub. Give it controls like those shown in in
Figure 6.6. Name them lblSubData, txtSubData,
and chkRemember. Add a Private Boolean vari-
able name blnDirtyFlag and a Public String vari-
able (i.e., a custom Property) named SubData. In
the Change event of txtSubData, update the vari-
able SubData with the contents of the TextBox and
set blnDirtyFlag to True.

F IGU R E 6 .5▲
The login form for Exercise 6.2.

F IGURE 6 .6▲
The sub form for Exercise 6.2.

11. Add a Private Sub Procedure to frmSub and call it
SaveChanges. Really, this will not take any save
actions but, in this exercise, will simply set
blnDirtyFlag to False.

12. In frmSub’s DeActivate event procedure, check the
value of blnDirtyFlag. If blnDirtyFlag is True, then
ask users if they wish to save changes. If they do
wish to save, then call the SaveChanges procedure.

13. In frmSub’s Unload event procedure, check the sta-
tus of the Value property of the chkRemember
check box. If it’s not checked, then set frmSub to
Nothing (thus effectively destroying the contents

09 002-8 CH 06 3/1/99 7:59 AM Page 258

Chapter 6 WRITING CODE THAT PROCESSES DATA ENTERED ON A FORM 259

A P P LY YO U R K N O W L E D G E

of the variable SubData). Otherwise (if it’s
checked), do nothing, which will leave the con-
tents of SubData intact. In frmSub’s Load proce-
dure, set the contents of txtSubData to the
contents of the SubData variable.

14. Back in frmMain, put code in the Click
event procedure of the CommandButton
cmdSubDataForm to display frmSub as a mode-
less form. (In most applications, you’d display it
as a modal form, but, in this case, we want to
illustrate the use of Activate/DeActivate events.)

15. Put code in frmMain’s cmdExit_Click procedure
that will unload frmMain and end the application.

Review Questions
1. What effect will the End statement have for the

Unload event of forms that are loaded in memory?

2. What VB IDE icon is equivalent to invoking the
End statement?

3. What are some considerations for deciding whether
to put initialization code in the Initialize event
procedure versus the Load event procedure?

4. Describe the relation between the Show method
and the Load event.

5. What are some considerations for deciding
whether to put initialization code in the
Activate event procedure versus the Load event
procedure?

6. Compare the circumstances that cause a form’s
Activate and DeActivate events to fire versus its
GotFocus and LostFocus events.

7. When will a form’s DeActivate event not fire
even though the user clicks on an object outside
the form?

8. What two sequential actions will cause a form’s
Terminate event to fire?

9. What parameter do the QueryUnload and Unload
events have in common, and what is the purpose
of this parameter?

10. What parameter does the QueryUnload event have
in addition to the Unload event, and what is its
purpose?

11. In what type of application do the QueryUnload
and Unload events fire at different times?

Exam Questions
1. If Form1 is your project’s startup form and you

put the line

form2.Show

in Form1’s Load event procedure,

A. You’ll receive a runtime error.

B. You’ll receive a compiler error.

C. Form1 will end up as the active form after all
initial code has run.

D. Form2 will end up as the active form after all
initial code has run.

2. One difference between QueryUnload and Unload
events is that

A. QueryUnload happens first, and Unload receives
the UnloadMode parameter.

B. QueryUnload happens first, and QueryUnload
receives the UnloadMode parameter.

C. Unload happens first, and Unload receives the
UnloadMode parameter.

D. Unload happens first, and QueryUnload receives
the UnloadMode parameter.

09 002-8 CH 06 3/1/99 7:59 AM Page 259

260 Par t I VISUAL BASICS 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

3. When the user changes focus to another applica-
tion, the currently active form in your application

A. Receives a DeActivate event.

B. Receives a LostFocus event.

C. Receives both DeActivate and LostFocus
events.

D. Receives neither DeActivate nor LostFocus
events.

4. To make an unloaded form visible to the user,

A. You need to call only the Load statement.

B. You need to call only the Show method.

C. You must call both Load and Show.

D. You must set the Visible property.

5. A form’s Terminate event

A. Fires whenever the Unload event fires, just
before the Unload event.

B. Fires whenever the Unload event fires, just
after the Unload event.

C. Fires when you set the form to Nothing after
the Unload event begins.

D. Fires whenever you set the form to Nothing,
regardless of the Unload event.

6. If a running VB application has various instances
of Child forms and encounters the statement

Cancel = False

in the MDI Parent form’s Unload event,

A. No Child forms will be unloaded.

B. All Child forms will be unloaded but not the
MDI Parent form.

C. The Child forms will unload as well as the
MDI Parent form.

D. A runtime error will occur.

7. If a running MDI application has various
instances of Child forms and encounters the
statement

Cancel = True

in the Unload event of one of the Child forms,
then

A. All Child forms whose Unload events occurred
before this one are unloaded, and the unload-
ing process halts.

B. All Child forms in the application will
unload, except for the Child with Cancel =
True in its Unload event.

C. The MDI Parent form and all Child forms
with Cancel = True in their Unload events
will stay loaded. All other Child forms will
unload.

D. A runtime error will occur.

8. A DeActivate event fires (pick all that apply)

A. Whenever a form unloads.

B. When the currently active form unloads.

C. When the user navigates between forms in the
same application.

D. Whenever the application terminates.

9. A Terminate event signifies that (pick two)

A. The application is closing the form just before
ending.

B. The form has just become invisible and now
the Unload event is about to fire.

09 002-8 CH 06 3/1/99 7:59 AM Page 260

Chapter 6 WRITING CODE THAT PROCESSES DATA ENTERED ON A FORM 261

A P P LY YO U R K N O W L E D G E

C. The instance of the form has been destroyed.

D. All form variables’ values have lost their values.

10. If the form frmMy has not been loaded in the
application, then the following lines of code run
in the order given:

1) Load frmMy

2) frmMy.Show vbModal

3) Unload frmMy

4) Set frmMy = Nothing

5) frmMy.Show

6) Unload frmMy

7) frmMy.Show

11. frmMy’s Initialize event will fire (pick all that
apply)

A. After line 1

B. After line 2

C. After line 5

D. After line 7

11. A form named frmInfo has not yet been loaded
in memory during the current session of the
application. It has a Public String variable,
Status. If the following code runs:

frmInfo.Status = “UNOPENED”

which of the following events will fire?

A. The Initialize event, followed by the Load
event

B. The Load event only

C. The Initialize event only

D. No event

Answers to Review Questions
1. Invoking the End statement will immediately ter-

minate the application without running any fur-
ther events. Therefore the Unload events of loaded
forms will not run. See “DeActivate, Unload,
QueryUnload, and Terminate Events.”

2. The “Stop button” in the VB IDE has the same
effect as calling the End statement from code.
Therefore, if you press this button to end a
design-time instance of your program, you will
not fire the Unload events of forms or of other
ending events such as QueryUnload and
Terminate. See “DeActivate, Unload, QueryUnload,
and Terminate Events.”

3. You should put code in the Initialize event pro-
cedure to assign the beginning values of the form’s
Public variables or of Private variables that repre-
sent the stored values of form custom properties
(properties implemented with Property proce-
dures). This will make the form’s behavior consis-
tent with other VB classes because the Initialize
event behaves like the Initialize event of any
other VB class. See “The Initialize Event.”

4. The Show method will cause an implicit load of a
form, if the form was not already in memory, and
will fire the Load event. If the form was already in
memory, the Show method merely makes it visible
but does not fire the Load event. Depending on
the argument you pass to the Show method, the
form will display modally as a dialog box
(vbModal) or modelessly (vbModaless-the default).
Note: Referring to a method or property of a
form can cause an implicit load. See “Implicitly
Loading a Form.”

09 002-8 CH 06 3/1/99 7:59 AM Page 261

262 Par t I VISUAL BASICS 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

5. You should put code in the Activate event proce-
dure if: a) you want it to run every time the user
makes the form the active form in the applica-
tion, or b) if you need to perform initialization
tasks that require the form to already be loaded in
memory (such as drawing graphics or using a
data control’s connection). Otherwise, it’s okay to
put initialization code in the form_Load event
procedure. See “The Load Event and the Activate
Event.”

6. The Activate and DeActivate events fire when-
ever focus changes in the current application
between the current form and another form. The
GotFocus and LostFocus events fire only if there is
no other object on the form capable of receiving
focus. See “Activate/DeActivate Versus
GotFocus/LostFocus Events.”

7. A form’s DeActivate event will not fire when the
user navigates to another application with the
mouse. See “The DeActivate Event.”

8. You can cause a form’s Terminate event to fire by
unloading the form and then setting the form
equal to Nothing in code. If you have any other
Form object variables that refer to the form, they
must be set to Nothing as well before Terminate
will fire. See “The Terminate Event.”

9. The QueryUnload and Unload events both have a
Cancel parameter that the programmer can set to
True to halt the unloading action. See “The
QueryUnload Event,” “The Unload Event,” and
“Using the Unload and QueryUnload Events in an
MDI Application.”

10. The QueryUnload event also has an Action parame-
ter whose purpose is to advise that the unloading
is taking place. See “The QueryUnload Event.”

11. The QueryUnload and Unload events fire at different
times in an MDI application when the MDI
Parent form Unload events happen in the following
order: 1) The MDI Parent’s QueryUnload; 2) all the
loaded children’s QueryUnload events; 3) all the
loaded children’s Unload; 4) the Unload event of the
MDI Parent. See “Using the Unload and
QueryUnload Events in an MDI Application.”

Answers to Exam Questions
1. C. Form1 will end up as the active form after all ini-

tial code has run. It’s okay to call another form’s
Show method from a Load event procedure, so A
and B are incorrect. Form1 ends up as the active
form when everything is finished because the fol-
lowing actions happen: 1) Form1’s Load event proce-
dure begins; 2) form2’s Show method is called from
within Form1’s Load event procedure; 3) form2’s Load
event fires (it receives an implicit load due to the
Show method), and form2 briefly becomes the active
form (so its Activate event also fires); 4) then
Form1’s Load event finishes, Form1 becomes the
active form, and its Activate event fires. See
“Manipulating a Form From Another Form’s Load
Event Procedure” for more information.

2. B. A form’s QueryUnload event always precedes its
Unload event. The QueryUnload event receives the
Cancel and UnloadMode parameter while the
Unload event receives only the Cancel parameter.
Note that, in the case of MDI Child forms, a
form’s Unload event might not directly follow its
QueryUnload event: when the main MDI form
unloads, all Child form QueryUnload events hap-
pen together followed by all Child form Unload
events. See “The QueryUnload Event,” “The
Unload Event,” and “Using the Unload and
QueryUnload Events in an MDI Application.”

09 002-8 CH 06 3/1/99 7:59 AM Page 262

Chapter 6 WRITING CODE THAT PROCESSES DATA ENTERED ON A FORM 263

A P P LY YO U R K N O W L E D G E

3. D. Receives neither DeActivate nor LostFocus
events. Although DeActivate and LostFocus fire
when the form loses its status as the active form,
a form is the active form only with respect to the
application where it is running. So when the user
moves to another application, the active form of
the current application does not change, and
these two events do not fire. See “The
DeActivate Event” and “Activate/DeActivate
Versus GotFocus/LostFocus Events” for more
information.

4. B. You need to call only the Show method. The
Load statement by itself will only put the form
in memory but will not make it the active form
nor will it cause it to be visible. Toggling the
Visible property will manipulate the form’s visi-
bility, but it is not the only way nor even the
preferred way to do this (Show and Hide meth-
ods are preferred). The Show method will make
the form visible, loading it into memory with an
implicit load if it had not been loaded before.
See “Show/Hide Methods Versus Load/Unload
Statements” and “Implicitly Loading a Form.”

5. C. The Terminate event fires when you set the
form to Nothing after the Unload event begins.
The Terminate event cannot fire before the form
unloads and does not fire until the form is
destroyed by setting it to Nothing. The Unload
event by itself does not destroy a form com-
pletely since it leaves the form’s properties in
memory. Therefore, the Unload by itself cannot
trigger the firing of the Terminate event. See
“The Terminate Event.”

6. C. The Child forms will unload as well as the
MDI Parent form. This is sort of a trick question
based on the fact that the Cancel parameter’s
default property is False which, of course,
means that unloading will proceed normally.

Therefore, setting the Cancel parameter to False
has no effect. If the MDI Parent’s Unload event
runs without getting canceled (as it will in this
case), this means all children have already
unloaded. See “The Unload Event” and “Using
the Unload and QueryUnload Events in an MDI
Application.”

7. A. All Child forms whose Unload events occurred
before this one are unloaded, and the unloading
process halts. Setting Cancel to True in an Unload
event halts all unloading actions, including the
current one, but it’s too late to halt the unloads
that have already occurred. See “Using the Unload
and QueryUnload Events in an MDI Application.”

8. C. A DeActivate event fires only when the cur-
rently active form or an object on the currently
active form loses focus to another form in the
current application. DeActivate will not occur
when a form unloads. Neither will DeActivate
occur when an application terminates. See “The
DeActivate Event.”

9. C, D. The Terminate event signifies that an
instance of the form has been destroyed and all
the form’s variables have lost their values. A is
incorrect because Terminate has nothing to do
with the lifetime of the application, and B is
incorrect because the Terminate event cannot
occur before the Unload event fires. See “The
Terminate Event.”

10. A, C. The Initialize event fires after line 1 (Load
frmMy—this is the first loading of the form, and so
the instance is created here) and after line 5
(frmMy.Show—this line causes the form to initialize,
because it had been destroyed in the previous line by
setting the form to Nothing after it was unloaded).

09 002-8 CH 06 3/1/99 7:59 AM Page 263

264 Par t I VISUAL BASICS 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Initialize doesn’t fire after line 2 (frmMy.Show
vbModal) because the form has already been ini-
tialized by the previous Load statement. It doesn’t
fire after line 7 (frmMy.Show) because, even
though the form was just unloaded before this, its
variables were not destroyed by setting it to
Nothing. Therefore the form remained initialized.
See “The Initialize Event.”

11. C. The Initialize event only. Although making
any reference to a form’s properties or methods
will normally cause an implicit Load, there is an
exception to this rule for calls to a form’s custom
members (i.e. properties implemented as Public
variables, methods implemented as Public proce-
dures, or properties implemented with Property
procedures). In such cases, no implicit load
occurs. The Initialize event will still run in
such cases, however, provided the form is not
already instantiated. See “The Initialize Event”
and “Implicitly Loading a Form.”

09 002-8 CH 06 3/1/99 7:59 AM Page 264

OBJECT IVE

7C H A P T E R

Implementing Online
User Assistance in a

Distributed Application

This chapter helps you prepare for the exam by cover-
ing the following objective and its subobjectives:

Implement online user assistance in a distrib-
uted application (70-175 and 70-176).

• Set appropriate properties to enable user
assistance. Help contents include HelpFile,
HelpContextID, and WhatsThisHelp.

• Create HTML Help for an application.

• Implement messages from a server compo-
nent to a user interface.

. The basic idea behind the exam objective covered
in this chapter is the display of Help information to
a user.

. Assuming that a standard HTML Help or WinHelp
file already exists for your application, VB makes it
easy for you to link up the Help file’s topics (which
have unique internal identifying numbers that you
must know) to various types of context-sensitive
help in VB. You can set special VB properties to
change the Help file and to cause Help to appear in
various ways when the user presses the F1 key or
performs other actions.

. This chapter also briefly discusses how to create
an HTML Help file that you can use in your VB
applications. HTML Help is Microsoft’s new stan-
dard for Help file formats.

. The third subobjective listed, “Implement messages
from a server component to a user interface,” is
more appropriate for a discussion of COM compo-
nents. We therefore discuss that subobjective in
Chapter 12, “Creating a COM Component that
Implements Business Rules or Logic” in the section,
“Sending Messages to the User from a COM
Component.”

10 002-8 CH 07 3/1/99 8:00 AM Page 265

OUTL INE STUDY STRATEGIES

Two Types of Help Files 267

HTML Help Files 267

WinHelp Files 267

Referencing Help Through the HelpFile
Property of an Application 268

Setting Help Files at Design Time 269

Setting Help Files at Runtime 270

Context-Sensitive Help for Forms
and Controls 271

Context-Sensitive Help With the
HelpContextID Property 271

Adding ToolTips to an Application 272

Providing WhatsThisHelp in an
Application 273

Creating HTML Help 276

HTML Help Source File Structures 276

Creating and Compiling an HTML
Help File Project With HTML Help
Workshop 277

Chapter Summary 293

. Using an existing Help file whose contents you
know (such as the sample HTML and WinHelp
files supplied with this book) to experiment with
VB’s App.Helpfile property and with the other
Help properties discussed in this chapter.

. Following Exercise 7.1 to get some hands-on
experience with VB’s Help properties.

. Downloading and becoming familiar with the
HTML Help Workshop (see Appendix F,
“Suggested Readings and Resources”). Be
warned that this product has a semi-standard,
somewhat half-baked user interface, and cryp-
tic, poorly designed, and incomplete help. Most
of the development of an HTML Help system
can be done with a text editor, but a few steps
are more easily accomplished with the HTML
Help workshop.

. Becoming familiar with the sections in this
chapter under “Creating HTML Help” and
Exercises 7.2 and 7.3. This should give you the
information and experience to be able to under-
stand HTML Help creation sufficiently to over-
come the shortcomings of the HTML Help
Workshop interface.

10 002-8 CH 07 3/1/99 8:00 AM Page 266

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 267

TWO TYPES OF HELP FILES

We live in exciting times, especially those of us who work with Help
files on Windows operating systems. Microsoft is in the midst of a
transition between its older Help file format, WinHelp, and its Help
file format of the future, HTML Help. Although the certification
exam focuses on the HTML Help format, we briefly discuss both
formats here.

HTML Help Files
HTML Help is a newer format that Microsoft now uses as its stan-
dard Help file format. Figure 7.1 shows an example of an HTML
Help file displayed on a user’s screen. HTML Help files have a chm

extension. In order to display HTML Help files on a user’s system,
the user’s system must be set up properly with the correct Registry
entries and support files.

F IGURE 7 .1
An HTML Help screen as seen by an end user.

We discuss the creation of HTML Help files in this chapter under
the section entitled “Creating HTML Help” as the exam objective.

WinHelp Files
WinHelp is Microsoft’s older Help file format. Figure 7.2 shows an
example of an HTML Help file as displayed on a user’s screen.

10 002-8 CH 07 3/1/99 8:00 AM Page 267

268 Par t I VISUAL BASIC 6 EXAM CONCEPTS

WinHelp files have an hlp extension. In order to display WinHelp files
on a user’s system, the WinHelp engine, Winhlp32.exe, must reside on
the user’s system.

F IGU R E 7 .2
A WinHelp screen as seen by an end user.

In order to create WinHelp files, a developer must know how to use
Microsoft’s Help Compiler program, hc.exe, to create compiled .hlp
files. Before compiling the .hlp file, the developer must create one or
more special .rtf-format files containing specific tags and formatting,
as well as a text file with extension .hpj, that serves as a header file
for the Help project.

By all appearances, Microsoft intends that WinHelp files fade from
the scene.

REFERENCING HELP THROUGH THE
HELPFILE PROPERTY OF AN
APPLICATION

The simplest way to implement Help in an application is to tell the
application the name and location of a Help file. The user can then
get help by pressing the F1 key.

Visual Basic lets the developer specify an HTML Help or a WinHelp
file as the project’s Help file either at design time or at runtime.

10 002-8 CH 07 3/1/99 8:00 AM Page 268

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 269

For most applications, it is sufficient to identify the Help file during
development and to distribute the Help file with the application.
Occasionally the application’s Help file cannot be included at
development time because the name of the file is unknown, the file
doesn’t exist, or because different users will have different files. In
these cases, the Help file can be specified at runtime. This section
describes both ways of identifying the Help file to an application.

Setting Help Files at Design Time
The easiest way to include Help with Visual Basic is to identify the
Help file at design time. This is done through the Properties window
for that project, as shown in Figure 7.3. To reference Properties for a
project, choose Properties from the Project menu in the development
environment.

F IGURE 7 .3
Setting an application’s Help file with the
Project Properties dialog box.

On the General tab of the Project Properties dialog box, the name
and path of the Help file will go under Help File Name. If the *.hlp
or *.chm file will be in the same directory as the application, it is not
necessary to include the full path to the file. The application will use
the same search rules to find the file as other Windows applications.
Visual Basic will let you specify only one Help file for the applica-
tion. To use more than one Help file, you will have to change Help
files at runtime.

10 002-8 CH 07 3/1/99 8:00 AM Page 269

270 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Setting Help Files at Runtime
The second way to include Help in an application, specifying the
filename at runtime, is more flexible than setting the project proper-
ties for the file at design time. With this method, different users have
the ability to reference different Help files, or a single user can use
different Help files depending on how the application is being used.

As an example, imagine that you are creating an accounting system
that will be used by both a data entry group and the financial analy-
sis staff of a company. The data entry group will use the windows of
the application to enter and change data in the system. The financial
analysis group may require read-only access to the data. You may
want to provide customized Help files to each group, describing
their own needs within the application. If you limit yourself to set-
ting the Help file of the application just at design time, you could
only provide a single Help file. By setting the Help file at runtime,
you are not constrained to a single file.

You can use the HelpFile property of the App object to set a reference
to a Help file at runtime. The App object is a global object available to
the application. It provides information about the application as well
as the means to change some of the characteristics of the application.
The HelpFile property initially identifies the Help file that was
entered into the Project Properties dialog box at design time (refer
back to Figure 7.3). App.Helpfile is a read/write property at runtime,
so you can reset the Help file after the application has started.

You can set a Help file at runtime with code as follows:

App.HelpFile = filename

Filename is the Help file’s name, including, if necessary, a path to
that file. To set a reference to your own Help file, for example, you
might write the following code:

App.HelpFile = ‘C:\MyPath\MyHelp.chm’

Usually, if an application needs to set the Help file path at runtime, it
will get the data it needs from previously stored information in the
System Registry. Occasionally, the user may need to specify the file
name, and sometimes the path to that file. The HelpFile property is a
text string that describes the path and file. If the path is not defined,
the application follows the standard Windows search methods just as
it does when you identify the file at design time.

10 002-8 CH 07 3/1/99 8:00 AM Page 270

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 271

CONTEXT-SENSITIVE HELP FOR
FORMS AND CONTROLS

Providing context-sensitive help in an application can save users time
trying to find information instead of making them navigate through
a Help Contents page or an Index.

Context-sensitive help gets the user to the required information
quickly and directly by being “aware” of which control has focus
when the user presses F1.

The following sections discuss three easy ways to add context-
sensitive help to your application:

• HelpContextID Help. This type of help uses the traditional F1
key to show help information to a user.

• ToolTips. This type of help shows brief messages to the user
when the mouse pauses over an object.

• WhatsThisHelp. This type of help uses the WhatsThis icon to
let users query the meaning of an object.

Context-Sensitive Help With the
HelpContextID Property
Each standard visible object in Visual Basic, including the menus
and forms, has a HelpContextID property. The HelpContextID prop-
erty is a numeric value corresponding to a Context ID or Topic ID
in a Help file. The default value for HelpContextID is 0, meaning no
context help is provided. The HelpContextID for an object is usually
specified at design time, but can be defined at runtime as well.

The HelpContextID property of an object maps to a Topic ID and its
corresponding topic in a Help file. At runtime when that object is
active and the F1 key is pressed, Windows will open the Help file for
the application with a specific topic displayed. Visual Basic applica-
tions have a hierarchy that is followed to determine which topic to
display when Help is invoked. When the F1 key is pressed, the
application does the following:

N
O

T
E VB Uses WinHelp and HTML Help

Files Identically. When you imple-
ment context-sensitive help as
described in the following sections,
you don’t need to worry about
whether the project’s Help file is a
WinHelp or an HTML Help file: both
file types furnish Topic IDs for their
help topics, and the VB programmer
uses the two different file types in
exactly the same way to provide
context-sensitive help, as described
below.

N
O

T
E Context ID or Topic ID? The

HelpContextID and WhatsThisTopicID
properties discussed in this chapter
must match Context ID numbers or
Topic ID numbers in the correspond-
ing Help file. HTML Help documenta-
tion uses the term “Topic ID” while
WinHelp documentation uses the
term “Context ID” to refer to these
topic-mapping numbers. We shall use
the term Topic ID in this chapter
because that’s the term used for
HTML Help, the Microsoft standard.

10 002-8 CH 07 3/1/99 8:00 AM Page 271

272 Par t I VISUAL BASIC 6 EXAM CONCEPTS

1. It checks the HelpContextID of the active control on the active
form. If that ID is non-zero, it opens the application Help file
with the corresponding topic displayed.

2. If the HelpContextID is zero,Visual Basic checks the
HelpContextID of the container control for the active object.
Usually this is the active form itself. It can also be another con-
tainer control such as Frame or PictureBox. If the ID of the
container is non-zero, Help is opened with the container’s cor-
responding Help topic displayed.If the HelpContextID for the
container is also zero, then the application checks the con-
tainer’s container for a HelpContextID.

3. Visual Basic keeps checking the HelpContextIDs of objects’
containers, and then of containers’ containers, and so on, until
it gets to the form that is the highest-level container. If a non-
zero HelpContextID is found along the way, that help topic is
displayed.

4. If all HelpContextIDs through the form level are zero, the Help
file for the application is opened to the Contents page for a
WinHelp file (refer back to Figure 7.2) or, for an HTML Help
file (refer to Figure 7.1), the default topic or the contents page
if no default topic exists.

The HelpContextIDs of objects must correspond to the Topic IDs of
the Help file specified in the Project Properties window (refer back
to Figure 7.3) or to a Help file previously identified to the applica-
tion through the App.HelpFile property. If a non-zero HelpContextID
for an object exists but a Help file has not been specified for the
application, the user will get no response when the F1 key is pressed.
Help is displayed only if the Help file has been set in the application
and a Topic ID has been defined for a control. If a Topic ID corre-
sponding to the HelpContextID does not exist in the Help file, the
Windows Help engine will display an error stating that the help
topic does not exist.

Adding ToolTips to an Application
A fast and simple way of adding Help information to an application
without using a Help file is by providing ToolTips to the users.

10 002-8 CH 07 3/1/99 8:00 AM Page 272

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 273

ToolTips, which are becoming more and more common in
Windows applications, are little bits of information that appear
when the user rests the mouse pointer over an object in a window.

Visual Basic 6 is a good example of an application that provides
ToolTips. If you rest the mouse pointer over a button on the toolbar
or a control in the toolbox, a message identifying the purpose of the
object appears. You can also easily implement such ToolTip Help in
your own project. Figure 7.4 shows an example of ToolTip Help in
a VB application.

Adding ToolTips to an application is easy in Visual Basic. Just set
the ToolTipText property of each control to the text you want dis-
played when the mouse pointer is over that control.

If an application performs calculations and displays results in a Label
control, for example, you might want to explain to the user how the
result was determined. This can be done by putting the formula used
in the calculation into the ToolTipText property of the Label control.
When the user rests the pointer over the Label, the formula will appear.

You may also want to add ToolTips to command buttons to iden-
tify the purpose of each button to the user. Instead of placing large
amounts of descriptive text in the Caption of a CommandButton,
you can provide additional help to the user through ToolTips.
By doing this the captions of the buttons are kept simple and,
after the user is familiar with the functionality of a button, that
user will no longer need to use the ToolTips.

If an application has ToolTips in a ToolBar or a TabStrip control,
the ShowTips property of these controls must be set to True for the
tips to appear at runtime. Controls that do not have a visible inter-
face at runtime, such as the Timer or CommonDialog controls, do not
have a ToolTipText property.

Providing WhatsThisHelp in an
Application
When ToolTips don’t provide enough information and you don’t want
to force the user to toggle between a Help file and your application,
Visual Basic provides another means of displaying tips to the user.

F IGURE 7 .4
An example of ToolTips in Visual Basic 6.

10 002-8 CH 07 3/1/99 8:00 AM Page 273

274 Par t I VISUAL BASIC 6 EXAM CONCEPTS

WhatsThisHelp gives the means to pop-up information from the
App.HelpFile object to the user in the same format used by ToolTips
(see Figure 7.5).

Unlike ToolTips, WhatsThisHelp gets the pop-up information from a
topic within a Help file so more extensive explanations of objects can
be provided. Also, unlike context-sensitive Help discussed earlier in
the chapter, the Help file does not open in a separate window.
WhatsThisHelp pops up for the user and is visible only until the user
clicks on the application window again.

WhatsThisHelp Property
WhatsThisHelp usually functions on the form level in Visual Basic.
The user typically invokes WhatsThisHelp by clicking on a menu
item on the form and then by selecting the object for which help is
desired.

If the developer wants to implement WhatsThisHelp on a form, the
WhatsThisHelp property of the form must be set to True. This is
done by the developer at design time.

The WhatsThisHelp property has to be set to True for any of the
WhatsThisHelp methods discussed in this section to work.

WhatsThisMode Method
After you have decided to implement WhatsThisHelp on a form, you
must provide a means for the user to invoke the pop-up informa-
tion. The WhatsThisMode method of a form will start the process of
WhatsThisHelp in an application.

If you provide a WhatsThis menu item, the code to do this would be
in the Click event procedure of the WhatsThis menu item and would
look something like this (assuming the WhatsThisHelp property of
Form1 is set to True):

Form1.WhatsThisMode

Invoking the WhatsThisMode method will automatically change the
appearance of the mouse pointer to let the user know that normal
actions have been suspended while in the Help mode (see Figure
7.6). The mouse pointer remains like this until the user clicks on an
object on the form.

F IGU R E 7 .5▲
WhatsThisHelp as it appears in a Visual Basic
application. Note the similarity to ToolTips.

F IGU R E 7 .6▲
The WhatsThisHelp mouse pointer.

10 002-8 CH 07 3/1/99 8:00 AM Page 274

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 275

WhatsThisHelpID Property
After WhatsThisHelp has been invoked and the WhatsThis mouse
pointer is showing (refer again to Figure 7.6), the user can select an
object on the form to get help for that object. When this happens,
Windows uses the WhatsThisHelpID of the object to determine what
information will be displayed. The WhatsThisHelpID maps to a topic
in a Help file in the same way that a HelpContextID does. The only
difference is that with the WhatsThisHelpID, the Help information
appears in a pop-up window and not in a separate dialog box. As
soon as the user clicks again in the application, the pop-up window
goes away.

WhatsThisButton Property
A second way of invoking WhatsThisHelp is from a button on the
title bar of a form, as shown in Figure 7.7. If you set the
WhatsThisButton property to True, you will not need to invoke the
WhatsThisMode method as described earlier. Instead Windows con-
trols the invocation of Help mode.

The following conditions must be true for the WhatsThisButton to
appear on a title bar:

1. The WhatsThisHelp property of the form must be True, and
one of the following must be set:

• The ControlBox property of the form must be True.

• The MinButton and MaxButton properties of the form must
be False.

• The Borderstyle of the form must be either Fixed Single
or Sizeable.

2. The BorderStyle of the form must be Fixed Dialog if it is not
Fixed Single or Sizeable.

If any of the three conditions above are not met, the WhatsThisButton
will not appear for the form.

The WhatsThisHelp and WhatsThisButton properties of the form can
only be written at design time. They’re available at runtime as read-
only properties.

N
O

T
E WhatsThisHelp Topics in an HTML

Help Project As discussed later in
this chapter under the section “HTML
Help Source files for WhatsThisHelp,”
WhatsThisHelp topics do not look the
same to a Help file developer as
extended topics used with
HelpContextIDs.

WhatsThisHelp topics from a WinHelp
file, on the other hand, are the same
in the WinHelp project as extended
topics used with HelpContextIDs.

However, as noted earlier, the VB pro-
grammer using a Help file sees no dif-
ference here. To the VB programmer,
it is all a matter of using the
HelpContextID property or the
WhatsThisHelpID property, regardless
of the format of the Help file.

F IGURE 7 .7
A WhatsThisButton on the title bar of a form.

WhatsThisButton

10 002-8 CH 07 3/1/99 8:00 AM Page 275

276 Par t I VISUAL BASIC 6 EXAM CONCEPTS

ShowWhatsThis Method
The third way of displaying WhatsThisHelp in an application is by
using the ShowWhatsThis method of a control. Code such as

Command1.ShowWhatsThis

will show help for the topic defined by the property Command1.
WhatsThisHelpID. For ShowWhatsThis, the user does not have to click
on the WhatsThisButton on the title bar or select a menu item to go
into WhatsThis mode. You simply cause the WhatsThisHelp topic for
the given object to appear by calling it up in your code.

ShowWhatsThis is usually invoked with a right-mouse pop-up menu
on a control.

As with the other methods of showing WhatsThisHelp, the
WhatsThisHelp property of the form containing the controls
with WhatsThisHelp must be set to True.

CREATING HTML HELP

The Microsoft Exam Objectives for VB6 require you to know the
fundamentals of HTML Help creation. In the following sections, we
discuss the basic structure of the files that go into making up a com-
piled HTML Help file, as well as how to use Microsoft’s HTML
Help Workshop to manipulate and compile these files.

HTML Help Source File Structures
An HTML Help project is similar to a VB project in several ways:

• Its end product (the *.exe file in VB and the *.chm file in
HTML Help) is generated by a compiler from source code files.

• The source code files are created by the programmer in text
code format within a development environment.

• There can be various source code files of different types (*.frm,
*.bas, *.cls, and *.ctl files would be examples in VB, while
*.htm, *.hhk, and *.h files would be examples in HTML Help).

• The source code files for a single project are tied together by
being listed together in a header file (*.vbp file in VB, *.hhp

10 002-8 CH 07 3/1/99 8:00 AM Page 276

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 277

file in HTML Help). The header file also lists other general
information about the project, such as the name and destina-
tion of the compiled file.

We discuss the formats and roles of the various types of source code
files in the following sections.

Creating and Compiling an HTML Help
File Project With HTML Help Workshop
You can use Microsoft’s HTML Help Workshop to create, maintain,
and compile the various files needed for an HTML Help project.

To create a new HTML Help project with an hhp header file, you
should take the following steps:

S T E P B Y S T E P
7.1 Creating a New HTML Help Project With the

HTML Help Workshop

1. Run the HTML Help Workshop application and click the
File, New menu option (see Figure 7.8).

N
O

T
E Downloading the Microsoft HTML

Help Workshop As of this writing,
you can obtain HTML Help Workshop
as a free download from Microsoft’s
Web site at

www.microsoft.com/workshop/author

/htmlhelp/default.asp

The text on the Web page refers to
the file as “HTML Help 1.1.” The
name of the file to download is
htmlhelp.exe.

, F IGURE 7 .8
The HTML Help Workshop File menu dialog box.

F IGURE 7 .9▲
The HTML Help Workshop’s New dialog box.

2. On the resulting New dialog box screen, choose Project as
the type of object that you wish to create (see Figure 7.9)
and click the OK button to continue.

10 002-8 CH 07 3/1/99 8:00 AM Page 277

278 Par t I VISUAL BASIC 6 EXAM CONCEPTS

3. You will see the first screen of the New Project Wizard (see
Figure 7.10). Leave the Convert WinHelp project check
box unchecked and proceed to the next screen.

4. On the New Project Wizard’s Destination screen, click the
Browse button to specify the name and location of the new
HTML Project Header file (*.hhp) that you wish to create
(see Figure 7.11). After you’ve selected a location for the
new project header file, you can proceed to the next screen.

5. For the time being, you can leave all the options on the
New Project Wizard’s Existing Files dialog box see (see
Figure 7.12) unchecked and proceed to the next screen.

6. Click the Finish button on the New Project Wizard’s final
screen. You should then see general information for the
new project in the left-hand pane of the HTML Help
Workshop, as shown in Figure 7.13.

7. The new project has now been initialized with a Project
Header file (*.hhp). You can save changes to the project by
answering the prompt when you exit the HTML Help
Workshop or by choosing the File, Save Project menu
option.

F IGU R E 7 .10▲
The First screen of the HTML Help Workshop’s
New Project Wizard.

F IGU R E 7 .11.
Specifying the name of a new HTML Help
project file (*.hhp).

F IGU R E 7 .12▲
The HTML Help Workshop New Project Wizard’s
Existing Files dialog box.

10 002-8 CH 07 3/1/99 8:00 AM Page 278

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 279

The HTML Project Header File
The HTML Project Header file (*.hhp) is a text file divided into sec-
tions. Each section is headed by its title that is enclosed in square
brackets. Listing 7.1 shows an example of an HTML Project Header
file, while Figure 7.14 shows what the same file looks like when
viewed in the HTML Help Workshop.

LISTING 7.1

CONTENTS OF A SAMPLE HTML PROJECT HEADER FILE

[OPTIONS]
Compatibility=1.1
Compiled file=HR.chm
Display compile progress=No
Language=0x409 English (United States)

[FILES]
html\Gender.htm
html\maritalstatus.htm
html\Medicalinsurancestatus.htm

[ALIAS]
IDH_GENDER=html\Gender.htm
IDH_MARITALSTATUS=html\Gender.htm
IDH_MEDICALINSURANCE=html\Gender.htm

[MAP]
#include HR.h

[TEXT POPUPS]
CSHelp.h
CSHelp.txt

, F IGURE 7 .13
The HTML Help Workshop just after starting a
new project.

10 002-8 CH 07 3/1/99 8:00 AM Page 279

280 Par t I VISUAL BASIC 6 EXAM CONCEPTS

F IGU R E 7 .14.
The HTML Help Workshop with a full-featured
Help project loaded.

The [OPTIONS] section gives general project information, including
the name of the compiled HTML Help file, the name of the files for
the Contents and Index, the default HTML topic file contents to
display if the Help file is called without a ContextID, and the lan-
guage in which to display prompts and captions. You can manipulate
the project’s [OPTIONS] from within the HTML Help Workshop by
clicking the Change Project Options icon (the topmost Toolbar but-
ton on the vertical toolbar along the left of the HTML Workshop’s
main screen) and filling in the appropriate information in the result-
ing Options tabbed dialog box, as shown in Figure 7.15.

The other *.hhp file sections (explained more at length under the
sections in this chapter entitled “HTML Help source files for
Extensive Help” and “HTML Help source files for WhatsThisHelp”)
include lists of different types of files that contain the actual Help
information to be shown by the system.

HTML Help Source Files for Extensive Help
(HelpContextID)
In order to implement Help topics in separate screens with VB’s
HelpContextID property, the underlying help project must have
separate topics defined and each topic must have its own unique
identifying number for use by VB’s HelpContextID.

F IGU R E 7 .15▲
The HTML Help Workshop’s Options tabbed
dialog box.

10 002-8 CH 07 3/1/99 8:00 AM Page 280

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 281

Each Topic is defined in a separate HTML (*.htm) file, and the asso-
ciation between Topic files and HelpContextID numbers is accom-
plished by one or more mapping files (*.h) and the [FILES], [ALIAS],
and [MAP] sections of the project file. A brief summary of the role of
each of these elements follows:

á Topic files (*.htm) contain the actual content of help topics.
They are in HTML (Web page) format.

á The [FILES] section in the *.hhp file specifies all the Topic files
used in the help project.

á Mapping files (*.h) define the Topic ID numbers that will be
used by VB to identify topics in the help file and assign a
uniquely named constant to each Topic ID.

á The [MAP] section in the *.hhp file specifies all the mapping files
used in the help project.

á The [ALIAS] section in the *.hhp file ties together the named
constants defined in the mapping files (*.h) with individual
Topic files (*.htm).

We discuss the use of each of these elements in the following sections.

If you want to enable users to navigate to other Help file topics
while viewing individual Help topics, then you also must supply
either an Index or a Contents file (developers often supply both).

Topic Files and the [FILES] Section
Each Topic file represents a single Help file screen topic that can be
associated with a HelpContextID for use in VB, as discussed in the
section entitled “Context-Sensitive Help With the HelpContextID
Property.” Figure 7.16 shows a Help topic from an HTML Help file
displayed on a user’s screen.

A Topic file is really just a Web page, or *.htm file, as illustrated in
Listing 7.2. Just like any other HTML file, the Topic file can contain
references to URLs on the Web.

10 002-8 CH 07 3/1/99 8:00 AM Page 281

282 Par t I VISUAL BASIC 6 EXAM CONCEPTS

F IGU R E 7 .16
A Help topic from an HTML Help file displayed
on a user’s screen.

LISTING 7.2

SAMPLE HTML HELP TOPIC FILE CONTENTS

<HTML>
<HEAD>
<title>Gender of Employee</title>
</HEAD>
<BODY>
<p>
(Required). Choose the Male or Female option button.
We cannot process new employees without gender information.
This is needed for Medical Insurance information only.
</p>
</BODY>
</HTML>

You must include every Topic file you wish to use in your Help
project in the [FILES] section of the *.hhp project header file. To add
information to the [FILES] section, you can follow these steps:

S T E P B Y S T E P
7.2 Adding Topic Files to the [FILES] Section of an

HTML Help Project File

1. Make sure that the HTML Help Workshop application is
running with the appropriate HTML Help project (*.hhp)
file loaded.

10 002-8 CH 07 3/1/99 8:00 AM Page 282

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 283

2. Click the Add/Remove Topic files icon (the second Toolbar
button from the top on the vertical toolbar along the left
of the HTML Workshop’s main screen). This will bring up
the Topic Files dialog box, as shown in Figure 7.17.

3. Click the Add button on the Topic Files dialog box to
bring up a Browse screen, as shown in Figure 7.18. Browse
to an *.htm file that you wish to add to your project as a
help topic. Repeat this step for each of the *.htm files that
you wish to add to the project.

Add/Remove Topic files button

F IGURE 7 .17▲
HTML Help Workshop’s Topic Files dialog box.

, F IGURE 7 .18
Adding a Topic file to the Help project from the
HTML Help Workshop New Project Wizard’s
Topic Files dialog box.

4. Once you’re finished adding Topic files, the Topic Files
dialog box should show a list of the files you’ve added,
as shown in Figure 7.19. Click OK on the Topic Files
dialog box.

You should now see a [FILES] section in the project win-
dow (refer to Figure 7.14).

5. Be sure to save the project file.

Mapping Files, Topic IDs, and the [ALIAS] and [MAP]
Sections
Although Topic files contain the actual “meat” of the Help informa-
tion, their sustenance will be unavailable to VB programmers and
thus to users unless you associate each Topic file with its own
unique Topic ID so that VB programmers can set the HelpContextID
property of objects to point to the topics.

F IGURE 7 .19▲
The HTML Help Workshop New Project Wizard’s
Topic Files dialog box showing topic files that
have been added to the project.

10 002-8 CH 07 3/1/99 8:00 AM Page 283

284 Par t I VISUAL BASIC 6 EXAM CONCEPTS

You associate Topic files with unique Topic IDs by creating and
including a Topic ID mapping file (*.h) in your project and then asso-
ciating the Topic IDs with Topic files already included in the project
in the [FILES] section. To accomplish this, take the following steps:

S T E P B Y S T E P
7.3 Associating Topic Files With Topic IDs

1. Use a text editor to create one or more mapping files (*.h).
Each line of the mapping file will define a constant name
for a Topic ID number with the format:
#define ConstName TopicIDValue

See Listing 7.3 for an example.

LISTING 7.3

SAMPLE TOPIC ID MAPPING F ILE

#define IDH_GENDER 10
#define IDH_MARITALSTATUS 20
#define IDH_MEDICALINSURANCE 30

2. Specify the mapping file or files in the [MAP] section of the
*.hhp file. Do this in the HTML Help Workshop by fol-
lowing these steps:

• Click the HTMLHelp API Information icon (the
fourth Toolbar button from the top on the vertical
toolbar along the left of the HTML Workshop’s
main screen) to bring up the HTMLHelp API
Information dialog box (see Figure 7.20).

• On the Map tab of this dialog box, click the
Header button to bring up the Include File dialog
box. Click the Browse button on this dialog box to
browse and select the header file that you created
in the first step above (see Figure 7.21).

• Click the various OK buttons until you’ve returned
to the main project screen that will now have a
[MAP] section (refer to Figure 7.14).

F IGU R E 7 .20
The HTML Help Workshop’s HTMLHelp API
Information tabbed dialog box.

10 002-8 CH 07 3/1/99 8:00 AM Page 284

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 285

3. In the [ALIAS] section of the HTML Help Project file
(*.hhp), associate constant names from the mapping files
with corresponding Topic files named in the [FILES] sec-
tion. Do this in the HTML Help Workshop by following
these steps:

• Click the HTMLHelp API Information icon (the
fourth Toolbar button from the top on the vertical
toolbar along the left of the HTML Workshop’s
main screen) to bring up the HTMLHelp API
Information dialog box (refer to Figure 7.20).

• On the Alias tab of this dialog box, click the Add
button to bring up the Alias dialog box (see Figure
7.22).

• In the first field of the Alias dialog box, enter the name
of a constant from one of the mapping files that you
created in the first step above (refer to Figure 7.22).

• In the second field of the Alias dialog box, use the
drop-down list to select the topic file that you wish
to associate with this constant’s ContextID, as
shown in Figure 7.22. Add a comment if you wish
and click OK.

• Repeat the previous three steps for all the Topic
IDs that you want to define. Then click the various
OK buttons until you’ve returned to the main pro-
ject screen that will now have an [ALIAS] section,
as shown in Figure 7.14.

, F IGURE 7 .21
Including a Mapping Header file for Topic IDs
with the Include File dialog box from the Map
tab of the HTMLHelp API Information dialog box.

F IGURE 7 .2 2▲
The Alias dialog box on the HTMLHelp API
Information tabbed dialog box with completed
information for a Topic file mapping.

10 002-8 CH 07 3/1/99 8:00 AM Page 285

286 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Figure 7.14 shows the project file with a [MAP] section that points to
the mapping file, and an [ALIAS] section associating Topic ID con-
stant names with Topic files.

If an HTML Help file contained the information shown in Figure
7.14 and the mapping file contained the information shown in
Listing 7.3, then the VB programmer using this file could use a
HelpContextID property value of 1 to associate an object with the
information in the gender.htm Topic file.

The Index File
The Index file (*.hhk) provides an Index of keywords the user of the
compiled Help file can view in order to navigate the HTML Help
file’s topics (see Figure 7.23).

F IGU R E 7 .23
The Index of an HTML Help file as seen
by the end user.

Strictly speaking, you don’t need an Index file.

An Index file is really a specialized HTML file that uses a specific
HTML format, that of the unnumbered list of OBJECTS (with
standard HTML tags such as …, …, and
<OBJECT>…/OBJECT>). Listing 7.4 provides a sample of an
Index file.

N
O

T
E Index Files Are Not Covered in Detail

Because Index files aren’t necessary
to a context-sensitive help system as
specified in the Microsoft VB exam
objectives, we do not discuss their
implementation in detail here.

10 002-8 CH 07 3/1/99 8:00 AM Page 286

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 287

LISTING 7.4

A SAMPLE HTML HELP INDEX FILE

<HTML>
<HEAD>
</HEAD><BODY>

 <OBJECT type=”text/sitemap”>
<param name=”Name” value=”Benefits”>
<param name=”Name” value=”Medical Insurance”>
<param name=”Local” value=”html\

➥Medicalinsurancestatus.htm”>
</OBJECT>

 <OBJECT type=”text/sitemap”>
<param name=”Name” value=”Divorced”>
<param name=”Name” value=”Marital Status”>
<param name=”Local” value=”html\

➥maritalstatus.htm”>
</OBJECT>

 <OBJECT type=”text/sitemap”>
<param name=”Name” value=”Female”>
<param name=”Name” value=”Gender of Employee”>
<param name=”Local” value=”html\Gender.htm”>
</OBJECT>

 <OBJECT type=”text/sitemap”>
<param name=”Name” value=”Gender”>
<param name=”Name” value=”Gender of Employee”>
<param name=”Local” value=”html\Gender.htm”>
</OBJECT>

</BODY></HTML>

Each OBJECT of type “text/sitemap” in the unnumbered HTML
list represents a topic file already included in the project with one or
more keywords pointing to it. For example, in the listing we see that
the Help topic furnished by the file MedicalInsuranceStatus.htm has
two keywords that point to it, “Benefits” and “Medical Insurance.”

You can add a reference to an Index file of your project by using the
Files tab on the Project Options dialog box (available from the
Change Project Options icon on the main screen of the HTML
Help Workshop).

You can automatically create and maintain an Index file using the
Index tab on the main project screen.

10 002-8 CH 07 3/1/99 8:00 AM Page 287

288 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The Contents File
The Contents file (*.hhc) provides a Table of Contents that the user
of the compiled Help file can view in order to navigate the HTML
Help file’s topics (see Figure 7.24).

F IGU R E 7 .24
The Contents of an HTML Help file as
seen by the end user.

Listing 7.5 provides a simple example of a Contents file.

LISTING 7.5

A SAMPLE HTML HELP CONTENTS FILE

<HTML>
<HEAD>
</HEAD><BODY>

 <OBJECT type=”text/sitemap”>
<param name=”Name” value=”Personal

➥information”>
</OBJECT>

 <OBJECT type=”text/sitemap”>

<param name=”Name” value=”Gender”>
<param name=”Local”

➥value=”html\Gender.htm”>
</OBJECT>

 <OBJECT type=”text/sitemap”>
<param name=”Name” value=”Marital

➥Status”>
<param name=”Local”

➥value=”html\maritalstatus.htm”>
</OBJECT>

 <OBJECT type=”text/sitemap”>

10 002-8 CH 07 3/1/99 8:00 AM Page 288

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 289

<param name=”Name” value=”Benefits”>
</OBJECT>

 <OBJECT type=”text/sitemap”>

<param name=”Name” value=”Medical
➥Insurance”>

<param name=”Local” value=”html\
➥Medicalinsurancestatus.htm”>

</OBJECT>

</BODY></HTML>

Like an Index file, a Contents file is really a specialized HTML file
that also uses the same HTML format as the Index file, that of the
unnumbered list of OBJECTS (with standard HTML tags such as
…, …, and <OBJECT>…/OBJECT>).

Also like an Index file, a Contents file is optional.

As the Listing illustrates, the lists in Contents files differ from those
of Index files because Contents lists can be nested in various levels of
depth. This nesting then implements subsections and sub-subsections
in the Table of Contents.

Each OBJECT of type “text/sitemap” in the unnumbered HTML
can represent a topic with a single Table of Contents entry pointing
to it. For example in the listing, we see that the Help topic furnished
by the file MedicalInsuranceStatus.htm is referred to by the Table of
Contents entry “Medical Insurance.”

You can add a reference to a Contents file to your project by using
the Files tab on the Project Options dialog (available from the
Change Project Options icon on the main screen of the HTML
Help Workshop).

You can automatically create and maintain a Contents file using the
Contents tab on the main project screen.

HTML Help Source Files for WhatsThisHelp
If you wish to implement WhatsThisHelp from an HTML Help file,
you must include the following:

• So-called “context-sensitive” or “Pop-up” Topic files. One of
these files can contain many small “one liner” WhatsThisHelp
topics as well as a unique constant name to identify each topic.

N
O

T
E Contents Files Are Not Covered in

Detail Because Contents files
aren’t necessary to a context-sensi-
tive help system as specified in the
Microsoft VB exam objectives, we do
not discuss their implementation in
detail here.

10 002-8 CH 07 3/1/99 8:00 AM Page 289

290 Par t I VISUAL BASIC 6 EXAM CONCEPTS

• Topic ID mapping files. This second type of file format is
identical to the format of the *.h file described above for map-
ping HelpContextID topics. The purpose of this file is to map
each of the unique constant names defined in the Pop-Up
Topic file to a numeric Topic ID.

You include these two files in an HTML Help project by specifying
them under the [TEXT POPUPS] section of the HTML Help project file
(*.hhp), as described in the following sections.

Context-Sensitive Topic Files
A context-sensitive Topic file (*.txt) is a text file that associates a
unique constant name with some brief text that you can use in a
WhatsThisHelp system in VB.

The format for each WhatsThisHelp topic entry is:

.topic ConstName
Text of Topic

ConstName is a unique identifier that will later be used to link the
topic to a Topic ID (see the following section) and Text of Topic is
the text that the user will actually see when WhatsThisHelp pops up.

Listing 7.6 gives a sample of such a file.

LISTING 7.6

A SAMPLE HTML HELP TOPIC FILE FOR TEXT POPUP

HELP (WhatsThisHelp)
.topic IDH_GENDER
Optional.

.topic IDH_MARITALSTATUS
Required for Tax status.

.topic IDH_MEDICALINSURANCE
Has medical insurance.

Context-Sensitive Topic ID Mapping Files
Just as you must map constant names to numeric values for
HelpContextIDs, so must you map WhatsThisHelp topic constants to
numeric values for WhatsThisHelpIDs. You use a Context-Sensitive

N
O

T
E Confusion Over Use of the Term

“Context-Sensitive” Strictly speak-
ing, all of the VB help that we discuss
in this chapter is “context-sensitive”
help. However, documentation and ter-
minology for the HTML Help Workshop
use this term for only “Pop-Up” topics
that correspond to WhatsThisHelp
topics in VB.

10 002-8 CH 07 3/1/99 8:00 AM Page 290

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 291

Mapping file (*.h) to accomplish this. The format of each line in
such a file is the same as the format of the lines in a mapping file
for HelpContextID constants:

#define ConstName ContextIDValue

Listing 7.7 gives an example of the contents of a Context-Sensitive
Topic ID mapping file.

LISTING 7.7

A TEXT POPUP (WHATSTHISHELP) TOPIC ID MAPPING

FILE

#define IDH_GENDER 10
#define IDH_MARITALSTATUS 20
#define IDH_MEDICALINSURANCE 30

Including WHATSTHISHELP Files in the HTML Help
Project
After you’ve created a Context-Sensitive Topic and Context-Sensitive
Topic ID mapping file as described in the previous two sections, you
can include them in the HTML Help project by following these steps:

S T E P B Y S T E P
7.4 Associating Topic Files With Topic IDs

1. Click the HTMLHelp API Information icon (the fourth
Toolbar button from the top on the vertical toolbar along
the left of the HTML Workshop’s main screen) to bring
up the HTMLHelp API Information dialog box (refer to
Figure 7.20).

2. On the Text Pop-ups tab of this dialog box, click the
Header File button to bring up the Include File dialog
box. Then browse to and select the mapping file that you
created for Pop-Up Topic IDs (Figure 7.25). After the file
is selected, click OK to return to the Text Pop-ups tab.

10 002-8 CH 07 3/1/99 8:00 AM Page 291

292 Par t I VISUAL BASIC 6 EXAM CONCEPTS

3. On the Text Pop-ups tab, click the Text File button to
bring up the Include File dialog box. Then browse to and
select the Context-Sensitive Topic ID file (*.txt) that you
created for Pop-up topics (Figure 7.26).

F IGU R E 7 .25.
Selecting a Topic ID mapping file for
WhatsThisHelp with the Include File dialog box
from the Text Pop-ups tab of the HTMLHelp API
Information dialog box.

F IGU R E 7 .26.
Selecting a Topic file for WhatsThisHelp with
the Include File dialog box from the Text Pop-
ups tab of the HTMLHelp API Information
dialog box.

4. Click OK until you’ve returned to the main screen. You
should now see a [TEXT POPUPS] section in your project
that includes the two files you just selected (refer to
Figure 7.14).

10 002-8 CH 07 3/1/99 8:00 AM Page 292

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 293

This chapter covered the following key topics for the Microsoft
Certification Exam:

á The two different help file formats: HTML Help (the new
standard) and WinHelp (the older standard).

á VB’s App.HelpFile property that you can set at design time or
runtime to provide a Help file for your application.

á Use of the HelpContextID property to provide full-screen, con-
text-sensitive help information from a Help file.

á How to implement WhatsThisHelp to provide pop-up help
information from a Help file.

á How to use the ToolTipText property to provide pop-up help
information that does not come from a Help file.

á How to create an HTML Help file.

CHAPTER SUMMARY

KEY TERMS
• Context

• Context ID

• HTML Help

• Topic ID

• WinHelp

10 002-8 CH 07 3/1/99 8:00 AM Page 293

294 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Exercises

7.1 Using Built-In VB Help Properties With
an Existing Help File

Estimated Time: 15 minutes

Objective: This exercise guides you through the steps
you need to follow to implement both HelpContextID
Help and WhatsThisHelp from an existing HTML Help
file or from an existing WinHelp file. The single form in
the project provides a simple interface such as a human
resources department might use to enter information
about a new employee. In the steps of this exercise, you
will connect objects on the form to topics in both
WinHelp and HTML Help files. You will use two pre-
compiled Help files that have been provided for this
exercise on the CD.

1. Locate the WinHelp file, HR.hlp and the HTML
Help file, HR.chm, on the CD accompanying
this book. Make sure they are available on your
system as you work through this exercise.

2. Start a new Standard EXE VB project with a sin-
gle form. Place controls on the form’s surface as
shown in Figure 7.27. Adjust the objects’ proper-
ties as given in Table 7.1.

TABLE 7.1

OBJECTS TO PUT ON THE FORM FOR

EXERCISE 7.1

Control Property Value

Frame Name fraGender

Caption Gender

OptionButton Name optFemale

Caption Female

OptionButton Name optMale

Caption Male

Frame Name fraMaritalStatus

Caption Marital Status

OptionButton Name optSingle

Caption Single

OptionButton Name optMarried

Caption Married

Frame Name fraHelpFileType

Caption Help File Type

OptionButton Name optHTMLHelpFile

Caption HTML Help File (*.chm)

OptionButton Name optWinHelpFile

Caption WinHelp File (*.hlp)

Check Box Name chkMedicalInsurance

Caption Medical Insurance

3. Use the Project Properties menu dialog box to set
the project’s HelpFile to HR.chm.

4. Make both the HelpContextID and
WhatsThisHelpID properties for the Gender frame
10 (this is the Gender topic number in the Help
file’s source code).

F IGU R E 7 .27
The form for Exercise 7.1.

10 002-8 CH 07 3/1/99 8:00 AM Page 294

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 295

A P P LY YO U R K N O W L E D G E

5. Make both the HelpContextID and
WhatsThisHelpID properties for the Marital Status
frame 20 (this is the Marital Status topic number
in the Help file’s source code).

6. Make both the HelpContextID and
WhatsThisHelpID properties for the Medical
Insurance Check Box 30 (this is the Medical
Insurance topic number in the Help file’s source
code).

7. Run the application and test the Help topics in
HR.chm by navigating to each of the three areas
for which you set the HelpContextID above and
pressing F1.

8. Stop the application and set the form’s
WhatsThisHelp and WhatsThisHelpButton proper-
ties to True. Re-run the application and note the
difference in behavior.

9. Enable the application to switch between differ-
ent Help files as it runs. You’ll do this by putting
code in the Click events of the Option buttons
for the two different Help files:

Private Sub optHTMLHelpFile_Click()
‘Path will vary depending on where you

➥place the file
App.HelpFile = “A:\HR.CHM”

End Sub

Private Sub optWinHelpFile_Click()
‘Path will vary depending on where you

➥place the file
App.HelpFile = “A:\HR.HLP”

End Sub

10. Repeat steps 7 and 8 above, but for each step,
switch Help files during the step by clicking the
Help file option buttons. Observe the difference
in behavior and appearance between help com-
ing from the *.hlp and *.chm Help files.

7.2 Creating HTML Help for HelpContextIDs

Estimated Time: 90 minutes (not including time to
download and install HTML Help Workshop)

Objective: This exercise shows you how to create an
HTML Help file whose topics can be used with VB’s
HelpContextID property. In this exercise and the follow-
ing exercise, you’ll re-create the HR.chm Help file used
in Exercise 7.1.

N
O

T
E You Need the Microsoft HTML Help

Workshop In order to complete
Exercises 7.2 and 7.3, you will need
to download and install the Microsoft
HTML Help Workshop on your work-
station.

As of this writing, you can obtain
HTML Help Workshop as a free down-
load from Microsoft’s Web site at

www.microsoft.com/workshop/author/

htmlhelp/default.asp

The text on the Web page refers to
the file as “HTML Help 1.1.” The
name of the file to download is html-
help.exe.

1. The three topics that you will implement will be
the three Help topics of Exercise 7.1: Gender,
Marital Status, and Insurance Status.

2. Create an HTML file named Gender.htm for the
Gender help topic. You may use a text editor or a
Web authoring tool. The contents of Gender.htm
should look like this:

10 002-8 CH 07 3/1/99 8:00 AM Page 295

296 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

<HTML>
<HEAD>
<title>Gender of Employee</title>
</HEAD>
<BODY>
<p>
(Required). Choose the Male or Female option
➥button.
We cannot process new employees without
➥gender information.
This is needed for Medical Insurance
➥information only.
</p>
</BODY>
</HTML>

3. Create an HTML file named MaritalStatus.htm
for the Marital Status help topic. You may use a
text editor or a Web authoring tool. The contents
of MaritalStatus.htm should look like this:

<HTML>
<HEAD>
<title>Marital Status</title>
</HEAD>
<p>
(Required). Needed for deduction for
➥withholding tax computations.
</p>
</BODY>
</HTML>

4. Create an HTML file named
InsuranceStatus.htm for the Insurance Status
help topic. You may use a text editor or a Web
authoring tool. The contents of
InsuranceStatus.htm should look like this:

<HTML>
<HEAD>
<title>Medical Insurance</title>
</HEAD>
<BODY>
<p>Medical Insurance Status</p>
Check to see whether employee wants.
</BODY>
</HTML>

5. Use a text editor to create a header definition file
named HR.h that will map a unique constant

name corresponding to each Topic ID that you
want for the three help topics. The contents of
HR.h should look like this:

#define IDH_GENDER 10
#define IDH_MARITALSTATUS 20
#define IDH_MEDICALINSURANCE 30

6. Start the HTML Help Workshop application.

7. Choose the File/New menu option and choose
“Project” as the item you want to create when
you see the prompt (refer to Figure 7.9).

8. You’ll enter the New Project Wizard (refer to
Figure 7.10). Leave the first Check box (Convert
WinHelp Project) unchecked and proceed to the
next screen. On that screen, you’ll be prompted
to specify a name and a path for your Help pro-
ject file. Use the Browse button to choose a path,
preferably the same folder where you created the
HTML files (or perhaps a parent folder of that
HTML folder) in the above steps (refer to Figure
7.11).

9. Proceed to the next screen (refer to Figure 7.12)
which prompts you for existing files to include in
the project. For this exercise we’ll omit Contents
and Index files. However, you’ve created HTML
files in the previous steps of this exercise and
you’ll want to include them. Check the box
labeled “HTML files (.htm)” and proceed to the
next screen.

10. The next screen of the New Project Wizard
prompts you to specify the individual HTML
files that you’d like to include. For each HTML
file that you want to add, click the Add button
and use the resulting file dialog box to choose an
HTML file, as shown in Figure 7.28. When
you’ve specified all the files to include in the pro-
ject, click the Next button.

10 002-8 CH 07 3/1/99 8:00 AM Page 296

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 297

A P P LY YO U R K N O W L E D G E

11. Answer the various prompts to finish the Wizard
and save the project file. The Wizard creates a
project file whose left-hand windows should
show part of the information ([OPTIONS] and
[FILES] sections) as illustrated in Figure 7.14.
Notice that the HTML files you specified in step
10 appear under the [FILES] section.

12. Now you must add to your project the Mapping
file that you created in step 5 above. To do so,
click the HTMLHelp API Information Toolbar
button. It’s the fourth button from the top
among the vertical Toolbar buttons along the left
side of the HTML Help Workshop’s main
screen, as indicated in Figure 7.20. The
HTMLHelp API Information tabbed dialog box
will appear as in Figure 7.20. Making sure that
you’ve selected the first tab (labeled “Map”), click
the Header File button, then Browse to and
select the HR.h file that you created in step 5
above (refer to Figure 7.21). After you’ve selected
this file and closed the HTMLHelp API
Information dialog box, a [MAP] section should
appear in your project window, as shown in
Figure 7.14.

13. Now you must create Alias information in your
project file to tie the Topic IDs you defined in
steps 5 and 12 to specific HTML Topic files that
you created in steps 2 through 4. To do so, click
once again the HTMLHelp API Information
button (see Figure 7.20), and this time choose
the Alias tab on the resulting dialog box.

14. On the Alias tab, click the Add button for each
HTML Topic file that you wish to associate with
a Topic ID. Each time you click the button, the
Alias dialog box will pop up, as shown in Figure
7.22. In the first field of the dialog, type the
name of one of the mapping constants that you
included in the file created in step 5. In the sec-
ond field of the dialog box, either type or use the
drop-down list to associate one of the project’s
HTML Topic files with the constant.

15. When you’re done adding Alias information, the
list of Alias strings should look like Figure 7.29.
After you click OK on the HTMLHelp API
Information dialog box, a new [ALIAS] section
will appear in the project window, as shown in
Figure 7.14.

F IGURE 7 .28▲
Using the New Project Wizard to add existing HTML Topic
files to the HTML Help project.

F IGURE 7 .2 9▲
The newly created list of topic file-to-constant mappings on
the Alias tab of the HTMLHelp API Information dialog box.

10 002-8 CH 07 3/1/99 8:00 AM Page 297

298 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

16. You may now compile your Help project by
choosing File, Compile from the menu, or by
clicking the Compile Toolbar button (the funnel,
third from the left) on the upper Toolbar, as indi-
cated in Figure 7.30. Once the project has com-
piled, you’ll see summary information about the
compilation in the right-hand pane of the
HTML Help Workshop (see Figure 7.30). If
prompted to save, answer “Yes.”

Objective: This exercise shows you how to modify an
HTML Help file so that it can provide topics that can
be used to provide WhatsThisHelp in a VB application.
You will do so by adding to the HTML Help file pro-
ject that you created in Exercise 7.2.

1. Use a text editor to create a context-sensitive Topic
file called CSHelp.txt for the three topics that you
implemented in the previous project: Gender,
Marital Status, and Medical Insurance Status. The
contents of the file should look like this:

.topic IDH_GENDER
Optional.

.topic IDH_MARITALSTATUS
Required for Tax status.

.topic IDH_MEDICALINSURANCE
Has medical insurance.

2. Use a text editor to create a context-sensitive map-
ping file called CSHelp.h to map the topic names
from the Topic file with numeric constants. The
contents of this file should look like this:

#define IDH_GENDER 10
#define IDH_MARITALSTATUS 20
#define IDH_MEDICALINSURANCE 30

3. Make sure that you have the HTML Help
Workshop running with the same project open
that you created in Exercise 7.2. Click the
HTMLHelp API Information button, as described
in Exercise 7.2 (refer to Figure 7.20). In the result-
ing dialog box, choose the Text Pop-ups tab.

4. Click the Header File button, browse to and
select the CSHelp.h file that you created in step 2
above (refer to Figure 7.25).

5. Click the Text File button, browse to and select
the CSHelp.txt file that you created in step 1
above (refer to Figure 7.26).

F IGU R E 7 .30
The HTML Help Workshop screen after compiling an HTML
Help project.

17. You can now test your newly created HTML help
file (extension .chm) by substituting it for the file
that you used in the first Exercise. Note that
WhatsThisHelp will not yet work. HelpContextID
help will work at only this point.

7.3 Creating HTML Help for WhatsThisHelp

Estimated Time: 30 minutes

Compile button

10 002-8 CH 07 3/1/99 8:00 AM Page 298

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 299

A P P LY YO U R K N O W L E D G E

6. Once you select these files and click OK on the
HTMLHelp API Information dialog box, your
project window should acquire a new section
entitled [TEXT POPUPS], as shown in Figure 7.14.

7. You may now recompile your help file as
described in Exercise 7.2.

8. Test your newly compiled version by substituting
it for the help file of the VB project from Exercise
7.1. Verify that you can now use WhatsThisHelp
with the newly compiled help file.

Review Questions
1. You have an online Help file that you would like

to distribute with your application. How do you
set a reference to this Help file at design time so
that the application displays help when the user
presses the F1 key?

2. An application you have created will be used by
people in several departments. Each department
will have a different Help file. The name of the
Help file will be stored in the System Registry
and read by your application at runtime. After
your application has read the filename from the
Registry, how do you set a reference in code so
that online help becomes available when the user
presses the F1 key?

3. Name the current standard format for Microsoft
help files and give the extension used by help
files created under that standard. What standard
does it replace, and what extension do the old
standard’s files use?

4. You are developing an application with Visual
Basic 6. In other applications, such as Microsoft
Office, you have seen little explanations pop up

when you leave the mouse pointer over a button
on the toolbar. You want to add this functionality
to your application for your users when they
leave the mouse pointer over a button in the tool-
bar. How can you implement these little pop-up
tips in your Visual Basic applications?

5. If you are going to add context-sensitive help to
your Visual Basic application, what important
information do you need from the person who is
creating the Help file?

6. What section in an HTML Help Header file
specifies the names and locations of Topic files?

Exam Questions
1. Which property of the App object identifies the

Help file and the path to that file that will be
displayed when the user presses the F1 key?

A. Help

B. HelpContents

C. HelpFile

D. HelpTopic

2. The format of Topic files in an HTML Help
project is

A. Web page (*.htm)

B. Text format (*.txt)

C. Help Project format (*.hpp)

D. Rich Text Format (*.rtf)

3. In what context(s) would the line

#define Poetry 1

be appropriate? (Pick all that apply.)

10 002-8 CH 07 3/1/99 8:00 AM Page 299

300 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

A. In the Topic mapping file for HTML Help
topic files

B. In the [MAP] section of an HTML Project
Header file

C. In the [ALIAS] section of an HTML Project
Header file

D. In the topic mapping file for WhatsThisHelp
topics

4. If you are using WhatsThisHelp on a form in your
application, which property of that form must be
set to True, regardless of the method used to dis-
play WhatsThis information?

A. ShowWhatsThis

B. WhatsThisHelpID

C. WhatsThisMode

D. WhatsThisHelp

5. Where does Visual Basic get the information that
is displayed as ToolTips?

A. From the Help file specified in the Project
Properties window

B. From the Help file specified by App.HelpFile

C. From the Help file specified by the HelpFile
property of a CommonDialog control

D. None of these

6. What are the two ways that can be used to con-
nect a Help file to an application so that when the
user presses the F1 key, the Help file is displayed?

A. Setting the HelpFile property of a
CommonDialog control

B. Setting the HelpFile property of the App object

C. Identifying the Help file on the Project
Properties dialog box

D. Using the OpenFile statement in the KeyPress
event of an MDI form

7. You have a window, Form1, with two controls, a
frame, Frame1, and a text box, Text1. Text1 is
drawn on Frame1. If the cursor is in Text1 when
the user presses the F1 key, where will Visual
Basic look first for a HelpContextID?

A. Text1.HelpContextID

B. Frame1.HelpContextID

C. Form1.HelpContextID

D. None of the these

8. The purpose of the [ALIAS] section in an HTML
Help project file is

A. To map Topic ID names to Topic ID constant
numbers.

B. To map Pop-Up Topic ID names to Pop-Up
Topic ID constant numbers.

C. To map Topic ID names to Topic filenames.

D. To map Topic filenames to Topic ID constant
names.

9. If you are using WhatsThisHelp in your applica-
tion, how does Visual Basic determine the help
topic that will be displayed for an object?

A. Code must be placed in the Click event of
the object the user selects when in WhatsThis
mode.

B. Visual Basic uses the HelpContextID of the
selected object.

C. Visual Basic uses the WhatsThisHelpID of the
selected object.

D. None of these.

10 002-8 CH 07 3/1/99 8:00 AM Page 300

Chapter 7 IMPLEMENTING ONLINE USER ASSISTANCE IN A DISTRIBUTED APPLICATION 301

A P P LY YO U R K N O W L E D G E

Answers to Review Questions
1. A reference to a Help file for an application can

be set through the Project Properties window.
From the Project menu, choose Properties.
Either type the Help file name in the Help File
Name field, or browse for and select the file. See
“Referencing Help Through the HelpFile
Property of an Application.”

2. If the name and/or location of a Help file is not
known at design time, a reference to the file can
be set at runtime by using the HelpFile property
of the App object. After the filename has been set,
pressing F1 in the application will display the
online help. See “Referencing Help Through the
HelpFile Property of an Application.”

3. The current standard format for Microsoft help
files is HTML Help, and the extension for an
HTML Help file is chm. The HTML Help for-
mat replaces the WinHelp format as the standard,
and the extension for WinHelp files is hlp. See
“Two Types of Help Files.”

4. Pop-up tips for controls in Visual Basic applica-
tions can be implemented by just putting the
desired text in the ToolTipText property of con-
trols. For ToolTips to work on ToolBars and
TabStrips, you must also set the ShowTips prop-
erty of these controls to True. See “Adding
ToolTips to an Application.”

5. To add context-sensitive help to an application,
you need to know the mapping between Topic
IDs that will be used in the project and topics in
the Help file. The mapping is usually created by
the person who writes the Help file. Cooperation
between the help author and developer is impor-
tant to ensure that the correct Topic IDs are asso-
ciated with the proper objects in the application.

6. The [FILES] section of an HTML Help project
file contains the list of Topic files. See “Topic
Files and the [FILES] Section.”

Answers to Exam Questions
1. C. The App.HelpFile contains the name, and

optionally, the path to a Help file associated with
the application. The HelpFile property can be set
at design time through the Project Properties
window, or at runtime by setting the
App.HelpFile property. For more information, see
the section titled “Referencing Help Through the
HelpFile Property of an Application.”

2. A. The format for Topic files in an HTML Help
project is Web page (*.htm). For more informa-
tion, see the section titled “Topic Files and the
[FILES] Section.”

3. A, D. The format #define TopicIDName
TopicIDValue is appropriate to Context ID
Mapping files for HTML Help Topic files as well
as to Context ID Mapping files for Pop-Up
(WhatsThisHelp) topics. The [MAP] section of an
HTML Help file contains a list of Topic file
names and locations, while the [ALIAS] section
contains a mapping between Topic file names and
Topic ID constant names. For more information,
see the sections titled “Mapping Files, Topic IDs,
and the [ALIAS] and [MAP] Sections.”

4. D. WhatsThisHelp must be set to True whether
you are using ShowWhatsThis, WhatsThisMode, or a
WhatsThisButton on your form. For more infor-
mation, see the section titled “Providing
WhatsThisHelp in an Application.”

10 002-8 CH 07 3/1/99 8:00 AM Page 301

302 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

5. D. ToolTips don’t come from a Help file. They
come from the ToolTipText property of the con-
trol for which the tip is intended. For more infor-
mation, see the section titled “Adding ToolTips to
an Application.”

6. B, C. Help will automatically be invoked with the
F1 key when the App.HelpFile property is set and
when the Help file is identified on the Project
Properties dialog box. For more information, see
the section titled “Referencing Help Through the
HelpFile Property of an Application.”

7. A. Visual Basic will check the active control for a
HelpContextID first. If one is not found there, the
container of the active control will be checked next.

For more information, see the section titled
“Context-Sensitive Help with the HelpContextID
Property.”

8. C. The purpose of the [ALIAS] section in an
HTML Help project file is to map Topic ID
names to Topic file names. For more information,
see the section titled “Mapping Files, Topic IDs,
and the [ALIAS] and [MAP] Sections.”

9. C. The WhatsThisHelpID identifies the help topic
that will be used. For more information, see the
section titled “Providing WhatsThisHelp in an
Application.”

10 002-8 CH 07 3/1/99 8:00 AM Page 302

OBJECT IVES

8C H A P T E R

Creating Data
Services: Part I

This chapter helps you prepare for the exam by
covering the following objectives:

Use data binding to display and manipulate
data from a data source (70-175 and 70-176).

. Data binding is the act of connecting a control in
the programming environment directly to a field in
a row in a Recordset so that users can directly view
and edit the data by changing the control contents.

Access and manipulate a data source by using
ADO and the ADO Data Control (70-175 and
70-176).

. Microsoft’s VB exam objectives for data access con-
centrate on programming with ADO (ActiveX Data
Objects, defined at greater length throughout this
chapter), including more automated ways to pro-
gram with ADO (the ADO Data Control and the
Data Environment Designer).

Use the ADO Errors collection to handle data-
base errors (70-175).

. The ADO Errors collection is, as its name implies,
a special structure furnished by ADO to give you
information about the most recent error raised by
ADO in your application.

11 002-8 CH 08 3/1/99 8:02 AM Page 303

OUTL INE STUDY STRATEGIES

Overview of OLE DB and ADO 305

ADO and the ADO Object Model 306

Programming With Automated Data-
Binding Tools 308

Managing ADO Objects With the Data
Environment Designer 308

Accessing Data With ADO and the
ADO Data Control 317

Using the ADO Data Control 318

Using the ADO Errors Collection 357

Chapter Summary 358

. Get familiar with connecting to data through
ADO using different providers, such as Access,
ODBC, and SQL Server providers. Familiarity
with providers is not an official exam objective,
but you can’t work with anything else in ADO
without being able to connect to at least one
provider. See the discussions about how to
open connections in the sections titled “Adding
Connection and Command Objects with the
Data Environment Designer” and “Setting Up
the ADO Data Control.”

. As a basis for the rest of your studies on ADO
data-access topics, you need to get to know the
ADO object model. Make sure that you review
the general descriptions of the ADO objects in
the section titled “ADO and the ADO Object
Model,” the sections under “Programming with
ADO,” and the code in all the exercises, but
most especially in Exercise 8.1.

. Get familiar with the Data Environment
Designer through practical experience, as given
in Exercise 8.2 and as discussed in the section
titled “Managing ADO Objects with the Data
Environment Designer.” Make sure that you are
familiar with the relationships among the Data
Environment Designer, Connection objects,
Command objects, and the Recordsets that are
automatically created through the Data
Environment Designer’s Command objects. You
should also know how to automatically place
controls such as TextBoxes and the DataGrid on
a form by dragging a Command object from a Data
Environment Designer. Know how to program-
matically manipulate the recordset provided
through a Command object on a Data Environment
Designer.

. Get familiar with the ADO Data Control through
experience and examples, as provided in
Exercise 8.3 and discussed in the sections
under “Using the ADO Data Control.”

11 002-8 CH 08 3/1/99 8:02 AM Page 304

Chapter 8 CREATING DATA SERVICES: PART I 305

INTRODUCTION

Microsoft’s VB exam objectives for data access concentrate on pro-
gramming with ADO (ActiveX Data Objects), the newest standard
for data access from Microsoft programming environments.

This chapter and the following chapter discuss the basics of the ADO
object model, how to bind controls to ADO data, and how to choose
and manipulate ADO data connections.

OVERVIEW OF OLE DB AND ADO
This chapter and the following chapter focus on ADO, which stands
for ActiveX Data Objects. ADO is a general object model that is
Microsoft’s latest programming interface for access to data provided
by OLE DB.

OLE DB is, in turn, an open standard for providing data access.
Various OLE DB data providers (or just providers) now exist. OLE
DB providers include those for Microsoft Jet databases, SQL Server,
and ODBC.

A programmer using ADO can connect to a data source through
one of the existing OLE DB providers. The programmer can then
manipulate this data by using the ADO object model.

OLE DB in turn is an implementation of Microsoft’s Universal Data
Access model (UDA). The UDA is a general COM-based standard
for access to any type of data source, no matter how exotic.

Besides typical data sources such as databases and spreadsheets, UDA
aims to include anything that can be considered as a “data source” in
the broad sense of the term. Examples of some of the more unex-
pected types of data sources might include file directory structures,
text files, or COM ports.

Veteran (and even less-than-veteran) VB programmers will recall
with varying degrees of fondness and other emotions such data
access models as Jet, DAO (Data Access Objects), and RDO
(Remote Data Objects). Although these data-access models are still
available in VB6, Microsoft wants programmers to do all new data
development with the ADO model.

11 002-8 CH 08 3/1/99 8:02 AM Page 305

306 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The certification exam’s data-access questions will focus on ADO.
This chapter, therefore, covers various topics related to ADO that
you will find on the VB certification exams.

ADO and the ADO Object Model
As discussed earlier, ADO is a data-access object model that provides
a programming interface for the OLE DB standard, which in turn is
an implementation of Microsoft’s Universal Data Access model.

For those who have experience with previous data-access object
models in VB, the main points of comparison between ADO and
the earlier data access models are as follows:

á ADO’s object hierarchy is flatter than the object hierarchies of
previous models (DAO and RDO). ADO provides fewer
object classes than earlier models, and most objects can be
instantiated directly by the programmer instead of having to
be instantiated through other objects.

The DAO Recordset object, for example, had to be instanti-
ated through a Database object. The ADO Recordset object
may be instantiated independently of any other object, and
then attached to a Connection or Command object—or you can
open the Recordset by calling methods of the Connection and
Command objects.

Making objects less dependent on each other has interesting
and useful consequences besides just conceptual clarity: As a
consequence of the example just given, you can create an
ADO Recordset object that never has to be connected to an
existing data source—and you can therefore use such a discon-
nected Recordset to track and maintain virtual data created
entirely within your application or to maintain data from a
database offline.

á ADO provides the programmer more opportunities to fine-
tune the data cursor of a Recordset. A data cursor (or just a
“cursor”) represents a set of resources initiated by a data con-
nection that provides a connection to a specific row in a set

11 002-8 CH 08 3/1/99 8:02 AM Page 306

Chapter 8 CREATING DATA SERVICES: PART I 307

of data. The data cursor can change position to point to a dif-
ferent row of data. ADO enables you to directly specify where
the cursor is implemented (client or server side) and several
different types of cursors.

á ADO provides better overall performance than earlier object
models.

á ADO is more resource-efficient than earlier object models.

á ADO provides more universal data access, due to the universal
nature of its underlying standard, OLE DB.

Following are the objects exposed in the ADO object model:

á Connection object. Specifies information about the physical
connection with a data source.

á Command object. Stores information about actions performed
on the data, such as data modification and retrieval. You can
use a Command object to execute actions on the data or to return
data from the server in a Recordset object.

á Recordset object. Provides a rich selection of properties,
events, and methods to expose data in a field-row format, and
thus allows you to programmatically traverse, examine, and
manipulate specific fields in specific rows of data.

á Parameters collection of the Command object (made up of
Parameter objects). Contains information about parameter
values that are passed by a Command object.

á Fields collection of the Recordset object (made up of Field
objects). Contains information about field structure and
content of the data in a Recordset object.

á Properties collection (made up of Property objects).
Contains information about provider-specific properties of
Command and Parameter objects.

á Errors collection of the Connection object (made up of
Error objects). Contains information about the most recent
error that occurred when attempting an ADO operation.

N
O

T
E DAO Performs Better Than ADO

When Accessing Jet Databases
When accessing Jet databases (that
is, MS Access), DAO will perform bet-
ter than ADO, because DAO was opti-
mized for Jet.

11 002-8 CH 08 3/1/99 8:02 AM Page 307

308 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The rest of this chapter discusses how to use ADO at various levels,
beginning at a very automated level and ending with lower-level
manipulation in code of the object model and of SQL data
providers.

PROGRAMMING WITH AUTOMATED
DATA-BINDING TOOLS

. Use data binding to display and manipulate data from a data
source.

Microsoft provides a number of tools to make ADO programming
accessible to people with different levels of programming experience.
The following sections explore two of these tools, the Data
Environment Designer and the ADO Data Control.

Managing ADO Objects With the Data
Environment Designer
A Data Environment Designer is a visual interface for managing
a VB application’s ADO Connection and Command objects.

Take the following steps to add a Data Environment Designer
to your project:

S T E P B Y S T E P
8.1 Adding a Data Environment Designer to a

Project

1. Choose the Project menu in VB. Make sure that Add Data
Environment is one of the Project menu’s options. If Add
Data Environment does not appear on the Project menu,
add it by performing the following steps:

2. Choose Project, Components and select the Designers tab
on the Components dialog box (see Figure 8.1).

11 002-8 CH 08 3/1/99 8:02 AM Page 308

Chapter 8 CREATING DATA SERVICES: PART I 309

3. In the Components dialog box, check the Data
Environment box, as shown in Figure 8.1.

4. Click the OK button on the Components dialog box.

5. Choose Project, Add Data Environment from the VB
menu.

6. Navigate to the Properties window of the Data
Environment Designer (see Figure 8.2). Change the
Name property of the Data Environment object as desired
(Name is recommended to begin with “de”).

F IGURE 8 .1 ▲

Adding the Data Environment Designer component
to your project.

, F IGURE 8 .2
Changing the Name property of a Data
Environment.

You are now ready to add ADO objects to the Data Environment.

Adding Connection and Command Objects
With the Data Environment Designer
You can add Connection and Command objects to a Data Environment
Designer. You can then manipulate these objects from VB’s Visual
Design Environment, or in VB code.

11 002-8 CH 08 3/1/99 8:02 AM Page 309

310 Par t I VISUAL BASIC 6 EXAM CONCEPTS

S T E P B Y S T E P
8.2 Adding Connection and Command Objects

1. Make sure that your VB project contains a Data
Environment Designer, as discussed in the preceding
section.

2. Right-click on the Data Environment Designer’s surface,
and choose Add Connection, as shown in Figure 8.3.

F IGU R E 8 .3.
Adding a Connection object to a Data
Environment Designer.

3. Right-click on the Connection object, and then choose
Properties from the drop-down menu.

4. On the Provider tab (see Figure 8.4), choose an OLE DB
Data Provider. (Some choices are Microsoft Jet 3.51 OLE
DB (for MS Access databases), Microsoft OLE DB
Provider for ODBC Drivers, or Microsoft OLE DB
Provider for SQL Server.)

5. On the Connection tab (see Figure 8.5), set up the spe-
cific data connection with the following steps. (Note that
the contents of the tab will differ depending on the type
of data provider selected on the Connection tab.)

F IGU R E 8 .4 ▲

Choosing the provider for a Connection object
in the Data Environment Designer.

11 002-8 CH 08 3/1/99 8:02 AM Page 310

Chapter 8 CREATING DATA SERVICES: PART I 311

6. Set up the source of the data, whose nature will vary
depending on the type of connection. For a Jet data
source (Microsoft Access), you will specify the MDB file’s
name and path. For an ODBC data source, you can spec-
ify a data source name (based on an existing DSN)
or a connection string that creates a new DSN.

7. Fill in logon information about the username and pass-
word.

8. Click OK to accept the ODBC Data Source options you
have built.

After you have data connections established, you can add Command
objects to the data connections.

S T E P B Y S T E P
8.3 Adding Command Objects to the Data

Connections

1. Right-click a Connection object and choose Add
Command from the drop-down menu, as in Figure 8.6.

F IGURE 8 .5 ▲

Setting up connection information for a
Connection object in the Data Environment
Designer.

, F IGURE 8 .6
Adding a Command object to a connection in the
Data Environment Designer.

11 002-8 CH 08 3/1/99 8:02 AM Page 311

312 Par t I VISUAL BASIC 6 EXAM CONCEPTS

2. On the General tab, give a name to the new Command
object, as in Figure 8.7.

3. Change the connection information if you want to, or
leave it the same to accept the default Connection
information from the Connection object.

4. Choose the Source of Data Database Object = Table,
Stored Procedure, View, or Synonym) (see Figure 8.8).

F IGU R E 8 .7 ▲

Setting general information about a Command
object in the Data Environment Designer.

5. On the Advanced tab (Figure 8.9), you can set cursor
type, cursor location, locking strategy, and cache size. See
later sections in this chapter on each of these subjects.

F IGU R E 8 .8.
Setting information about the data source for a
Command object in a Data Environment Designer.

F IGU R E 8 .9.
Advanced settings for a Command object in
a Data Environment Designer.

6. Rename the object if you want.

7. Click OK. Your Command object is finished.

N
O

T
E Cursor Options on the Advanced Tab

You can fine tune the Recordset’s
behavior by setting the CursorLocation,
CursorType, and Locktype properties
with the correspondingly labeled fields
on the Advanced tab. These properties
and their meaning are discussed at
length in the next chapter.

11 002-8 CH 08 3/1/99 8:02 AM Page 312

Chapter 8 CREATING DATA SERVICES: PART I 313

Binding VB Objects to Data Environment
Objects
You can automatically create data-bound controls with the following
steps:

S T E P B Y S T E P
8.4 Automatically Creating Data-Bound Controls

1. Select or create a form to hold data-bound controls.

2a. Use the left (primary) mouse button to drag a Command
object from Data Environment Designer onto the form,
where it will automatically create bound controls for you,
as shown in Figure 8.10.
or

2b. Use the right (alternate) mouse button to drag a Command
object onto the form. Upon releasing, you can choose the
type of object to drop (DataGrid, for example), as shown
in Figure 8.11.

F IGURE 8 .1 0
Dropping a Command object from a Data
Environment Designer onto a form to create
bound controls for data fields (figure shows
both the action of dragging and the state of the
form after dropping).

11 002-8 CH 08 3/1/99 8:02 AM Page 313

314 Par t I VISUAL BASIC 6 EXAM CONCEPTS

3. Test the bound controls by running the project and
observing the contents of the controls. (They should dis-
play the contents of fields in the underlying data.)

You can use the Properties window to examine the properties of a
VB data-bound object created with one of the previously discussed
methods. Notice that its DataSource property points to the Data
Environment and its DataMember property points to the Command
object dragged onto the form (see Figure 8.12).F IGU R E 8 .11 ▲

Dropping a Command object from a Data
Environment Designer onto a form to create a
control bound to an entire Recordset. This fig-
ure shows both the dialog box at the instant
you drop the object and the result of the drop.

F IGU R E 8 .12.
Data property settings of a control bound to a
Data Environment’s Command object.

Consider the case of a control that is bound to an individual data
field (this could be a TextBox control that you might create in step
2a). Such a bound control’s DataField property will contain the
name of the individual field from the Recordset returned by the
Command object (refer again to Figure 8.12).

Programming With a Data Environment
Designer
Although you can bind controls to Command objects of the Data
Environment Designer in the VB design environment, you will
sooner or later need more control over this data than that afforded
by automated design-time binding of controls.

11 002-8 CH 08 3/1/99 8:02 AM Page 314

Chapter 8 CREATING DATA SERVICES: PART I 315

To manipulate the data exposed through a Data Environment’s
Connections and Commands, you typically program the Recordset
object returned by a Command object.

When you add a Data Environment to your VB project, the Data
Environment becomes available to the project’s code as a variable, tak-
ing on the name you gave it when you created it (or the default
name if you did not change the name). This is similar to what hap-
pens when you add a form to your project. (The form becomes
available in code under the name you gave it or allowed it to take
by default.)

Just as the objects contained in a form or in containers contained
by the form are available in code by referring to them with dotted
syntax (FormName.Object or FormName.ContainerObject.Object), so
objects contained in the Data Environment become available in code
in the following formats:

DataEnvironmentName.ConnectionName
DataEnvironmentName.CommandName

Even though a Command object is logically subordinate to a
Connection object in the Data Environment Designer’s visual hierar-
chy and, in fact, depends on a Connection object for its existence,
the Command object must be referred to as directly belonging to the
Data Environment.

This is in keeping with the ADO object model’s “flat” object hierar-
chy. This also implies that no two Command objects can have the same
name in a Data Environment, even if they are under different
Connection objects.

When your project runs and the physical connection is established,
the Command objects return Recordset objects. The name of each
Recordset object is available in code in the following format:

DataEnvironmentName.rsCommandName

In other words, the environment automatically creates a Recordset
object as a property of DataEnvironment. The environment automati-
cally assigns the Recordset a name based on the name of the Command
object that supports it: Its name will be “rs” plus the CommandObject
name.

11 002-8 CH 08 3/1/99 8:02 AM Page 315

316 Par t I VISUAL BASIC 6 EXAM CONCEPTS

If you had created a Command object named Employees under a Data
Environment named deNWind, for example, you could refer to the
Recordset in your code as this:

deNWind.rsEmployees

You can manipulate a Recordset programmatically with methods
and properties, as discussed in the section titled “Programming with
ADO” and more particularly under the section titled “Programming
with the Recordset.”

If you bind TextBox controls to a Data Environment’s Recordset as
discussed in the preceding section, for example, you will usually want
to give the user the ability to navigate the rows of the Recordset as
displayed in the controls. One way to accomplish user navigation
would be to add four CommandButtons whose Click event procedures
are called, respectively, the MoveFirst, MoveLast, MoveNext, and
MovePrevious methods of the Recordset object, as illustrated in
Listing 8.1.

The code in the listing assumes that there is a Data Environment
Designer named deNWind and a Command object named Employees.
The environment then creates a Recordset named rsEmployees
(based on the Command object’s name).

The code in the listing manipulates this Recordset object through
the Data Environment.

LISTING 8.1

IMPLEMENTING USER NAVIGAT ION ON THE RECORDSET
OBJECT FURNISHED BY A Data Environment’S COMMAND
OBJECT

Private Sub cmdMoveFirst_Click()
deNWind.rsEmployees.MoveFirst

End Sub

Private Sub cmdMoveLast_Click()
deNWind.rsEmployees.MoveLast

End Sub

Private Sub cmdMoveNext_Click()
deNWind.rsEmployees.MoveNext
If deNWind.rsEmployees.EOF Then

deNWind.rsEmployees.MoveLast
End If

End Sub

11 002-8 CH 08 3/1/99 8:02 AM Page 316

Chapter 8 CREATING DATA SERVICES: PART I 317

Private Sub cmdMovePrevious_Click()
deNWind.rsEmployees.MovePrevious
If deNWind.rsEmployees.BOF Then

deNWind.rsEmployees.MoveFirst
End If

End Sub

Accessing ADO Events for Objects Under a Data
Environment
To program event procedures for Data Environment objects, you can
do the following:

á Double-click a Connection object in the Data Environment
Designer to see a code window for the Connection’s event
procedures.

á Double-click a Command object in the Data Environment
Designer to see a code window for its corresponding
Recordset’s event procedures. (Command objects do not
themselves support events.)

Because ADO events are identical under the Data Environment and
in straight ADO programming, the programming of events is not
discussed here. Instead, you should refer to the sections that discuss
ADO event programming later in this chapter.

Because Recordset object programming is discussed at greater length
throughout this chapter, Recordset object manipulation with the
Data Environment is also not discussed here.

ACCESSING DATA WITH ADO AND
THE ADO DATA CONTROL

. Access and manipulate a data source by using ADO and the
ADO Data Control.

So far in this chapter, you have seen how to use automated, dialog-
driven VB design-time facilities to set up a data environment that
exposes a Recordset to the programmer through Connection and
Command objects.

N
O

T
E Recordset Objects Discussed

Throughout This Chapter For more
information on programming with
Recordset objects, see the section on
programming the ADO Data Control
and on straight ADO object program-
ming later in this chapter.

11 002-8 CH 08 3/1/99 8:02 AM Page 317

318 Par t I VISUAL BASIC 6 EXAM CONCEPTS

There are two other major ways to program with ADO:

á The ADO Data Control

á Directly programming the ADO object model

The following sections discuss these major techniques.

Using the ADO Data Control
Like a Data Environment, the ADO Data Control also simplifies,
automates, or even eliminates some data programming tasks. It has
the following similarities to the Data Environment Designer:

á Both the Data Environment and the ADO Control expose
a Recordset to the programmer

á Both the Data Environment and the ADO Control are used to
bind VB controls (such as DataGrid or TextBox controls) to
a Recordset.

á Both the Data Environment and the ADO Control enable you
to determine the Recordset’s cursor type, cursor location, lock-
ing strategy, and cache size.

á When necessary, the programmer can bypass the automated
user interface and directly manipulate the Recordset in code.
Recordset manipulation is the same in code for both the ADO
Data Control and the Data Environment, with but a single
syntactic difference: You refer to the ADO Data Control’s
Recordset with the following syntax:

ADDataControlName.Recordset

You refer to the Data Environment’s Recordset with this syntax:

DataEnvironmentName.rsCommandName

The ADO Data Control differs in the following ways from a Data
Environment, however:

11 002-8 CH 08 3/1/99 8:02 AM Page 318

Chapter 8 CREATING DATA SERVICES: PART I 319

á The ADO Data Control supports only one Recordset at a time.

á The ADO Data Control does not directly expose Command or
Connection objects.

á The ADO Data Control is visible at runtime and furnishes
a visual navigation interface to the user.

The following sections discuss how to set up an ADO Data Control,
how to manipulate it programmatically, and how to bind controls to
its Recordset.

Setting Up the ADO Data Control
To create an ADO Data Control that exposes a Recordset in your
application, at the minimum you need to do the following:

á Specify a Connection by filling in the ConnectionString
property.

á Specify how to derive a Recordset by setting the RecordSource
property (which is a complex property requiring its own dialog
box to set up).

The detailed steps are as follows:

S T E P B Y S T E P
8.5 Creating an ADO Data Control

1. Add the Microsoft ADO DataControl 6.0 (OLEDB) from
the Project, Components menu dialog box, as in Figure
8.13. The ADO Data Control icon should now appear in
the VB toolbox.

2. Place an instance of the ADO Data Control on the form
(see Figure 8.14).

F IGURE 8 .1 3
Adding the Microsoft ADO Data Control to your
project’s components.

11 002-8 CH 08 3/1/99 8:02 AM Page 319

320 Par t I VISUAL BASIC 6 EXAM CONCEPTS

3. Change the control’s Name and Caption from their default
values. (The Caption is for information only, so you can
set it to whatever you think will be most informative for
the user.)

4. Set the ConnectionString property using steps 5–9.

5. Click the ellipsis next to the ConnectionString property in
the ADO Data Control’s Properties window to bring up
the Property Page dialog box for this property, as shown
in Figure 8.15.

6. As Source of Connection, choose one of the following
three options:

• Use Data Link File. If you choose this option, you
will be able to click the Browse button to specify an
existing *.UDL file).

• Use ODBC Data Source Name. If you choose this
option, you will be able to choose an existing ODBC
DSN from the drop-down list, or you can create a new
DSN by clicking the New button.

F IGU R E 8 .14.
Placing an instance of the ADO Data Control on
a form.

F IGU R E 8 .15 ▲

The first and only Property Page dialog box for
the ADO Data Control’s ConnectionString
property.

11 002-8 CH 08 3/1/99 8:02 AM Page 320

Chapter 8 CREATING DATA SERVICES: PART I 321

• Use Connection String. If you choose this option,
you will be able to click the Build button to bring up
the Data Link Properties tabbed dialog box.

The following steps assume that you have chosen this option.

7. On the Provider tab of the Data Link Properties tabbed
dialog box, choose an OLE DB data provider, such as
Microsoft Jet 3.51 OLE DB (see Figure 8.16).

8. The Connection tab of the Data Link Properties tabbed
dialog box will vary in appearance, depending on the
provider specified in the preceding step. In the case of the
Microsoft Jet 3.51 OLE DB, you are prompted to choose
an Access data file and set some security options (see
Figure 8.17).

F IGURE 8 .1 6 ▲

Choosing a provider for the ADO Data Control’s
ConnectionString property.

9. Click OK to accept the ConnectionString options you
have built.

10. Still in the ADO Data Control’s Properties window, navi-
gate to the RecordSource property and click the ellipsis
button.

11. On the RecordSource tab (see Figure 8.18) of the resulting
Property Page dialog box, choose the CommandType
(adCmdUnknown, adCmdText, adCmdTable, adCmdStoredProc).

, F IGURE 8 .17
Setting up connection information for the Jet
provider.

11 002-8 CH 08 3/1/99 8:02 AM Page 321

322 Par t I VISUAL BASIC 6 EXAM CONCEPTS

12. Complete the dialog box appropriately for the
CommandType that you chose:

• If you chose adCmdText, fill in the text of a valid Select
statement in the Command Text field (see Figure 8.19).

• If you chose adCmdTable or adCmdStoredProc, fill in the
appropriate table or stored procedure name in the Table
or Stored Procedure Name drop-down list (see Figure
8.20).

F IGU R E 8 .18.
The Property Page dialog box for an ADO Data
Control’s RecordSource property.

F IGU R E 8 .19 ▲

A valid Select statement as command text for
the RecordSource property.

F IGU R E 8 .20.
A table or stored procedure name for the
RecordSource property.

13. Click OK to end the RecordSource dialog box.

After you have set the ADO Data Control up to expose a Recordset,
you can bind VB controls to the ADO Data Control, as discussed in
the following sections.

The ADO Data Control’s EOFAction and BOFAction
Properties
As you will see shortly, the user can manipulate the ADO Data
Control to navigate the Recordset. When the user attempts to
move forward through the Recordset on to the end-of-file buffer,

N
O

T
E Additional ADO Data Control

Properties That Affect the Recordset
You will eventually need to fine-tune
the Recordset’s behavior by setting
the CursorLocation, CursorType, and
Locktype properties. These properties
correspond to the standalone
Recordset object’s properties of the
same name. The next chapter dis-
cusses these properties and their
meaning in more detail.

11 002-8 CH 08 3/1/99 8:02 AM Page 322

Chapter 8 CREATING DATA SERVICES: PART I 323

Visual Basic must take some action to ensure that there won’t be a
problem the next time the user tries to move forward.

The EOFAction property tells Visual Basic what to do when the user
has moved the ADO Data Control’s record pointer on to the end-of-
file buffer. The three values of EOFAction are as follows:

á 0 AdDoMoveLast (default) The record pointer repositions
itself to the last true record in the Recordset, and thus avoids
any future problems.

á 1 adStayEOF The record pointer stays on the end-of-file
buffer. If you choose this option, you must programmatically
provide for the record pointer pressing End-of-file.

á 2 adDoAddNew The AddNew method of the Recordset will exe-
cute, adding a new record to the Recordset and enabling the
user to edit its blank fields.

BOFAction has two possible values:

á 0 adDoMoveFirst (default) The record pointer repositions
itself to the first true record in the Recordset, and thus avoids
any future problems.

á 1 adStayBOF The record pointer stays on the beginning-of-file
buffer. If you choose this option, you must programmatically
provide for the record pointer by pressing Beginning-of-file.

Binding VB Controls to the ADO Data
Control’s Recordset
When the form containing the ADO Data Control loads into memory,
the ADO Data Control will connect to data using the ConnectString
property and return a Recordset fitting the specifications of the
RecordSource property.

To see any of the information in the records, you will have to put
VB controls on the form and bind them to specific fields in the
ADO Data Control’s Recordset. Follow these steps to bind controls
to the ADO Data Control’s Recordset:

N
O

T
E Setting the EOFAction Property Set

the Data Control’s EOFAction property
to adStayEOF when you want to directly
program the Recordset’s behavior.
You will then need to put code in the
ADO Data Control’s MoveComplete or
EndOfRecordset event procedures to
handle this possibility.

N
O

T
E The BOFAction Property Set the

Data control’s BOFAction property to
adStayBOF when you want to directly
program the Recordset’s behavior. You
will then need to put code in the ADO
Data Control’s MoveComplete event
procedure to handle this possibility.

11 002-8 CH 08 3/1/99 8:02 AM Page 323

324 Par t I VISUAL BASIC 6 EXAM CONCEPTS

S T E P B Y S T E P
8.6 Binding Controls to the ADO Data Control’s

Recordset

1. Place a VB control such as a TextBox on the form.

2. In the control’s Properties window, activate the drop-down
list on the DataSource property. The list will include the
names of any ADO Data Controls on the current form,
any Data Environment Designers in the current project,
and any other types of DataSource (such as RDO or DAO
Data Controls) available to this control (see Figure 8.21).

F IGU R E 8 .21
Setting the DataSource property for a control
that you will bind to an ADO Data Control or
another data source.

3. Choose as the DataSource the ADO Data Control whose
Recordset you want to bind this control to.

4. Now set the control’s DataField property by activating the
drop-down list belonging to the DataField property in the
Properties window. You should see a list of fields available
from the ADO Data Control’s Recordset. Choose the field
that you want to bind to this control (see Figure 8.22).

11 002-8 CH 08 3/1/99 8:02 AM Page 324

Chapter 8 CREATING DATA SERVICES: PART I 325

5. The control is now bound to the desired field in the
Recordset.

After you have bound controls to the ADO Data Control, you can
run the project to test the connection. You should see data from the
Recordset displayed in the bound controls. When you click the
ADO Data Control’s navigation buttons, you should see the con-
tents of the bound controls change as the Recordset’s cursor move
through different records.

Depending on the cursor options that you have chosen, you might
also see that you can make changes to the underlying data fields by
changing the contents of the bound controls.

Adding Records With the ADO Data Control
The user can view records and even write changes back to the data
by just moving the record pointer.

To enable the user to add new records, you can do this:

á Set the Data Control’s EOFAction property to 2- DoAddNew.
You can set this at design time in the Properties window
or in code using the internal constant adDoAddNew.

F IGURE 8 .2 2
Setting the DataField property of a bound
control.

11 002-8 CH 08 3/1/99 8:02 AM Page 325

326 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The user will see and be able to edit a temporary blank record when
there is an attempt to move past the last record in the Recordset.

á Call the Recordset’s AddNew method programmatically to add a
record. AddNew blanks out the fields in the record buffer and
refreshes the bound controls accordingly. The user sees the
blank controls and can edit the fields of the potential new
record (see Figure 8.23).

After the user has edited the originally blank copy buffer in either of
these scenarios, the record must be saved in one of two ways:

á The user must move the record pointer.

á You can programmatically call the Update method.

F IGU R E 8 .23
What the user will see at the end of file with
the ADO Data Control’s EOFAction property set
to adDoAddNew, or when you call the AddNew
method in code.

Editing Existing Records With the ADO Data
Control
Any time the user edits controls that are bound to the Data Control,
the user has changed information in the copy buffer.

11 002-8 CH 08 3/1/99 8:02 AM Page 326

Chapter 8 CREATING DATA SERVICES: PART I 327

Changes to records will save automatically when a user or the pro-
grammer moves the ADO Data Control Recordset’s record pointer
away from the current record by any means, including the following:

á Using the Find method

á Resetting the Recordset’s bookmark—even if it’s only to set
the Bookmark back to the current record

á Using any of the Move methods on the Recordset

á Adding another record

á Clicking one of the four arrow buttons on the ADO Data
Control

This is because moving the record pointer writes the contents of the
record buffer out to the underlying data.

You also can save changes programmatically by calling the Update
method of the Recordset or the UpdateRecord method of the ADO
Data Control.

You can take more control of whether changes are saved by writing
code in the Will event procedures, as described later.

Canceling Pending Editing Changes on
Bound Controls
You can use the CancelUpdate method of the Recordset to cancel
pending changes to the current record so that the changes just made
won’t be written to the underlying data.

The CancelUpdate method of the Recordset basically cancels a pend-
ing edit defined by the AddNew methods or by the user’s or the pro-
gram’s changes to contents of fields in the record buffer.

If there is no pending edit, CancelUpdate is just ignored.

The CancelUpdate method doesn’t move the record pointer. An
example of a call to CancelUpdate is this:

adcEmployees.Recordset.CancelUpdate

11 002-8 CH 08 3/1/99 8:02 AM Page 327

328 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Programming Other Actions on the ADO
Data Control’s Recordset
Other activities that you will want to perform programmatically on
an ADO Data Control’s Recordset include the following:

á Saving editing changes

á Deleting records

á Moving between records

á Locating records

How to program these actions is not discussed here because the tech-
niques and the coding are the same as for straight ADO programming.
See the sections later in this chapter on programming the ADO
Recordset for more information on how to program these actions.

The ADO Control’s Error Event
This event happens when the ADO Data Control’s own internal data
navigation and manipulation routines encounter a runtime error.

If the user clicks one of the ADO Data Control’s navigation buttons
and Visual Basic attempts to move to a record that has already been
deleted, for instance, a runtime error could happen.

Because none of your code will be running when the user clicks the
Data Control, you must put error-handling code for such eventualities
in the ADO Data Control’s Error event procedure.

The Error event’s parameters help you to get information about the
source and nature of the error that has fired this event. The final
parameter also enables you to decide whether to allow VB to show
an automatic error message to the user.

The parameters are as follows:

á ErrorNumber The internal error number.

á Description Error description string.

á Scode A native error code number from the data server.

á Source A String indicating where this error occurred.

á Helpfile Path and name of a help file containing information
about this error (supplied by the object that raised this error).

Error Event Procedure Code Not a
Replacement for Your Own Error
Handlers The ADO Data Control’s
Error event does not free you from
writing error handlers in your own
data manipulation code!

The Error event handles errors that
are not caused by your code. You
still must handle the runtime errors
generated by your code.

W
A

R
N

IN
G

11 002-8 CH 08 3/1/99 8:02 AM Page 328

Chapter 8 CREATING DATA SERVICES: PART I 329

á HelpContext A Help topic context number for the Helpfile
(supplied by the object that raised this error).

á fCancelDisplay Set this parameter to True to keep VB from
displaying an automatic error message to the user.

Other Events of the ADO Data Control
The remaining events of the ADO Data Control are just exposed
events of the underlying Recordset. As such, they are identical to the
Recordset object’s events discussed later in this chapter. These events
include the following:

á EndOfRecordset

á FieldChangeComplete

á MoveComplete

á RecordChangeComplete

á RecordsetChangeComplete

á WillChangeField

á WillChangeRecord

á WillChangeRecordset

á WillMove

Refer to the discussion of these events in the sections of this chapter
that discuss Recordset object events.

Programming With ADO
So far, this chapter has mostly discussed automatic ways to set up
ADO Connection, Command, and Recordset objects using Data
Environment Designers or the ADO Data Control.

For most serious applications, however, you will need to directly pro-
gram the ADO object model in VB code.

To program ADO objects directly, you must set your VB project to
refer to the latest version of the Microsoft ActiveX Data Objects
Library from the Project, References menu dialog box, as shown in
Figure 8.24.

11 002-8 CH 08 3/1/99 8:02 AM Page 329

330 Par t I VISUAL BASIC 6 EXAM CONCEPTS

You basically have three main concerns when you program with
ADO in VB:

á Setting up and maintaining a connection to data with
the Connection object

á Retrieving rows or otherwise manipulating the data with the
Recordset object, the Command and Parameter objects, or
the Connection object

á Determining the exact behavior and nature of the rows of data
returned by a Connection or Command and manipulating the
data’s individual fields and rows with the Recordset and Field
objects

The following sections discuss the programming of these ADO objects.

Initializing the Connection Object in Code
A Connection object provides you with a connection to the data that
the Command object will operate on and the Recordset will retrieve.

If you plan to connect your Recordset to data outside of your applica-
tion, you must have at least one Connection object in the application.

F IGU R E 8 .24
Setting a project reference to the ADO Library.

11 002-8 CH 08 3/1/99 8:02 AM Page 330

Chapter 8 CREATING DATA SERVICES: PART I 331

The minimum steps you need to take to have a functional
Connection object are as follows:

S T E P B Y S T E P
8.7 Establishing a Connection Object

1. Make sure that you have set a reference to the ADO
Library, as discussed in Chapter 8, under the section
“Programming with ADO.”

2. Declare an object variable whose type is ADODB.Connection.
If you want to program the event procedure of the object,
use the WithEvents keyword.

3. Set the Connection object’s ConnectString property to
reflect a valid OLE DB provider, or specify the provider
string in the next step, as follows:

cnNWind.ConnectString = “Provider=Microsoft.
➥Jet.OLEDB.3.51;”

4. Call the Connection object’s Open method. If you didn’t
specify the ConnectString property in the preceding step,
you need to pass the connection string as the first argu-
ment to the Open method, as in the following example :

cnNWind.Open “Provider=Microsoft.Jet.
➥OLEDB.3.51;” & _
“Data Source= C:\DataSamples\Nwind.mdb”

Connection Object Events
Only two ADO object class types support events: the Connection
and the Recordset. You can therefore declare object variables of these
two types using the WithEvents keyword. N

O
T

E Further References for the Execute
Method See more information about
the Execute method in “Using Stored
Procedures to Return Records to an
Application” in Chapter 9, and the
sections under “ADO Data Access
Models” in the next chapter.

11 002-8 CH 08 3/1/99 8:02 AM Page 331

332 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The Connection Object’s Will Events
The Connection object has two Will events:

á The WillConnect event, which happens just before
a connection to a provider

á The Execute event, which happens just before a pending com-
mand executes on the current connection

Both events have an adStatus parameter that enables you to cancel
the pending action. In addition, they have other information that
tells you about the settings of the proposed open connection or com-
mand.

Both event procedures are therefore ideal places to validate the pend-
ing actions and cancel them if necessary, as discussed in the
following sections.

The WillConnect Event
You can put code in the Connection object’s WillConnect event pro-
cedure to monitor information about the pending Connection that’s
about to be opened to a provider. You can also validate and, if
necessary, cancel the pending connection by setting the adStatus
parameter to a value of adCancel.

The most important parameter of WillConnect is the adStatus para-
meter, which you can set to adStatusCancel to stop the pending exe-
cution. You can also set adStatus to adStatusUnwantedEvent to
prevent the event from firing again.

Setting the adCancel parameter to adStatusCancel will have no effect
if the original value is adStatusCantDeny.

The other parameters (ConnectionString, UserID, Password, and
Options) represent settings of the current Connection object that’s
about to open. You can change them here to change the behavior
of the new connection that’s about to be opened.

The WillExecute Event
The WillExecute event’s name implies a close link to the Execute
method of a Connection object, and it’s true that it will fire when
a Command object’s Execute method runs.

N
O

T
E Can’t Use As New in a Declaration

with WithEvents You can’t use the
As New keyword in a declaration that
uses the WithEvents keyword. This
means that an object variable doesn’t
get instantiated when you declare it
using WithEvents. Therefore, when
your code is ready to initialize an ADO
Connection or Recordset object that
has been declared using WithEvents,
you should use a statement of this
form:

Set objName = New Class

11 002-8 CH 08 3/1/99 8:02 AM Page 332

Chapter 8 CREATING DATA SERVICES: PART I 333

WillExecute does not just happen when a Connection object’s
Execute method runs, however. It also can happen whenever a
Recordset object that depends on the current Connection object is
opened, regardless of whether that Recordset object was initialized
by a Connection object’s Execute method.

The parameters for WillExecute enable you to examine and change
the settings for the action that will be executed on the provider, and
even to cancel the execution altogether.

The most important parameter of WillExecute is the adStatus para-
meter, which you can set to adStatusCancel to stop the pending exe-
cution. You can also set adStatusCancel to adStatusUnwantedEvent to
prevent the event from firing again.

Setting the adStatus parameter to adStatusCancel will have no effect
if the original value is adStatusCantDeny.

The other parameters (Source, CursorType, LockType, and Options)
represent settings of the current request that’s about to execute. You
can change them here to change the behavior of the request and the
behavior of any Recordset that may be created.

The Connection Object’s Transaction Completion
Events
The more important of these events include the following:

á BeginTransComplete

á CommitTransComplete

á RollbackTransComplete

These events are described in greater detail in the following chapter,
“Creating Data Services: Part II” in the section titled “Managing
Database Transactions.”

The Connection Object’s ConnectComplete Event
The ConnectComplete event has the following parameters:

á pError An Error object containing either Nothing or a
description of a connection error (the value of the adStatus
parameter will be adStatusErrorsOccurred in this case).

á adStatus Can be adStatusOK or adStatusErrorsOccurred,
or adStatusCancel. It’s adStatusCancel if the preceding
WillConnect event procedure cancelled the connection.

11 002-8 CH 08 3/1/99 8:02 AM Page 333

334 Par t I VISUAL BASIC 6 EXAM CONCEPTS

You can also set it to adStatusUnwantedEvent if you don’t want
to see this event fire again during the current session.

á pConnection Not used in VB.

The Connection Object’s ExecuteComplete Event
The ExecuteComplete event has the following parameters:

á pError an Error object containing either Nothing or a
description of a connection error (the value of the adStatus
parameter will be adStatusErrorsOccurred in this case).

á adStatus Can be adStatusOK or adStatusErrorsOccurred.
You can also set it to adStatusUnwantedEvent if you don’t want
to see this event fire again during the current session.

á pCommand If the action just executed was based on a Command
object, this parameter points to the Command object. Otherwise,
its value is Nothing.

á pRecordset If the action just executed returned a Recordset,
this parameter points to the Recordset. Otherwise, its value is
Nothing.

á pConnection Not used in VB.

The Disconnect Event
The Disconnect event happens after the Connection is closed with
the Close method or by going out of scope.

It takes as its first parameter adStatus, indicating whether there were
errors upon disconnection (adStatusOK or adStatusErrorsOccurred).

Its second parameter points to the current Connection object and is
not needed or used in VB programming.

You can put code in the Disconnect event procedure to perform
post-connection cleanup.

Initializing Command Objects in Code
To programmatically initialize a Command object, you should take the
following steps:

11 002-8 CH 08 3/1/99 8:02 AM Page 334

Chapter 8 CREATING DATA SERVICES: PART I 335

1. Make sure that you have a valid Connection, as discussed ear-
lier in the section “Programming the Connection Object.”

2. Declare an object variable of the type ADODB.Command.

3. Set the CommandType property.

4. Set the CommandText property.

5. Call the Execute method.

6. Set the ActiveConnection property to point to a valid existing
Connection object.

Command Object Events
Surprise! ADO Command objects don’t have any events. If you try to
declare a Command object variable using the WithEvents keyword, you
will receive a compiler error. Only Connection and Recordset objects
support events in the ADO object model.

Recordsets
The general steps you need to take to initialize a data-connected
Recordset in your code are as follows:

1. Make sure you have a valid Connection or Command object.

2. Declare an object variable of the type ADODB.Recordset.

3. Set the Source property (typically, a SQL statement or the
name of a stored procedure or table) and the ActiveConnection
property (use the Set = syntax to cause this property to point
to a valid ADO Connection object). You can also omit this step
and pass information about the Source and ActiveConnection
as arguments in the next step.

4. Call the Recordset’s Open method. If you omitted step 3, indi-
cate the Recordset’s Source and ActiveConnection as the Open
method’s first and second arguments, respectively.

Listing 8.2 illustrates the property-driven technique described in step
3 for opening a Recordset.

N
O

T
E Further References For examples

and more information about the
Execute method, see “Using Stored
Procedures to Return Records to an
Application” in Chapter 9 and the sec-
tions under “ADO Data Access
Models” in the next chapter, “Creating
Data Services: Part II.”

Also see “Using the Parameters
Collection to Access Parameters for
Stored Procedures” in the next chapter
for information about how to pass
parameters to a stored procedure.

T
IP

Command Objects Questions
Beware of trick questions on the
exam that assume you can program
with Command object events.

E
X

A
M

11 002-8 CH 08 3/1/99 8:02 AM Page 335

336 Par t I VISUAL BASIC 6 EXAM CONCEPTS

LISTING 8.2

OPENING AN ADO RECORDSET BY SETT ING THE

ACTIVECONNECTION AND SOURCE PROPERTIES

Set cnNWind = New ADODB.Connection
Set rsEmployees = New ADODB.Recordset
Dim sConnect As String
sConnect = “Provider=Microsoft.Jet.OLEDB.3.51;” & _

“Data Source= NWind.mdb”
cnNWind.Open sConnect
rsEmployees.Source = “Select * From Employees Order By

LastName,FirstName”
Set rsEmployees.ActiveConnection = cnNWind
rsEmployees.Open

Listing 8.3 illustrates the use of command-line arguments to accom-
plish the same result, as discussed in step 4.

LISTING 8.3

OPENING AN ADO RECORDSET WITH ARGUMENTS TO THE

OPEN METHOD

Set cnNWind = New ADODB.Connection
Set rsEmployees = New ADODB.Recordset
Dim sConnect As String
sConnect = “Provider=Microsoft.Jet.OLEDB.3.51;” & _

“Data Source= NWind.mdb”
cnNWind.Open sConnect
rsEmployees.Open _
“Select * From Employees Order By LastName,FirstName”, _
cnNWind

Manipulating a Recordset’s Data With Its
Methods
The most direct manipulation of data with ADO takes place
through the Recordset. The methods for ADO’s Recordset object
are basically the same as the methods for the Data Environment’s or
ADO Data Control’s Recordset objects. You can therefore read the
following sections on the specific Recordset methods and properties
as applying to both the Recordset of ADO, and to the Recordset
that belongs to the Data Environment and ADO Data Control.

N
O

T
E Other Methods for Opening a

Recordset The section titled
“Accessing Data with the Execute
Direct Model” in the following chapter
discusses how to use the Execute
method of ADO Connection and
Command objects to open a Recordset.

11 002-8 CH 08 3/1/99 8:02 AM Page 336

Chapter 8 CREATING DATA SERVICES: PART I 337

One activity varies significantly between the two classes of Recordset,
however: Notice that the technique for adding a record in ADO code
significantly differs from the technique for adding a record for the
Data Environment or ADO Data Control.

There is no design-time binding of controls to the data as there is
with the Data Environment or the ADO Data Control. Because
straight ADO objects lack this automatic binding of controls to
data, the programmer must write code to refresh variables or user-
interface controls whenever any action happens that would move
the record pointer or otherwise change the contents of the fields.

Similarly, the programmer must explicitly move data from controls
or variables to the record buffer whenever data should be saved.

Because a data access program must perform these two tasks so
often, it is most efficient for the programmer to provide one general
routine to read data from the record buffer into controls and another
general routine to write data from controls into the record buffer.
The program can then call these routines whenever it needs to per-
form these tasks.

The following sections, “Referring to Recordset Field Contents,”
“Programmatically Reading a Record into VB Controls,” and
“Programmatically Writing VB Controls to a Record,” describe how
you can write routines to manually refresh data in both directions
(reading and writing) when you directly program ADO.

Referring to Recordset Field Contents
Every open Recordset must be associated with a data cursor.

Behind every Recordset cursor, there is, among other things, a buffer
representing the values of fields in the current record that the cursor
points to. The Fields collection of the Recordset exposes this record
buffer.

You can always programmatically read the values of individual fields
in the record buffer. Depending on whether the current Recordset’s
cursor type permits writes to the data, you can also assign values to
the record buffer’s fields.

There are several syntactic styles for referring to an individual field in
the current Record, as follows:

11 002-8 CH 08 3/1/99 8:02 AM Page 337

338 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á You can use the numeric index of the field in the Fields col-
lection (Fields is zero-based, so the first field is element 0 in
the collection):

rs.Fields(2).Value

This technique is flexible (you could use a numeric variable as
the index for the Fields collection), but it’s not quite as useful
as the following technique, because unless you know the posi-
tion of fields in the data, you will have a hard time getting the
right index.

á Because the Fields collection also supports index key strings,
you can use the field’s name in a string literal or variable to
refer to the field in the Fields collection:

rs.Fields(“LastName”).Value
rs(“LastName”).Value

Notice the second alternative form of this example, which
bypasses an explicit reference to the Fields collection. This
technique is perhaps the most useful from a programming
standpoint, but it also requires the most runtime overhead and
so is the slowest of the three techniques.

á You can also refer to the field as a temporary property of the
Recordset, using the bang (!) syntax:

rs!LastName

This technique is the most efficient, but it’s the least flexible
of the three (because you hard-code the field name in the pro-
gram, whereas you could substitute variables for the index and
key values in the first and second techniques).

As already mentioned, you can both read and write these fields pro-
grammatically. However, no changes are transferred to the underly-
ing data until you call the Update method as discussed in the
following section.

Unless you need flexibility at runtime, the last method listed is prob-
ably the best to use; it’s fast and explicitly identifies the field you
want to access. If you want to read the contents of the current
record’s Last Name field into the Text property of txtLastName, for
example the line would look like this:

txtLastName.Text = rsEmployees![Last Name] & “”

11 002-8 CH 08 3/1/99 8:02 AM Page 338

Chapter 8 CREATING DATA SERVICES: PART I 339

The Text property of a TextBox control does not accept null data.
The use of the final characters & “” at the end of the line ensures
that, even if the underlying field contains null data, an error will not
occur. The & “” makes sure that at least a blank string is contained
in the data being written to the TextBox.

Programmatically Reading a Record’s Contents Into
VB Controls
Typically, you will write a procedure such as that of Listing 8.4 to
populate controls with field contents from a Recordset. You will call
such a routine from every place in your application that potentially
updates the record pointer.

The MoveComplete event procedure is often the best place from
which to call such code.

LISTING 8.4

ROUTINE TO POPULATE CONTROLS FROM COPY BUFFER

Sub PlaceDataInControls()
txtFirstName.Text = rsEmployees![First Name] & “”
txtLastName.Text = rsEmployees![Last Name] & “”
txtDepartment.Text = rsEmployees!Department & “”
txtPhoneExt.Text = rsEmployees!PhoneExt & “”
‘assumes field will contain a valid
‘CheckBox value (0, 1, or 2)
chkFullTime.Value = rsEmployees![Full Time]

End Sub

As an alternative to the use of the & “” characters, you could also
trap null data more explicitly with code such as that shown in
Listing 8.5.

LISTING 8.5

LOGIC TO EXPL IC ITLY TEST FOR NULL DATA

If IsNull(txtFirstName.Text) Then
txtFirstName.Text = rsEmployees![First Name]
Else
txtFirstName.Text = “<<NULL>>”
End If

N
O

T
E Square Brackets Around Field Names

Some DBMSs support spaces in their
field names. MS Access supports
spaces in field names, for example,
but SQL Server does not. In Access
and SQL Server 7.0, a field named
“Last Name” would be acceptable, but
in SQL Server 6.5 and before, it would
not be acceptable. You must place
the square bracket characters “[]” in
your code around field names that
have spaces, as in these examples:

Rs.fields(“[Last Name]”)
Rs![Last Name]

For consistency you can place square
brackets around field names that
don’t contain spaces as well, but
there is no need to do so.

11 002-8 CH 08 3/1/99 8:02 AM Page 339

340 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Notice, however, that this second method requires you to write sev-
eral lines of code, as opposed to just appending & “” to the field
contents.

Programmatically Writing VB Controls to a Record
When the user makes changes to controls and you want to save to
the underlying data, you must programmatically write the contents
of a control back to the underlying data in two steps:

1. Write the contents of each control to its corresponding field in
the copy buffer.

2. Save the contents of the copy buffer to the underlying data of
the Recordset.

To update a field in the copy buffer with a control’s contents, you
might code the following:

RecordsetName![FieldName] = ControlContents

If you want to write the Last Name field of rsEmployees that you
read in the last section, for example, you could write:

rsEmployees![Last Name] = txtLastName.Text

You would typically write a general procedure to write controls to
their corresponding fields, with one line of code similar to the pre-
ceding example for each control-field assignment (see Listing 8.6 in
the section titled “Updating a Record”). You could call this proce-
dure as the first step in saving data from controls in the Recordset’s
underlying data.

The second phase of writing to a record requires the use of the
Recordset’s Update method. This phase is discussed in the following
section, “Updating a Record.”

Updating a Record
To write the contents of a Recordset object’s copy buffer to its
underlying data, you must follow these steps:

1. Write to each field in the copy buffer, as described in the
preceding section.

2. Call the Recordset’s Update method.

Listing 8.6 illustrates using these steps to update a record. To review
the purpose of the WriteEmployeeRecord procedure, refer to the
above section, “Programmatically Writing VB Controls to a Record.”

11 002-8 CH 08 3/1/99 8:02 AM Page 340

Chapter 8 CREATING DATA SERVICES: PART I 341

LISTING 8.6

ROUTINES FOR WRIT ING DATA FROM CONTROLS BACK

TO THE DATABASE

Sub UpdateRecord
‘write controls to buffer
WriteEmployeeRecord
‘call the Update method
rsEmployees.Update

End Sub

Sub WriteEmployeeRecord()
rsEmployees![First Name] = txtFirstName.Text
rsEmployees![Last Name] = txtLastName.Text
rsEmployees!Department = txtDepartment.Text
rsEmployees!PhoneExt = txtPhoneExt.Text
rsEmployee![Full Time]= chkFullTime.Value

End Sub

Canceling User Changes Before They Are Saved
To cancel pending user edits to the current record in unbound
screen controls, you can call whatever procedure you have written to
programmatically refresh controls with the data from the current
record.

This action will cause the controls to reflect the existing state of the
field in the record buffer, therefore overwriting any changes the user
has made to controls.

The code for canceling user edits might look like Listing 8.7.

LISTING 8.7

CANCEL ING PENDING CHANGES

Private Sub cmdCancel_Click()
‘Call General procedure to populate
'controls from current record
PlaceDataInControls

End Sub

Private Sub PlaceDataInControls
txtFirstName = rs!FirstName & “”
txtLastName = rs!LastName & “”
‘and so on for each field

End Sub

11 002-8 CH 08 3/1/99 8:02 AM Page 341

342 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Adding a Record
To add new records to a Recordset programmatically, you can use a
combination of the Recordset’s AddNew and Update methods.

AddNew appends a temporary record buffer to the cursor’s rowset.

You can take the following steps in code to add a new record:

1. If you are providing controls to the user for field editing, set
the controls to blank or default values. Next, enable the user to
add new data to the controls.

2. When the user is ready to save the new data, invoke the AddNew

method of the Recordset. The cursor is now pointing to a
temporary new record.

3. Assign the desired values to the individual fields of the current
record (the temporary blank record). If you have given the user
controls to edit field contents, then assign those control con-
tents to the fields.

4. Call the Recordset’s Update method.

The code to implement these four steps might be contained in the
Click event procedures for buttons with captions such as Add and
Save New. The code in Listing 8.8 provides you with such an exam-
ple of how to add a new record.

LISTING 8.8

ADDING AND SAVING A NEW RECORD

Private Sub cmdAdd_Click()
cmdSaveNew.Enabled = True
txtLastName = “”
txtSalary = “0”
txtFirstName = “”

End Sub

Private Sub cmdSaveNew_Click()
rsEmployees.AddNew
WriteControlsToData ‘our routine to update copy buffer
rsEmployees.Update
cmdSaveNew.Enabled = False

End Sub

11 002-8 CH 08 3/1/99 8:02 AM Page 342

Chapter 8 CREATING DATA SERVICES: PART I 343

To enable the user to cancel adding a record while the user is editing
fields, all you need to do is call the routine that refreshes controls
from the copy buffer fields.

If you have already updated copy buffer fields programmatically, you
will want to call the CancelUpdate method as well.

Deleting a Record
The Recordset’s Delete method will delete a record from the
underlying data. Typically, you will want to take the record pointer
to a different record after calling the Delete method. Before moving
the record pointer, you should check the RecordCount property to
make sure that at least one record is left in the Recordset.

After moving the record pointer, of course, you will need to check
the Recordset’s EOF property to make sure you haven’t moved beyond
the end of the data. If you have, you will want to call the MoveLast
method—but first check the BOF property to make sure that there are
any records at all remaining in the Recordset. The code for these
operations might look like Listing 8.9.

LISTING 8.9

DELET ING A RECORD

Private Sub cmdDelete_Click()
rsEmployees.Delete
rsEmployees.MoveNext
If rsEmployees.EOF Then

If rsEmployees.BOF Then
Msgbox ìNothing to Deleteî
cmdDelete.Enabled = False

Else
RsEmployees.MoveLast

End If
End If

End Sub

That particular example makes users aware of what they have done if
they accidentally tried to delete from a Recordset that contained no
records.

N
O

T
E Differences in Calls to AddNew

The timing of your calls to the ADO
Recordset’s AddNew method will proba-
bly differ from the timing of your call to
the AddNew method of the Recordset
belonging to a Data Environment or to
an ADO Data Control when there are
bound controls.

Whereas you might call the ADO Data
Control or Data Environment
Recordset’s AddNew method as soon
as the user decides to add a record,
you probably don’t want to call the
ADO Recordset’s AddNew method until
it’s time to save the edited data for
the new record. You don’t want to allo-
cate extra resources before you need
to.

11 002-8 CH 08 3/1/99 8:02 AM Page 343

344 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Programmatically Navigating a Recordset
The Recordset’s five most common methods that enable you to
programmatically position the record pointer are as follows:

á Move This method takes a positive or negative Long value as
a required parameter. The parameter specifies the number of
records to move away from the current record pointer position.
Positive values indicate forward movement, while negative val-
ues indicate backward movement. An optional second parame-
ter enables you to specify the Bookmark of a different record.
Specifying this second parameter causes the movement to hap-
pen relative to the record of the Bookmark.

á MoveFirst Moves the record pointer to the first row of
the Recordset’s data.

á MoveLast Moves the record pointer to the last row of the
Recordset’s data.

á MoveNext Moves the record pointer one row beyond its cur-
rent position in the Recordset.

á MovePrevious Moves the record pointer one row before its
current position in the Recordset.

You might call these methods to programmatically process records,
or you might call them in response to some user action, such as
clicking buttons labeled Next, Previous, First, or Last.

It is possible to move the record pointer too far (that is, past the
beginning or end of the Recordset) with the Move, MoveNext, and
MovePrevious methods. To help you avoid this problem, each
Recordset has “buffer records” just before its first row and just after
its last row. When you move the record pointer onto one of the
beginning or ending buffer records, no error happens, but the
Recordset’s Boolean property BOF (Beginning-of-file) or EOF (End-
of-file) becomes True.

You should always test the BOF property immediately after calling
the MovePrevious method and the EOF property after every call to
MoveNext, and you should test one or both of the properties after
calling the Move method. The examples in Listing 8.10 present code
that you might put in the Click event procedures for Next and
Previous CommandButtons. (Notice the call to ReadFromData, a proce-
dure the programmer has written to populate controls with field data
from the Recordset’s copy buffer.)

11 002-8 CH 08 3/1/99 8:02 AM Page 344

Chapter 8 CREATING DATA SERVICES: PART I 345

LISTING 8.10

USING THE EOF AND BOF PROPERTIES WITH MOVENEXT
AND MOVEPREVIOUS

Private Sub cmdNext_Click()
rsEmployees.MoveNext
If rsEmployees.EOF Then

rsEmployees.MoveLast
EndIf
ReadFromData

End Sub

Private Sub cmdPrevious_Click()
rsEmployees.MovePrevious
If rsEmployees.BOF Then

rsEmployees.MoveFirst
EndIf
ReadFromData

End Sub

If you programmatically loop through a Recordset, you must also
check for the EOF property. You can perform this type of navigation
by writing a loop that keeps advancing the record pointer with
MoveNext until EOF is True. An example of a record-processing loop
might look like the code in Listing 8.11.

LISTING 8.11

A RECORD-PROCESSING LOOP

rsEmployees.MoveFirst
Do Until rsEmployees.EOF

‘...some code to process a record
rsEmployees.MoveNext

Loop

In this example, you always start at the first record in the
rsEmployees Recordset and go through the entire Recordset with
MoveNext.

11 002-8 CH 08 3/1/99 8:02 AM Page 345

346 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Locating Records
You can use the Recordset’s Find method to move the cursor to a
record that fits a specified criterion.

The Find method takes up to four arguments:

á Criterion (required) A string with the same syntactic format
as a SQL where clause. It specifies a condition that the record
being sought must fulfill.

á SkipRows A number representing the offset of the starting
position of the search from either the current row or from the
row indicated by the Start argument. Assumed to be 0 if left
blank.

á searchDirection A flag indicating the direction in which to
search from the starting point. Values can be adSearchForward

or adSearchBackward. Assumed to be adSearchForward if left
blank.

á Start A Double-type value that gives the Bookmark of the
record from which the search will begin in the direction indi-
cated by searchDirection. Assumed to be the current row if
left blank.

When you call the Find method, of course, it is not always certain
that you will find a record that fits your criteria. If the Find method
does not locate any records, the cursor ends up at the very beginning
or end of the Recordset (depending on the setting of the
searchDirection argument), and the BOF or EOF property will
be True.

You should always check the BOF and EOF properties after you perform
a Find so that you can gracefully recover from an unsuccessful
attempt to find records.

Listing 8.12 gives an example of the use of the Find method. In
this implementation, the user enters a string or partial string in a
TextBox. The code incorporates the string into a condition and uses
this condition as the Criterion argument to the Find method.

11 002-8 CH 08 3/1/99 8:02 AM Page 346

Chapter 8 CREATING DATA SERVICES: PART I 347

LISTING 8.12

USING THE FIND METHOD TO LOCATE RECORDS IN A

RECORDSET

Private Sub cmdFind_Click()
‘Note: Bookmark only works correctly
‘with Client-side cursors
Dim dBookmark As Double
dBookmark = rsEmployees.Bookmark
Dim sFindCriterion As String
sFindCriterion = “LastName like ‘“ & _

txtLastNameToFind & “*’”
rsEmployees.MoveFirst
rsEmployees.Find sFindCriterion, , adSearchForward
If rsEmployees.EOF Then

rsEmployees.Bookmark = dBookmark
MsgBox “Couldn’t Find “”” & txtLastNameToFind & “””*”

Else
txtLastNameToFind = “”

End If
End Sub

The Recordset’s Bookmark Property
If your search with the Find method was unsuccessful—a fact that
you can detect by checking the EOF or BOF property—you’re going to
need to recover somehow, because the record pointer will probably
end up at the very first or very last record of the Recordset. As noted
in the preceding section, this won’t cause an error, but it probably
will be confusing to the user.

Even if you programmatically check the EOF or BOF property and dis-
play some sort of error message in a message box, your user may still
be inconvenienced. This is because the user would probably just
want to carry on with the record that was current before initiating
the unsuccessful search.

Why not put the record pointer back to the record it was on before
the unsuccessful search began?

Luckily, the Recordset object supports a BookMark property that
enables you to store and, if necessary, reset the position of the record
pointer. Therefore, the strategy for using the Find method would as
follows:

11 002-8 CH 08 3/1/99 8:02 AM Page 347

348 Par t I VISUAL BASIC 6 EXAM CONCEPTS

1. Store the Bookmark property to a Double variable.

2. Perform the Find.

3. If the Find is unsuccessful, restore the stored value of the
Bookmark property and show an error message.

Listing 8.12 in the preceding section illustrates how to use the
Bookmark property to restore cursor position after an unsuccessful call
to the Find method.

Recordset Events
As mentioned in the section titled “Connection Object Events,” the
Recordset is one of but two ADO objects that support events and
that you can declare using the WithEvents keyword.

Recordset event names and functionality follow a similar pattern to
those of Connection events: They are mostly divided into two
groups. One group, the Will events, happens just before some action
is about to take place; the other group, the Complete events, happens
just after an action has occurred.

The EndOfRecordset Event
This event fires when the cursor attempts to move past the first or
last row of the Recordset and the BOF or EOF property becomes True.

You can use this event to add new records at the end of the
Recordset when the record pointer attempts to navigate beyond the
last record.

The EndOfRecordset event’s parameters are as follows:

á fMoreData A Boolean that you must set to True if you add
records during the course of this event procedure. This signals
ADO to find a new end of the Recordset.

á adStatus If it is adStatusOK, you can set the value of
adStatus to adStatusCancel (the EOF action is cancelled), to
adStatusCantDeny (meaning that you can’t cancel this event in
the future) or adStatusUnwantedEvent (meaning that the event
won’t fire again).

Bookmark Property Limited to
ClientSide Cursors The Bookmark
property only contains valid informa-
tion for ClientSide cursors.

If you try to use a Recordset’s
Bookmark property with a
ServerSide cursor, you will receive
a runtime error.

W
A

R
N

IN
G

N
O

T
E BookMark Versus AbsolutePosition

You might think that the
AbsolutePosition property of the
Recordset would work for storing and
resetting the record pointer’s position.
However, a record’s AbsolutePosition
can change as other records are
added or deleted. A BookMark is more
stable because it always points to the
same physical location for the record.

Also note that, like the Bookmark, the
AbolutePosition property only works
for ClientSide cursors.

N
O

T
E Reminder See the section titled

“Connection Object Events” for a
detailed reminder note about program-
ming objects using the WithEvents
keyword.

11 002-8 CH 08 3/1/99 8:02 AM Page 348

Chapter 8 CREATING DATA SERVICES: PART I 349

á pRecordset Points to the current Recordset that raised this
event (not needed in VB programming).

The Will Events
These Recordset events’ names all begin with the word Will (hence,
the term Will events). Each Will event happens just before some
action on the Recordset.

A list of the Recordset’s Will events follows:

á WillChangeField

á WillChangeRecord

á WillChangeRecordset

á WillMove

Probably the most important parameter of each Will event is the
adStatus parameter: It tells you what the current status of the
Recordset is, but, more interestingly, you can change its value in
the event procedure to either

á prevent the pending action from occurring (set adStatus to
adStatusCancel)

or

á change the event’s behavior for the rest of the current session:
set adStatus to adStatusUnwantedEvent to stop the event from
firing again for this Recordset.

A brief description of each Will event and its parameters follows:

á WillMove Fires when the current row is about to change.

• adReason An integer specifying the reason that the move
is going to occur. Possible values for this parameter in the
context of a move are these: adRsnMoveFirst,
adRsnMoveLast, adRsnMoveNext, adRsnMovePrevious,
adRsnMove, adRsnRequery.

11 002-8 CH 08 3/1/99 8:02 AM Page 349

350 Par t I VISUAL BASIC 6 EXAM CONCEPTS

• adStatus See earlier discussion.

• pRecordset Pointer to current Recordset (not used
in VB).

á WillChangeField Fires when some action will cause one or
more fields in the record buffer to change. This could be due
to a user edit with the ADO Data Control or due to an assign-
ment of a field’s value in your code.

• cFields Number of fields that will be affected, same as
number of elements of the Fields parameter.

• Fields Variant array of Field objects representing the
fields in this record to be changed with this event.

• adStatus See earlier discussion.

• pRecordset Pointer to current Recordset (not used in VB).

á WillChangeRecord Fires when one or more records in the
underlying data are to be changed through deletion, addition, or
writing changes from the record buffer to the underlying data.

• adReason An integer specifying the reason that records are
going to be changed. Possible values for this parameter in
the context of a record change are these: adRsnAddNew,
adRsnDelete, adRsnFirstChange, adRsnUndoAddNew,
adRsnUndoDelete, adRsnUndoUpdate, adRsnUpdate.

• cRecords Number of records that will be affected with
this event.

• adStatus See earlier discussion.

• pRecordset Pointer to current Recordset (not used in VB).

á WillChangeRecordset Fires before some action that will
change the entire Recordset across the board, including setting
the Recordset to Nothing.

11 002-8 CH 08 3/1/99 8:02 AM Page 350

Chapter 8 CREATING DATA SERVICES: PART I 351

• adReason An integer specifying the reason that the
Recordset is going to be changed. Possible values for this
parameter in the context of a Recordset change are these:
adRsnRequery, adRsnResynch, adRsnClose, adRsnOpen.

• adStatus See earlier discussion.

• pRecordset Pointer to current Recordset (not used in VB).

The Complete Events
There is a correspondingly named Complete event for each of the
Recordset’s Will events described earlier. Just as a Will event fires
before the actual completion of an action, so a Complete event fires
after the action has completed. The names of the Complete events are
as follows:

á ChangeFieldComplete

á ChangeRecordComplete

á ChangeRecordsetComplete

á MoveComplete

The Complete events all take the same parameters in the same order
as their respective Will events, with one addition: A pError parame-
ter that comes just before the adStatus parameter in all four event
pairs and contains an Error object that gives information about any
error that occurred.

You can, of course, find out whether an error occurred by checking
the adStatus parameter for the value adStatusErrorsOccurred.

Disconnected, Persistent, and Dynamic
Recordsets
Because ADO has a “flat” object model hierarchy, with few depen-
dent objects (that is, few objects that can only be accessed through
other, parent objects), ADO Recordsets present some new possibili-
ties that were not available with earlier Microsoft data object models,
such as DAO.

11 002-8 CH 08 3/1/99 8:02 AM Page 351

352 Par t I VISUAL BASIC 6 EXAM CONCEPTS

In particular, a Recordset does not always need to be connected to a
Connection object. In fact, it is possible to create a Recordset that
never uses a Connection object or connects to data outside your
application.

At first glance, these possibilities may seem more like curiosities than
like practical features of the Recordset object, but let’s look a bit
more closely at the different possibilities of unconnected Recordsets:

á Disconnected Recordset objects. Enable you to reduce
server overhead by processing data offline.

á Dynamic Recordset objects. Give you the full power of the
ADO model to manipulate data that’s completely internal to
your application.

á Persistent Recordset objects. Free you from having to com-
plete all actions on a Recordset during a single session of the
application.

The following sections discuss these three types of Recordset objects.

Disconnected Recordsets
A disconnected Recordset object gets data from the server, but then
goes offline to manipulate the data and reconnects to write the
changes back to the server.

Such Recordsets must, of course, be implemented with client-side
cursors.

They begin life connected to a Connection object. After the connec-
tion is made to the server and the Recordset retrieves its rows from
the server, however, you can disconnect the Recordset from
the Connection object and drop the Connection to the server entirely.

Your process or the user can then manipulate the Recordset com-
pletely offline.

If and when your application decides to update the server data with
the offline changes, you can reconnect to a Connection object and
send the changes to the server database.

You must take the following steps in code to implement a disconnected
Recordset:

11 002-8 CH 08 3/1/99 8:02 AM Page 352

Chapter 8 CREATING DATA SERVICES: PART I 353

S T E P B Y S T E P
8.8 Implementing a Disconnected Recordset

1. Create a Recordset object with its CursorLocation prop-
erty set to ClientSide.

2. Connect the Recordset to a Connection object with the
Open method.

3. After you have retrieved rows into the Recordset, set the
Recordset’s ActiveConnection property to Nothing and close
the Connection object. The Recordset is now disconnected.

4. Manipulate the data in the Recordset through user edits
and/or your own processing logic.

5. When local processing is done, you can reestablish the
Recordset’s connection to the server by re-opening the
Connection object and reconnecting the Recordset to the
Connection object.

Listing 8.13 gives an example of code that implements a discon-
nected Recordset with offline processing.

LISTING 8.13

CODE THAT IMPLEMENTS A DISCONNECTED RECORDSET

‘OPEN AN ADO CONNECTION
Dim connPubs As ADODB.Connection
Dim sConnString As String
sConnString = “Provider=MSDASQL.1;Data

Source=TRASH1006;Initial Catalog=pubs”
Set connPubs = New ADODB.Connection
connPubs.ConnectionString = sConnString
connPubs.Open

‘OPEN A RECORDSET FROM THE CONNECTION
‘BUT THEN DESTROY THE CONNECTION
Dim rs As ADODB.Recordset

continues

11 002-8 CH 08 3/1/99 8:02 AM Page 353

354 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Set rs = New ADODB.Recordset
With rs

‘ Specify the cursor’s location
.CursorLocation = adUseClient
.LockType = adLockBatchOptimistic
.Source = “Select * from authors”
Set .ActiveConnection = connPubs
.Open
.ActiveConnection = Nothing

End With
connPubs.Close
Set connPubs = Nothing

‘DO SOME PROCESSING TO THE DISCONNECTED
‘RECORDSET
‘........
‘RE-OPEN AN ADO CONNECTION
Set connPubs = New ADODB.Connection
connPubs.ConnectionString = sConnString
connPubs.Open

‘CONNECT THE RECORDSET TO THE CONNECTION
Set rs.ActiveConnection = connPubs
‘UPDATE THE CONNECTION WITH THE RECORDSET’S
‘CHANGES
rs.UpdateBatch

‘AND ONCE AGAIN DESTROY THE CONNECTION
connPubs.Close
Set connPubs = Nothing

Dynamic Recordsets
A dynamic Recordset object never uses a connection object and has
nothing to do with any sort of external data storage.

To implement a dynamic Recordset, you never associate it with a
Connection object. Instead, you dynamically define its structure by
adding Field objects to its Fields collection. It is then up to the
application (perhaps with the user’s help) to populate the Recordset
with rows and manipulate its data.

Your code should take the following steps to implement a dynamic
Recordset:

LISTING 8.13

CODE THAT IMPLEMENTS A DISCONNECTED RECORDSET

continued

11 002-8 CH 08 3/1/99 8:02 AM Page 354

Chapter 8 CREATING DATA SERVICES: PART I 355

1. Determine ahead of time the field structure that you want for
each row of the dynamic Recordset.

2. Declare a Recordset object variable, but don’t associate it with
a Connection.

3. Repeat the following steps for each field that you want in the
Recordset’s structure:

• Call the Append method of the Recordset object’s Fields
collection to add the Field to the Recordset’s Fields.

• In the first and second arguments of the Append method,
set the Field object’s Name and Type properties, respectively.
If the Field has a type that can vary in size (such as BSTR, a
Basic String type), also set its AssignedSize property in the
third argument.

• Repeat these steps for each Field that you want to have in
the Recordset.

4. Call the Recordset object’s Open method.

5. Load the Recordset with initial data through user edits and/or
your own processing logic. Use the Recordset techniques
discussed in this chapter.

6. Manipulate the data in the Recordset through user edits
and/or your own processing logic. Again, use the Recordset
techniques discussed in this chapter.

Listing 8.14 gives an example of code that implements a dynamic
Recordset with offline processing.

LISTING 8.14

CODE THAT IMPLEMENTS A DYNAMIC RECORDSET

Set rs = New ADODB.Recordset
rs.CursorLocation = adUseClient
rs.Fields.Append “FirstName”, adBSTR, 25
rs.Fields.Append “LastName”, adBSTR, 25
rs.Open

‘After this point, programming is identical
‘to manipulating any other type of
‘ADO Recordset object

11 002-8 CH 08 3/1/99 8:02 AM Page 355

356 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Persistent Recordsets
A persistent Recordset is a Recordset (typically a dynamic or discon-
nected Recordset as discussed in the previous two sections) whose
information you save between sessions of your application into a
local “holding file.”

To implement a persistent Recordset, you call a Recordset object’s
Save method to save it to a file. When you want the saved data back,
you call a Recordset object’s Open method with an argument that indi-
cates the name of the file where you previously saved Recordset data.

You need to take the following steps in your code to implement a
persistent Recordset object:

1. Make sure you have an open Recordset object with which to work.

2. Call the Recordset object’s Save method with two arguments:

• The first argument represents the name of the file where
you will save the Recordset object’s data.

• The second argument represents the data format that you
will use to save data to the file. As of this writing, there’s
only one possible value for this argument, adPersistADTG.

3. When you want to retrieve previously saved information from a
file into a Recordset, call the Recordset’s Open method, passing
to the Open method as its first and only argument the name of
the file where you previously saved the Recordset information.

Listing 8.15 gives an example of code that implements a persistent
disconnected Recordset.

LISTING 8.15

CODE THAT IMPLEMENTS A PERSISTENT RECORDSET

‘Assumes that rs has been
‘previously declared and initialized

Private Sub cmdSaveDisconn_Click()
If Dir$(“C:\trash\mydata.dat”) <> “” Then

Kill “C:\trash\mydata.dat”
End If
rs.Save “C:\Trash\MyData.dat”, adPersistADTG

End Sub

Private Sub cmdRetrieveDisconn_Click()
Set rs = Nothing
Set rs = New ADODB.Recordset
rs.Open “C:\Trash\MyData.dat”

End Sub

11 002-8 CH 08 3/1/99 8:02 AM Page 356

Chapter 8 CREATING DATA SERVICES: PART I 357

USING THE ADO ERRORS COLLECTION

. Use the ADO Errors collection to handle database errors.

The ADO Errors collection is a set of Error objects that contain
information about the last ADO operation that caused a provider
error.

The first thing to note about the Errors collection is that it does not
contain information about ADO errors. Instead, the Errors collec-
tion contains information about provider errors. ADO errors are
raised as normal runtime errors in the VB environment.

Assume, for example, that you attempt to assign an invalid cursor
type to a Recordset’s CursorType property. Your attempt would gen-
erate a standard VB runtime error, because this is an ADO error.

On the other hand, if you call a SQL Server stored procedure and
there is an abnormal termination in SQL Server, a provider error has
occurred. The Errors collection will then get populated with one or
more new entries.

Secondly, you should keep in mind that the Errors collection does
not contain a history of errors generated during the current session.
The Errors collection contains only the last set of Error objects gen-
erated by the provider when attempting to fulfill a single ADO
request. ADO uses a collection to handle errors because a single
request might generate more than one error message from the
provider.

The Errors collection is not cleared with every new ADO request to
the Provider. Instead, the Errors collection keeps information about
the last request that caused errors even through subsequent ADO
requests to the provider. The Errors collection is cleared only when
a new set of errors occurs.

You can use the Clear method of the Errors collection to keep track
of whether the most recent ADO operation has caused Provider
errors.

11 002-8 CH 08 3/1/99 8:02 AM Page 357

358 Par t I VISUAL BASIC 6 EXAM CONCEPTS

This chapter covered the following topics:

á Programming Connection, Command, and Recordset objects
with the Data Environment Designer

á Binding VB objects to Data Environment Objects

á Accessing ADO events for objects under a Data Environment

á Programming the ADO Data Control

á Adding, editing, and deleting records with the ADO Data
Control

á Programming with the ADO object model

á Programming the Connection object

á Programming the Command object

á Programming Recordset methods and events

á Disconnected, Persistent, and Dynamic Recordsets

á The ADO Errors collection

CHAPTER SUMMARY

KEY TERMS
• ActiveX Data Objects

• Data consumer

• Data cursor

• Data provider

• Data Source Name

• DBMS

• Jet

• Open Database Connectivity

• Rowset

• SQL Server

11 002-8 CH 08 3/1/99 8:02 AM Page 358

Chapter 8 CREATING DATA SERVICES: PART I 359

A P P LY YO U R K N O W L E D G E

Exercises

8.1 Programming the ADO Object Model

In this exercise, you perform common programming
tasks with the main components of the ADO object
model (Connection, Command, and Recordset). This
exercise precedes exercises for more automated data
manipulation techniques (Data Environment Designer
and ADO Data Control) so that you will have a
clearer understanding of what the automated tools do
with the underlying ADO objects. Compare the data-
access techniques of this exercise that directly manipu-
late the Recordset object’s methods and properties
with the techniques of the three data access models
discussed in the next chapter and illustrated in exer-
cises 9.3 and 9.4 of that chapter.

Estimated Time: 60 minutes

1. Start a new VB standard EXE project with a
default startup form.

2. Add a reference in your project to the ADO 2.0
library by choosing Project, References from the
VB menu and checking the Microsoft ActiveX
Data Objects 2.0 Library in the list of Available
References (refer back to Figure 8.24 in the sec-
tion titled “Programming with ADO”).

3. In the form’s General Declarations, declare an
ADO Connection object variable, an ADO
Command object variable, and an ADO Recordset
object variable. Implement event programming
for the Connection and Recordset (remember
that Commands don’t support events: Try declaring
the Command object using WithEvents to see the
error message).

Also declare a form-wide Boolean variable to act
as a flag for an add action. This flag will be set to
True if the user decides to add a record. You will
see in subsequent steps how this flag is used.

The code in General Declarations should look
like this:

Option Explicit
Dim WithEvents cnNWind As ADODB.Connection
Dim WithEvents rsEmployees As ADODB.Recordset
Dim cmEmployees As ADODB.Command
Public gblnAddMode As Boolean

4. Add a CommandButton to the form and name it
cmdOpenConnection, as shown in Figure 8.25.

F IGURE 8 .2 5
Completed form for Exercise 8.3.

In the CommandButton’s Click event procedure,
instantiate and open the Connection and
Recordset objects with code such as the
following:

11 002-8 CH 08 3/1/99 8:02 AM Page 359

360 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Private Sub cmdOpenConnection_Click()

Set cnNWind = New ADODB.Connection
Set rsEmployees = New ADODB.Recordset
Dim sConnect As String
sConnect = “Provider=Microsoft.Jet.

➥OLEDB.3.51;” & _
“Data Source=

C:\DataSamples\Nwind.mdb”
cnNWind.CursorLocation = adUseClient
cnNWind.Open sConnect
rsEmployees.CursorType = adOpenStatic
rsEmployees.CursorLocation = adUseClient
rsEmployees.LockType = adLockPessimistic
rsEmployees.Source = “Select * From

➥Employees Order By LastName,FirstName”
Set rsEmployees.ActiveConnection =

➥cnNWind
rsEmployees.Open

End Sub

Remember that the provider and other elements of the
Connect string will vary depending on your environ-
ment.

5. Add a second CommandButton and name it
cmdCloseConnection (refer to Figure 8.25). Put
code in its Click event procedure to close the
Recordset and Connection (notice that you also
set the form-wide flag for Adds to False, in case
it had been turned on):

Private Sub cmdCloseConnection_Click()
cnNWind.Close
Set cnNWind = Nothing
gblnAddMode = False

End Sub

6. Run the application to make sure that no errors
occur when your code initializes and closes these
objects.

7. Add four Labels and four TextBoxes to the form
for data display as shown in Figure 8.25. Name
the TextBoxes txtEmployeeFirstName,
txtEmployeeLastName, txtBirthDate, and
txtTitle. Give the Labels appropriate captions as
shown in the figure.

8. Write a Sub Procedure called ShowDataInControls.
This Sub will update the contents of the
TextBoxes with the contents of the respective
fields of the Recordset:

Private Sub ShowDataInControls()
If rsEmployees.BOF Or rsEmployees.EOF

Then
Exit Sub

End If
On Error Resume Next
txtEmployeeFirstName = rsEmployees

➥(“FirstName”) & “”
txtEmployeeLastName = rsEmployees

➥(“LastName”) & “”
txtBirthDate = rsEmployees(“BirthDate”)

➥& “”
txtTitle = rsEmployees(“Title”).Value

➥& “”
If Err.Number <> 0 Then MsgBox

➥Err.Description
End Sub

9. Write a companion Sub procedure called
WriteDataFromControlsToBuffer. This Sub will
update the contents of the Recordset’s Title_ID
and Title fields from the contents of the
TextBoxes:

Private Sub WriteDataFromControlsToBuffer()
If rsEmployees.BOF Or rsEmployees.EOF

Then
Exit Sub

End If
On Error Resume Next
rsEmployees(“FirstName”).Value =

➥txtEmployeeFirstName
rsEmployees(“LastName”).Value =

➥txtEmployeeLastName
rsEmployees(“BirthDate”).Value =

➥txtBirthDate
rsEmployees(“Title”).Value = txtTitle
If Err.Number <> 0 Then MsgBox

➥Err.Description
End Sub

Remember that the underlying data will not be
updated until you also call the Recordset’s Update
method.

11 002-8 CH 08 3/1/99 8:02 AM Page 360

Chapter 8 CREATING DATA SERVICES: PART I 361

A P P LY YO U R K N O W L E D G E

10. Call the RefreshControls procedure in the
MoveComplete event procedure of the Recordset:

Private Sub rsEmployees_MoveComplete(_
ByVal adReason As

ADODB.EventReasonEnum, _
ByVal pError As ADODB.Error, _
adStatus As ADODB.EventStatusEnum, _
ByVal pRecordset As ADODB.Recordset)

If Not gblnAddMode Then
ShowDataInControls

End If
End Sub

11. Place four navigation CommandButtons named
cmdNext, cmdPrevious, cmdFirst, and cmdLast on
the form as shown in Figure 8.25 and place code
in their Click event procedures to navigate the
Recordset as follows:

Private Sub cmdFirst_Click()
On Error Resume Next
rsEmployees.MoveFirst

End Sub
Private Sub cmdLast_Click()

On Error Resume Next
rsEmployees.MoveLast

End Sub
Private Sub cmdNext_Click()

On Error Resume Next
rsEmployees.MoveNext

End Sub
Private Sub cmdPrevious_Click()

On Error Resume Next
rsEmployees.MovePrevious

End Sub

12. Create a Private Sub procedure called
BlankControls that will blank out the controls
that hold data field contents:

Private Sub BlankControls()
txtEmployeeFirstName = “”
txtEmployeeLastName = “”
txtBirthDate = “”
txtTitle = “”

End Sub

13. Place a CommandButton named cmdAdd on the sur-
face of the form as shown in Figure 8.25 and add
the following code to its Click event procedure:

Private Sub cmdAdd_Click()
BlankControls
gblnAddMode = True

End Sub

Note that you don’t actually call the AddNew
method here, but merely blank out the contents
of the controls and set a special flag variable to
indicate that you are in the midst of an Add
action. You will not call the AddNew method until
users confirm that they definitely want to save
changes.

14. Write a procedure to write the contents of the
current controls to the fields of the record buffer
and then update the underlying data with the
contents of those fields:

Private Sub SaveRecord()

On Error Resume Next

If gblnAddMode Then
rsEmployees.AddNew

End If
WriteDataFromControlsToBuffer
rsEmployees.Update

gblnAddMode = False

End Sub

Note that we call the Sub procedure that will
update field contents from this event procedure,
just before calling the Update method. Also note
the logic to check to see whether you are in the
midst of an Add action. If so, you call the AddNew
method.

11 002-8 CH 08 3/1/99 8:02 AM Page 361

362 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

15. Place a CommandButton named cmdSave on the sur-
face of the form as shown in Figure 8.25 and add
the following code to its Click event procedure to
call the SaveRecord procedure:

Private Sub cmdSave_Click()
SaveRecord

End Sub

16. Place a CommandButton named cmdCancel on the sur-
face of the form as shown in Figure 8.25 and add
the following code to its Click event procedure:

Private Sub cmdCancel_Click()
ShowDataInControls
gblnAddMode = False

End Sub

We just overwrite the user’s changes by calling the
routine to refresh TextBox contents with Field
contents. You also turn off the Add flag, in case it
had been set.

You need to call CancelUpdate if you were adding
or editing (check EditMode). If you call AddNew a
second time (if the user cancels, and then adds
again), for example, you will get an error because
you are already adding.

17. Place a CommandButton named cmdDelete on the
surface of the form as shown in Figure 8.25 and
add the following code to its Click event proce-
dure:

Private Sub cmdDelete_Click()
If (Not rsEmployees.EOF) And (Not

rsEmployees.BOF) Then
cnNWind.BeginTrans
rsEmployees.Delete
cnNWind.CommitTrans
rsEmployees.MoveNext
If rsEmployees.EOF Then

On Error Resume Next
rsEmployees.MoveLast
If Err.Number <> 0 Then

‘No more records left
‘perhaps take some action

➥here

End If
On Error GoTo 0

End If
End If

End Sub

18. Place a TextBox and accompanying Label on the
surface of the form and name the TextBox
txtLastNameToFind as shown in Figure 8.25. Place
a button named cmdFind on the form as shown in
the figure and place the following code in its
Click event procedure:

Private Sub cmdFind_Click()
Dim dBookmark As Double
dBookmark = rsEmployees.Bookmark
Dim sFindCriterion As String
sFindCriterion = “LastName like ‘“ & _

txtLastNameToFind & “‘“
rsEmployees.MoveFirst
rsEmployees.Find sFindCriterion
If rsEmployees.EOF Then

rsEmployees.Bookmark = dBookmark
MsgBox “Couldn’t Find “”” & _

txtLastNameToFind & “””
Else

txtLastNameToFind = “”
End If

End Sub

Note that the Bookmark property works only with
client-side cursors. Try changing the
CursorLocation property of the Recordset to
adUseServer and note the error message that
appears when you run the application and
attempt a Find.

19. You can test the application after each step above.

8.2 Binding Objects to Data with the Data
Environment Designer

You program with a Data Environment’s Connection and
Command objects, inserting bound controls on a form
and programming the Command object’s Recordset.

Estimated Time: 20 minutes

11 002-8 CH 08 3/1/99 8:02 AM Page 362

Chapter 8 CREATING DATA SERVICES: PART I 363

A P P LY YO U R K N O W L E D G E

1. In a new VB project, choose the Project menu in
VB. Make sure that Add Data Environment is
one of the Project menu’s options. If Add Data
Environment does not appear on the Project
menu, add it by performing the following steps:

• Choose Project, Components and select the
Designers tab on the Components dialog box
(refer back to Figure 8.1 in the section titled
“Managing ADO Objects with the Data
Environment Designer”).

• In the Components dialog box, check the
Data Environment box.

• Click the OK button on the Components
dialog box.

2. Choose Project, Add Data Environment from
the VB menu.

3. Navigate to the Properties window of the Data
Environment (see Figure 8.26).

4. Change the Name property of the Data
Environment object to deTitles.

5. Right-click on the Data Environment’s default
Connection object, and then choose Properties
from the drop-down menu.

6. On the Provider tab, choose Microsoft Jet 3.51
OLE DB as the OLE DB data provider (see
Figure 8.27).

F IGURE 8 .26 ▲

Changing the name of the Data Environment.

F IGURE 8 .2 7 ▲

Specifying the connection’s provider.

7. On Connection tab, set up the specific data con-
nection with the following steps (note that the
contents of the tab differ depending on the type
of data provider selected on the Connection tab):

• Set up the source of the data by specifying the
NWIND.MDB file’s name and path (see
Figure 8.28).

11 002-8 CH 08 3/1/99 8:02 AM Page 363

364 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

F IGU R E 8 .28 ▲

Setting NWIND.MDB as the data source for the Connection
object.

• Fill in logon information about the username
and password. (For an Access database, you
typically leave these fields at their default
values.)

8. Click OK to accept the data-source options you
have built. You should now see a Connection
object on the Data Environment Designer’s sur-
face.

9. Right-click the Connection object and choose
Add Command from the drop-down menu, as in
Figure 8.29.

10. On the General tab (see Figure 8.30), set
Database Object to Table in the drop-down list
and set the Object Name to Employees from the
drop-down list.

F IGURE 8 .3 0 ▲

Setting general information for the Command object.

11. On the Advanced tab (see Figure 8.31), set cursor
locking strategy to Optimistic. Click OK to apply
changes and close the Command1 Properties dialog
box.

F IGU R E 8 .29 ▲

Adding a Command object to the Connection.

F IGURE 8 .3 1 ▲

Setting cursor locking for the Command object.

11 002-8 CH 08 3/1/99 8:02 AM Page 364

Chapter 8 CREATING DATA SERVICES: PART I 365

A P P LY YO U R K N O W L E D G E

12. Use the left (primary) mouse button to drag the
newly created Command object from the Data
Environment Designer onto the form, where it
will automatically create bound fields for you, as
shown in Figure 8.32.

14. Notice that there is no built-in way to navigate
the controls, as you have with the ADO Data
Control. To remedy this, follow these steps:

• Create a single CommandButton and name it
cmdNext (see Figure 8.34).

F IGURE 8 .32 ▲

Automatically creating bound fields by dragging the Command
object.

13. Test the bound controls by running the project,
as shown in Figure 8.33.

F IGURE 8 .33 ▲

Testing the bound controls.

F IGURE 8 .3 4 ▲

Form with a MoveNext command button.

In the CommandButton’s Click event procedure, put
the following code:

Private Sub cmdNext_Click()
deTitles.rsCommand1.MoveNext
If deTitles.rsCommand1.EOF Then

deTitles.rsCommand1.MoveLast
End If

End Sub

Note again that this code is similar to code from
straight ADO programming, with the exception
of the need to refer to the Recordset through the
Data Environment. Once again, the Recordset
name is derived from the Command object’s name.

• Create similar CommandButtons for the
MovePrevious, MoveLast, and MoveFirst meth-
ods of the Recordset. You can use the model
of step 10 in the preceding exercise
to put code into their Click event procedures.

11 002-8 CH 08 3/1/99 8:02 AM Page 365

366 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Just remember to add the Data Environment’s
name to all references to the Recordset (as
illustrated in the preceding step). Also, be
sure to use the correct Recordset name.

8.3 Binding Objects to Data With the ADO
Data Control

You create a small application that binds VB controls to
the Recordset exposed by an ADO Data Control.

Estimated Time: 20 minutes

1. Start a new VB standard EXE project with a
default form.

2. Add the ADO Data Control to your VB toolbox
by calling the Project, Components menu option
and then checking Microsoft ADO Data Control
6.0 (OLEDB) in the resulting dialog box. Click
OK and you should see the ADO Data Control
in your toolbox. Add an instance of the ADO
Data Control to the form.

3. To build the connection string, open the ADO
Data Control’s Property Page by right-clicking on
the ADO Data Control and selecting ADODC
Properties. Now take the following steps:

• The resulting dialog box has just one tab,
General.

Choose the Use Connection String option
and click the Build button.

• On the resulting Data Link Properties dialog
box (see Figure 8.35), choose the Provider tab
and choose Microsoft Jet 3.51 OLE DB
Provider.

F IGURE 8 .3 5 ▲

DataLink Properties dialog box for Build button of the
ConnectionString property.

• Select the Connection tab and click the ellip-
sis button (…) under Select or enter a data-
base name. Find the NWIND.MDB database
file on your system. (Figure 8.35 shows the
completed information.)

• Test the Connection to make sure that the
connection works (see Figure 8.36).

F IGURE 8 .3 6 ▲

Testing the ConnectionString’s data link.

• Click OK on both the dialog boxes to return
to the ADO Data Control’s Properties win-
dow.

11 002-8 CH 08 3/1/99 8:02 AM Page 366

Chapter 8 CREATING DATA SERVICES: PART I 367

A P P LY YO U R K N O W L E D G E

4. Change the Caption property of the ADO Data
Control to Employees.

5. Navigate to the RecordSource property and set it
by choosing Command Type 2 - adCmdTable and
the Employees table from the drop-down list of
tables (see Figure 8.37).

F IGURE 8 .3 8 ▲

Data-bound TextBox controls and corresponding labels.

9. In their respective Properties windows, change the
DataSource property of each TextBox control to
point to the ADO Data Control (see Figure 8.39).

F IGURE 8 .37 ▲

Setting the Recordsource property.

6. In the ADO Data Control Properties window,
make sure that the CursorType property is set to
3-adOpenStatic, the CursorLocation property to
3-adUseClient, and the LockType property to 3-
adLockOptimistic.

7. Set the EOFAction property to 2-adDoAddNew.

8. Add three TextBox controls and corresponding
Labels to the form as shown in Figure 8.38.
Name the TextBox controls txtFirst, txtLast,
and txtBirthDate.

F IGURE 8 .3 9 ▲

Setting the DataSource property of a TextBox.

11 002-8 CH 08 3/1/99 8:03 AM Page 367

368 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

For each TextBox in the Properties window, use the
drop-down list of the DataField property to select
the Employee table’s LastName, FirstName, and
Birthdate fields, respectively (see Figure 8.40).

3. Which two ADO objects support events?

4. Which property of a Recordset object should you
check to see if the preceding call to the Find
method was successful?

5. How could you prevent one of ADO’s Will event
procedures from running multiple times during
an application session?

6. What is the purpose of the ADO Errors
collection?

Exam Questions
1. You create a Connection object named connMy and

a Command object named cmdMy in a Data
Environment Designer named deMy. In your
code, you want to programmatically write
changes to the underlying data. The line of code
that you need to write would be:

A. deMy.rsconnMy.Update

B. deMy.cmdMy.rs.Update

C. deMy.connMy.rscmdMy.Update

D. deMy.rscmdMy.Update

2. How can you place a DataGrid on a form that is
automatically bound to the Recordset of a Data
Environment’s Command object? (Select all that
apply.)

A. Drag the Command object with the right mouse
button from the Data Environment to the
form.

F IGU R E 8 .40
Setting the DataField property of a TextBox.

10. Run the application. The text boxes should be
populated with field contents from the Employees
table. Click the navigation buttons to verify that
the text box contents change to reflect the differ-
ent records. Attempt to navigate beyond the last
record. Because of the setting of the EOFAction
property, the fields should go blank and allow you
to add a new record.

Review Questions
1. What are the two main objects that you can place

on the surface of a Data Environment Designer?

2. Which ADO object is always associated with a
cursor?

11 002-8 CH 08 3/1/99 8:03 AM Page 368

Chapter 8 CREATING DATA SERVICES: PART I 369

A P P LY YO U R K N O W L E D G E

B. Drag the Command object with the left mouse
button from the Data Environment to the
form.

C. Highlight the Command object with the mouse
and then right-click the form.

D. Highlight the Command object with the mouse
and then left-click the form.

3. The ADO Data Control’s RecordSource property

A. Exposes a Recordset.

B. Contains the settings for creating a
Recordset.

C. Exposes a Fields collection.

D. Exposes a Command object.

4. A VB control’s DataMember property refers to

A. A Recordset object.

B. A Connection object.

C. A Command object.

D. A Data Environment.

5. You can set the contents of an ADO Recordset
field named ID with the following code:

A. sClients.ID.Value = strID

B. rsClients.Fields(ID).Value = strID

C. rsClients!Fields!(ID).Value = strID

D. rsClients!ID = strID

6. The ADO Errors collection

A. Clears before every ADO action.

B. Contains a history of all errors during this
session.

C. Contains the last errors generated by an ADO
action.

D. Contains a lookup list of all possible ADO
error codes.

7. Which code would appropriately display ADO
errors (connNwind is an ADO Connection and
rsEmployees is an ADO Recordset object)?

A. Dim adoErr As ADODB.Error
For Each adoErr In connNWind.Errors

MsgBox adoErr.Description

Next /

B. Dim adoErr As ADODB.Error
For Each adoErr In rsEmployees.Errors

MsgBox adoErr.Description

Next adoErr

C. Dim adoErr As ADODB.Error
For Each adoErr In connNWind

MsgBox connNWind.Error.Description

Next adoErr

D. Dim adoErr As Error
For Each adoErr In connNWind.Errors

MsgBox adoErr.Description

Next adoErr

8. You write the following code to search for a
record in an ADO Recordset:

Dim sFindCriterion As String
sFindCriterion = “LastName like ‘“ & _
txtLastNameToFind & “‘“
rsEmployees.MoveFirst
rsEmployees.Find sFindCriterion

11 002-8 CH 08 3/1/99 8:03 AM Page 369

370 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

To test whether a record was encountered, you
should write the following code:

A. If rsEmployees.NoMatch Then

B. If rsEmployee.EOF Then

C. If rsEmployee.BookMark = 0 Then

D. If rsEmployee.BookMark =
rsRmployee.RecordCount Then

9. Setting the adStatus parameter of an ADO
Connection object’s WillConnect event procedure
to a value of adStatusUnwantedEvent

A. Causes the compiler to ignore this event
procedure.

B. Causes the event procedure to immediately
terminate.

C. Causes a runtime error if there is no error
handler written in the event procedure.

D. Causes the event procedure to run only once
during the application session.

10. Assume that you have initialized an ADO
Connection object named cnNWind and an ADO
Recordset object name rsEmployees with the
following code:

Set rsEmployees = New ADODB.Recordset
Set cnNWind = New ADODB.Connection

To prepare the Recordset for use within your pro-
gram, you should write the following code:

A. Dim sConnect As String
sConnect = “Provider=Microsoft.Jet.

➥OLEDB.3.51;” & _

“Data Source= NWind.mdb”

cnNWind.Open sConnect

rsEmployees.Open _

“Select * From Employees Order By

EmployeeID”, _

cnNWind

B. Dim sConnect As String
sConnect = “Select * From Employees Order

➥By EmployeeID”

cnNWind.Open sConnect

rsEmployees.Open “Provider=Microsoft.Jet.

➥OLEDB.3.51;” & _

“Data Source= NWind.mdb” ,

cnNWind

C. Dim sConnect As String
sConnect = “Select * From Employees Order

➥By EmployeeID”

cnNWind.Open sConnect

rsEmployees.Open cnNWind,

“Provider=Microsoft.Jet.OLEDB.3.51;” & _

“Data Source= NWind.mdb” ,

D. Dim sConnect As String
sConnect = “Provider=Microsoft.Jet.

➥OLEDB.3.51;” & _

“Data Source= NWind.mdb”

cnNWind.Open sConnect

rsEmployees.Open _

cnNWind,

“Select * From Employees Order By

➥EmployeeID”

11. Which of the following must you do at some
point when programming with a disconnected
Recordset that derives its records from a data
source on the server? (Select all that apply.)

A. Call Fields.Append.

B. Set the Recordset object’s LockType property
to adLockOptimistic.

11 002-8 CH 08 3/1/99 8:03 AM Page 370

Chapter 8 CREATING DATA SERVICES: PART I 371

A P P LY YO U R K N O W L E D G E

C. Set the Recordset object’s CursorLocation
property to adUseClient.

D. Set the Recordset object’s ActiveConnection
property to Nothing.

Answers to Review Questions
1. Connection and Command objects can be placed on

the surface of a Data Environment Designer. See
“Adding Connection and Command Objects With
the Data Environment Designer.”

2. A Recordset always requires an open cursor. See
“Referring to Recordset Field Contents.”

3. ADO Connection and Recordset objects are the
only two ADO objects that support events. See
“Command Object Events.”

4. Check the EOF property of an ADO Recordset
to see whether the result of the preceding Find
method call was successful. Note that in the
DAO object model, Recordset objects have a
NoMatch property. ADO Recordset objects do not
have the NoMatch property. See “Locating
Records.”

5. You could set the event’s adStatus parameter to
adStatusUnwantedEvent. See “The WillConnect
Event.”

6. The ADO Errors collection provides informa-
tion on the most recent errors generated by an
ADO action.

Answers to Exam Questions
1. D. deMy.rscmdMy.Update would call the Update

method of the Recordset based on a Data
Environment’s Command object (assuming the Data
Environment were named deMy and the Command
object were named cmdMy). Note that the
Recordset object’s name is automatically derived
from the Command object’s name by placing the
letters rs before the Command object’s name. For
more information, see the section titled
“Programming With a Data Environment
Designer.”

2. A. You can place a DataGrid on a form that is
automatically bound to the Recordset of a Data
Environment’s Command object by dragging the
Command object with the right mouse button from
the Data Environment to the form. None of the
other options would work. For more information,
see the section titled “Binding VB Objects to
Data Environment Objects.”

3. B. The ADO Data Control’s RecordSource prop-
erty contains the settings for creating a Recordset.
The Recordset property actually exposes the
Recordset. (The Recordset property is not avail-
able at design time.) For more information, see
the section titled “Setting up the ADO Data
Control.”

4. C. A VB control’s DataMember property refers to
a Command object in a Data Environment. The
Datasource property can refer to an ADO Data
Control, a Data Environment, or one of VB’s
older Data Control types. For more information,
see the section titled “Binding VB Objects to
Data Environment Objects.”

11 002-8 CH 08 3/1/99 8:03 AM Page 371

372 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

5. D. You can set the contents of a Recordset’s field
with code such as rsClients!ID = strID. There
are other syntactic possibilities, but none of the
other choices get it right. Answer A would be cor-
rect if the first period were replaced with a bang
(!). Answer B would be correct if the field name
were in quotation marks. Answer C would be
correct if the field name were in quotation marks
and the bang (“!”) characters were replaced with
periods. For more information, see the section
titled “Referring to Recordset Field Contents.”

6. C. The ADO Errors collection contains the last
errors generated by an ADO action. It does not
clear before every ADO action, but rather when a
different error has occurred or when you call the
Clear method of the Errors collection. For more
information, see the section titled “Using the
ADO Errors Collection.”

7. A. The following code would be appropriate to
display ADO errors (connNwind is an ADO
Connection and rsEmployees is an ADO
Recordset object):

Dim adoErr As ADODB.Error
For Each adoErr In connNWind.Errors
MsgBox adoErr.Description
Next adoErr

8. B.Use the EOF property to determine whether the
result of an ADO Recordset’s Find method was
successful. Answer A (using the NoMatch property)
is somewhat of a trick for those familiar with the
DAO object model: DAO Recordsets had a
NoMatch property, but ADO Recordset objects do
not have a NoMatch property. Answers C and D
don’t work because the Bookmark property gives

no direct way of determining position in a
Recordset. Bookmark is useful for saving and
restoring the current row in a Recordset, but it
doesn’t give useful information if examined
directly. For more information, see the section
titled “Locating Records.”

9. D. Setting the adStatus parameter of the
WillExecute event procedure to a value of
adStatusUnwantedEvent causes the event proce-
dure to run only once during the application ses-
sion. If the Execute action occurs subsequently in
the same session, the event procedure will not
run again. For more information, see the section
titled “The WillConnect Event.”

10. A.The code example in this choice illustrates the
correct elements and syntax for initializing an
ADO Recordset, given an existing ADO
Connection: First, open the connection with an
argument specifying the Connection string. The
text for this argument should contain a reference
to a valid OLE DB provider, and to a valid
DataSource. Next, call the Open method of the
Recordset object. You can specify its first two
arguments as the data source (a SQL query) and
the Connection object. The other choices for this
question all violate these rules in one way or
another. For more information, see the section
titled “Recordsets.” Note that an alternative
solution (not listed in the choices for this ques-
tion) would enable you to specify the Recordset’s
Source and ActiveConnection properties before
calling the Open method, which would then take
no parameters.

11 002-8 CH 08 3/1/99 8:03 AM Page 372

Chapter 8 CREATING DATA SERVICES: PART I 373

A P P LY YO U R K N O W L E D G E

11. C, D. When programming with a disconnected
Recordset that derives data from a server-side
database, you must set the CursorLocation prop-
erty to adUseClient and you must set the
ActiveConnection property to Nothing. Answer A
is incorrect because you call Fields.Append only
when you are dynamically defining the discon-

nected Recordset in your program (and not
deriving it from a database). Answer B is incor-
rect because the LockType property must be set to
adLockBatchOptimistic. For more information,
see the section titled “Disconnected, Persistent,
and Dynamic Recordsets” and the subsections
under that section.

11 002-8 CH 08 3/1/99 8:03 AM Page 373

11 002-8 CH 08 3/1/99 8:03 AM Page 374

OBJECT IVES

9C H A P T E R

Creating Data
Services: Part II

This chapter helps you prepare for the exam by cover-
ing the following objectives and their subobjectives:

Access and manipulate data by using the
Execute Direct model (70-175).

. Execute Direct, Prepare/Execute, and Stored Procedures
models: These three main objectives and the two
subobjectives under the Stored Procedure model
concentrate on three different data-access models—
ADO techniques for getting a data server to manip-
ulate data or return it to your application (Execute
Direct, Prepare/Execute, and Stored Procedures
models). The Execute Direct model causes your
application to request the server to immediately exe-
cute a query whose text your application passes to
the database engine.

Access and manipulate data by using the
Prepare/Execute model (70-175).

. The Prepare/Execute Direct model causes your
application to request the database server to precom-
pile your query to a temporary stored procedure that
will be available during the current session.

Access and manipulate data by using the
Stored Procedures model (70-175).

• Use a stored procedure to execute a state-
ment on a database.

• Use a stored procedure to return records
to a Visual Basic application.

. The Stored Procedures model causes your applica-
tion to request the server to execute an existing,
permanent stored procedure.

. The two subobjectives for stored procedures require
you to know what a stored procedure is in a rela-
tional database and how to create stored procedures
in SQL Server, as well as how to program with SQL
Server stored procedures in ADO.

12 002-8 CH 09 3/1/99 8:04 AM Page 375

OBJECT IVES

Retrieve and manipulate data by using differ-
ent cursor locations. Cursor locations include
client side and server side (70-175).

. Location and type. The next two objectives reflect
ADO’s capability to give you control over a data
cursor, which is essentially a software object that
provides a connection and a pointer to a particular
row in a data set.

. Cursor location refers to where the resources for a
cursor are allocated—either on the client machine
or on the server machine.

Retrieve and manipulate data by using differ-
ent cursor types. Cursor types include Forward-
Only, Static, Dynamic, and Keyset
(70-175).

. Cursor type refers to the type of behavior available
from a cursor. You can balance richness of available
features against resource usage when you choose
cursor type.

Manage database transactions to ensure data
consistency and recoverability (70-175).

. Transactions. The next objective requires you to
have a knowledge of the general nature of a data-
base transaction (a group of actions on data that
must stand or fall together). You must also be able
to implement database transactions in VB ADO
programming.

Write SQL statements that retrieve and modify
data (70-175).

. SQL statements to retrieve, modify, and join data. The
two objectives that deal with SQL knowledge imply
that you will need a basic familiarity with the major
types of statements in Structured Query Language
(SQL) for obtaining and manipulating data. SQL is
the basis for stored procedures, so these objectives
tie in with the previously mentioned objectives for
stored procedure. SQL is also the basis for stored
procedures and for other data manipulation tech-
niques such as those provided by the Execute
Direct and Prepare/Execute models mentioned in
previous objectives.

Write SQL statements that use joins to com-
bine data from multiple tables (70-175).

. This objective requires you to know how inner and
outer joins function in SQL. Joins in SQL enable
you to present the information from more than one
table in the results of a single SQL query.

Use appropriate locking strategies to ensure
data integrity. Locking strategies include
Read-Only, Pessimistic, Optimistic, and Batch
Optimistic (70-175).

. Locking strategies. The final objective addresses your
ability to manage database concurrency conflicts (the
problems caused when more than one user or
process tries to write to the same data at the same
time) with various strategies for locking. Locking is
the name for the methods and techniques that you
can use as a database programmer to stop other
users and processes from writing (or perhaps even
viewing) selected data while your process updates
that data. In ADO, you implement locking by set-
ting the LockType property of a Recordset object.

12 002-8 CH 09 3/1/99 8:04 AM Page 376

OUTL INE STUDY STRATEGIES

ADO Data-Access Models 378

Accessing Data With the Execute
Direct Model 379

Accessing Data With the Prepare/
Execute Mode 380

Accessing Data With the Stored
Procedures Model 382

How to Choose a Data-Access Model 383

Using Stored Procedures 384

Creating Stored Procedures 385

Using the Parameters Collection to
Manipulate and Evaluate Parameters
for Stored Procedures 388

Using Stored Procedures to Execute
Statements on a Database 390

Using Stored Procedures to Return
Records to an Application 396

Using Cursors 400

Using Cursor Locations 400

Using Cursor Types 402

Managing Database Transactions 404

Writing SQL Statements 408

Writing SQL Statements That Retrieve
and Modify Data 409

Writing SQL Statements That Use
Joins to Combine Data from Multiple
Tables 411

Using Locking Strategies to Ensure
Data Integrity 413

Choosing Cursor Options 414

Chapter Summary 416

. Become familiar with the Execute Direct and
Prepare/Execute models by reading the section
titled “ADO Data-Access Models” and working
through Exercise 9.3.

. Make sure that you are familiar with enough
SQL to be able to write simple Select queries
and data-manipulation statements as discussed
in the sections titled “Using Stored Procedures
to Execute Statements on a Database,” “Using
Stored Procedures to Return Records to an
Application,” and “Writing SQL Statements.”
Also become familiar with the SQL statements
found in the queries of Exercise 9.1 and the
stored procedures discussed in Exercise 9.2.

. If you have access to SQL Server (it is included
with the VB Enterprise Edition), become familiar
with the SQL Server Enterprise Manager utility.
In the sample pubs database, create and run
stored procedures as discussed in the section
“Using Stored Procedures” (and its subsec-
tions) and as illustrated in Exercise 9.2.

. Experiment with calling stored procedures from
VB ADO as discussed in sections under “Using
Stored Procedures” and in Exercise 9.4.

. Experiment with cursors and their locations and
types, as well as locking strategies with cursors.
These topics are discussed in the sections
“Using Cursors,” “Using Locking Strategies to
Ensure Data Integrity,” and “Choosing Cursor
Options,” and are illustrated in Exercise 9.6.

. Become familiar with database transactions
and how to set them up in VB ADO, as dis-
cussed in the sections on database transac-
tions and Exercise 9.6.

12 002-8 CH 09 3/1/99 8:04 AM Page 377

378 Par t I VISUAL BASIC 6 EXAM CONCEPTS

INTRODUCTION

This is the second chapter that discusses Microsoft’s VB exam objec-
tives for data access. The preceding chapter—Chapter 8, “Creating
Data Services: Part I”—introduced ADO concepts and discussed
general ADO programming techniques.

This chapter focuses on some of the more specialized concerns with
ADO programming, including various data-access models, the use of
SQL and stored procedures, record locking, and database transactions.

ADO DATA-ACCESS MODELS

ADO supports three data-access models. The term “data-access
model” refers to the choice of technique that you use in your pro-
gram to request the data provider to return data to a Recordset or to
execute some action on the data.

Following are brief descriptions of each of the three data-access mod-
els covered in the certification exam:

á The Execute Direct model enables you to dynamically specify a
SQL data-access statement every time you access data. The
underlying provider then executes your statement to return the
requested result or manipulate the data.

á The Prepare/Execute model also enables you to dynamically
specify a data-access statement. The first time that you run the
statement, the underlying provider compiles your statement as
a temporary stored procedure (whose lifetime lasts as long as
its associated Connection). The provider then executes the tem-
porary stored procedure. On subsequent requests to run the
same statement during the lifetime of the Connection, the
provider runs the temporary stored procedure.

á The Stored Procedures model requires you to use an existing
stored procedure that already belongs to the data that you are
accessing.

The following sections discuss each of the three models in greater
detail, as well as the reasons you might have for choosing a particular
data-access model over the other two.

12 002-8 CH 09 3/1/99 8:04 AM Page 378

Chapter 9 CREATING DATA SERVICES: PART I I 379

Accessing Data With the Execute
Direct Model
. Access and manipulate data by using the Execute Direct

model.

The Execute Direct model assumes the following steps:

1. You make an on-the-fly request to the provider.

2. The provider interprets your request.

3. The provider executes the interpreted request.

4. The provider returns the result to you.

5. When you make the same request in the future, the provider
reruns steps 2–5 again, re-interpreting the request each time.

In ADO, you can use the Execute Direct model to implement a
request to a data provider in one of several ways:

á Call a Connection object’s Execute method with a single argu-
ment that is the text of the SQL statement that you want the
provider to execute.

á Call a Command object’s Execute method with the text of the
SQL statement in the Command object’s CommandText property.

á Call a Recordset object’s Open method with the text of the
SQL statement.

Listing 9.1 shows examples of these different types of Execute Direct
calls.

LISTING 9.1

EXAMPLES OF THE EXECUTE DIRECT MODEL

‘INITIALIZING THE RECORDSET WITH THE
‘EXECUTE METHOD OF A CONNECTION OBJECT

‘Assumes connNWind was already initialized
‘as an ADODB.Connection object
Dim rsEmployees As ADODB.Recordset
Dim sExecuteString As String
sExecuteString = “SELECT * FROM employees “ & _

“WHERE LastName = ‘“ & _
txtLastName & “‘“ & _
“AND FirstName = ‘“ & _

12 002-8 CH 09 3/1/99 8:04 AM Page 379

380 Par t I VISUAL BASIC 6 EXAM CONCEPTS

txtFirstName & “‘“
Set rsEmployees = connNWind.Execute(sExecuteString)

sExecuteString = “SELECT * FROM employees “ & _
“WHERE LastName LIKE ‘“ & _
txtLastName & “%’” & _
“AND FirstName LIKE ‘“ & _

txtFirstName & “%’”

‘INITIALIZING THE RECORDSET WITH THE
‘EXECUTE METHOD OF A COMMAND OBJECT

Dim comNWind As ADODB.Command
Set comNWind = New ADODB.Command
With comNWind

Set .ActiveConnection = connNWind
.CommandType = adCmdText
.CommandText = sExecuteString
.Prepared = True
Set rsEmployees = .Execute(sExecuteString)

End With

‘INITIALIZEING THE RECORDSET WITH
‘ITS OWN OPEN METHOD

Set rs = New ADODB.Recordset
With rs

.CursorLocation = adUseClient

.LockType = adLockBatchOptimistic

.Source = “Select * from employees”
Set .ActiveConnection = connNWind
.Open

End With

Accessing Data With the Prepare/
Execute Model
. Access and manipulate data by using the Prepare/Execute

model.

The Prepare/Execute model assumes the following steps:

1. You make an on-the-fly request to the provider, instructing it
to compile your request.

2. The provider compiles your request.

3. The provider executes the compiled request.

12 002-8 CH 09 3/1/99 8:04 AM Page 380

Chapter 9 CREATING DATA SERVICES: PART I I 381

4. The provider returns the result to you.

5. When you make the same request in the future during this ses-
sion, the provider repeats steps 3 and 4, using the already com-
piled statement.

You can make a request using the Prepare/Execute model by using
a Command object in the following steps:

S T E P B Y S T E P
9.1 Making a Request Using the Prepare/Execute

Model

1. Set the Command object’s Prepared property to True.

2. Set the Command object’s CommandType property to adCmdText
if you are executing a SQL statement, or adCmdTable if the
request is just a table name (or skip this step and use the
Options parameter in step 4).

3. Set the Command object’s CommandText property to the text
of the SQL statement that you want to execute (or skip
this step and pass the SQL statement as an argument to
the Execute method in the following step).

4. Call the Command object’s Execute method. If you did not
set the CommandType property in step 2, pass the appropri-
ate value as the CommandType argument. If you did not set
the CommandText property in step 3, pass the SQL
statement as the Options argument (the third argument)
to the Execute method.

The Prepared property of a Command object makes the difference
between the Prepare/Execute and the Execute Direct models. When
the Prepared property is set to True, the provider compiles the SQL
statement to a temporary stored procedure before running it. The
provider persists this temporary stored procedure until the Command
object is changed or destroyed.

12 002-8 CH 09 3/1/99 8:04 AM Page 381

382 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Accessing Data With the Stored
Procedures Model
. Access and manipulate data by using the Stored Procedures

model.

The Stored Procedures model assumes the following steps:

1. You request the provider to run an already compiled stored
procedure.

2. The compiler runs the stored procedure.

3. The compiler returns the results of the stored procedure to you.

You can implement a Stored Procedures data-access model in one of
several ways:

á Call a Connection object’s Execute method with a single argu-
ment that is the name of the stored procedure that you want
the provider to execute. The Connection object’s Options argu-
ment must be set to adCmdStoredProc.

á Call a Recordset object’s Open method with the name of the
stored procedure. The Recordset’s Options argument must be
set to adCmdStoredProc.

á Call a Command object’s Execute method after setting the
Command object’s CommandText property to the name of the
stored procedure. Either the Execute method’s Options argu-
ment (third argument) must be adCmdStoredProc,
or the Command object’s CommandType property must be
adCmdStoredProc. You may also have to set the Command object’s
Parameters collection if the stored procedure requires or
returns parameters.

Listing 9.2 gives an example of a stored procedure in a SQL Server
database, and Listing 9.3 gives examples of the Stored Procedures
data-access model in VB.

12 002-8 CH 09 3/1/99 8:04 AM Page 382

Chapter 9 CREATING DATA SERVICES: PART I I 383

LISTING 9.2

A STORED PROCEDURE IN SQL SERVER

create procedure Titles_All
AS

Select * from Titles Order By title
GO

LISTING 9.3

EXAMPLES OF THE STORED PROCEDURES MODEL IN VB
cmdPubs.CommandText = “Titles_All”
cmdPubs.CommandType = adCmdStoredProc

Set rsPubs = cmdPubs.Execute

How to Choose a Data-Access Model
Each of the three data-access models discussed in the previous sec-
tions has advantages and disadvantages. Which data-access model
you choose for a particular task depends on the requirements of the
situation in which you are manipulating data.

Following are the considerations that you should bear in mind when
choosing one data-access model over the others:

á The Execute Direct data-access model is best suited for one-
time data-access statements. This is because the Execute Direct
model executes more efficiently than the Prepare/Execute model
the first time that you run a statement. The Execute Direct
model is more efficient than the Prepare/Execute model the first
time it is run, because the Prepare/Execute model requires the
provider to compile the statement the first time that it runs. So,
the first time through, Execute Direct runs faster.

N
O

T
E Stored Procedures and Parameters

The information under the section
“Using Stored Procedures” contains
more information on how to program
with stored procedures in the ADO
object model.

Also see the section “Using the
Parameters Collection to Access
Parameters for Stored Procedures” for
more information on how to work with a
Command object’s Parameters collection.

12 002-8 CH 09 3/1/99 8:04 AM Page 383

384 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Examples of one-time data-access statements that you could
use with the Execute Direct model might include SQL state-
ments entered on-the-fly by users (it would be impossible for
the programmer to know these in advance) or statements
formed dynamically by your program.

á The Prepare/Execute model is best suited for data-access state-
ments that you will use more than once during the same pro-
gram session, but that won’t be used outside of the program
session. As just stated, statements that are used only one time
should be executed with the Execute Direct model, because
they will run faster the first time than statements executed
with Prepare/Execute. On subsequent executions, however, the
Prepare/Execute model will be more efficient.

Statements formed on-the-fly by your application to be used
more than one time during the current session are good candi-
dates for the Prepare/Execute model. If the statement’s con-
tents can be known between sessions and are valid for more
than one user, it is better to use stored procedures.

á The Stored Procedures model is best suited for statements that
will be in permanent use. Obviously, one-time-only statements
won’t work with stored procedures, because you can’t know
them ahead of time.

USING STORED PROCEDURES

Stored procedures exist outside of your application in the database
exposed by the provider.

At their simplest, stored procedures are precompiled SQL Select
statements.

In most modern DBMSs, however, stored procedures have addi-
tional capabilities beyond just basic SQL syntax. These additional
capabilities allow stored procedures to receive and return parameters.
For DBMSs such as Microsoft’s SQL Server, stored procedures can
operate as functions with their own return values, as well as accept
and return parameters.

12 002-8 CH 09 3/1/99 8:04 AM Page 384

Chapter 9 CREATING DATA SERVICES: PART I I 385

Stored procedures can even behave as programming routines in their
own right, permitting flow-of-control constructs such as looping and
branching, and allowing temporary storage of intermediate information
in declared, typed variables.

Stored procedures have several advantages over on-the-fly SQL
statements:

á Stored procedures are efficient. A stored procedure is com-
piled when it is created and is stored and invoked as a com-
piled routine. Therefore, when your application causes the
provider to run a stored procedure, the stored procedure will
run more efficiently than a dynamically created SQL state-
ment, which must be compiled by the provider before it can
run. Also, the stored procedure will be executed server side,
and not with the client workstation’s resources.

á Stored procedures enforce standards. Because a stored pro-
cedure exists in the database, it can be maintained by the
appropriate administrators who can change it to keep up with
changing requirements. Stored procedures are therefore one
way to enforce middle-tier business rules throughout a data-
base. For instance, a stored procedure named
“Compute_Commission” might use a different algorithm this
year from the algorithm that it used last year.

á Stored procedures make programming simpler. Because a
stored procedure moves processing and logic to the middle tier
of a client/server system, there is just that much less processing
and logic to perform in the user-interface or application tier.
After it has been written, tested, and established in a database,
a stored procedure can be used as a “black box” component of
an application.

The following sections discuss how to create stored procedures.

Creating Stored Procedures
You can create a stored procedure in SQL Server with a special CRE-
ATE PROCEDURE query. The CREATE PROCEDURE query uses the
following format:

CREATE PROCEDURE ProcName As ProcText

12 002-8 CH 09 3/1/99 8:04 AM Page 385

386 Par t I VISUAL BASIC 6 EXAM CONCEPTS

where ProcName is the name that you will give to the stored procedure
and ProcText is one or more lines of SQL syntax.

Listing 9.4 gives an example of the creation of a simple stored pro-
cedure that contains a Select statement to retrieve records from a
single table.

LISTING 9.4

SQL SERVER QUERY TO CREATE A SIMPLE STORED

PROCEDURE

CREATE PROCEDURE Employee_All As
Select * from Employee

A stored procedure is usually more complicated than the simple
example of Listing 9.4. In SQL Server, for example, a stored proce-
dure can use flow-of-control keywords (such as if and while), sup-
port local memory variables, receive and modify parameters, use
temporary tables, and return a value to the requester as if the stored
procedure were a function.

The syntax of a SQL Server stored procedure’s execution language
should look very familiar to a Visual Basic programmer, although it
is not exactly the same. Listing 9.5 gives an example of a more com-
plex stored procedure. Note the use of local variables, parameters, a
return value, and nonexecutable comment lines. It is also possible to
use flow-of-control constructs such as if and while.

LISTING 9.5

SQL SERVER QUERY TO CREATE A COMPLEX STORED

PROCEDURE

—local variables
declare @chTaxRegNbr char(10)
declare @dtToday datetime
declare @MaxDPD int

—Get TaxRegNbr for this customer
select @chTaxRegNbr = taxregnbr

from customer
where custid = @parmCustID

N
O

T
E More Information on Creating Stored

Procedures in SQL Server See
Exercise 9.2 for step-by-step, illus-
trated information on how to create
stored procedures in Microsoft’s SQL
Server Enterprise Manager.

12 002-8 CH 09 3/1/99 8:04 AM Page 386

Chapter 9 CREATING DATA SERVICES: PART I I 387

—Initialize variable for Max DPD & current date
select @MaxDPD = 0
select @dtToday = GetDate()

—Open table that holds CUSTIDS from CUSTOMER
—for records with same TAXREGNBR
select custid into #tempCustID_TaxReg from customer

where taxregnbr = @chtaxregNbr
order by CustID

—get max DPD of any invoice
select @MaxDPD = MAX(datediff(day,duedate,@dtToday)) from
➥ardoc

where custid in (select custid from
#tempCustID_TaxReg)

AND DocType IN (‘IN’,’DM’,’FI’)
AND Rlsed = 1
AND OpenDoc = 1
and duedate > ‘JAN 01, 1900’

—destroy the temporary table
drop table #tempcustid_taxreg

—Make sure intermediate result is 0 if no records found
select @MaxDPD = ISNull(@MaxDPD,0)

—return final value
return @MaxDPD

GO

Of particular interest for the following discussion are the parameters
and the return value of a stored procedure. The parameters in a SQL
Server stored procedure are declared immediately after the procedure
name in the CREATE PROCEDURE query and before the As keyword.

On the other hand, the return value of a stored procedure is passed
back to the requester by placing the keyword return in front of the
value to be returned.

Refer again to Listing 9.5 for examples of parameters and a return
statement. Note that parameters are declared using C-style syntax,
as are local variables:

@parm_name datatype

where datatype is an appropriate SQL Server data type.

Parameters can be used to pass information back to the requester.
These parameters are called output parameters and are designated in the
parameter’s declaration with the keyword output after the datatype.

12 002-8 CH 09 3/1/99 8:04 AM Page 387

388 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Multiple parameter declarations are separated by commas, as illustrated
in the listing.

Using the Parameters Collection to
Manipulate and Evaluate Parameters
for Stored Procedures
The Parameters collection of a Command object represents the parame-
ters passed between the requester and a stored procedure. If the
stored procedure returns a value, the Parameters collection also con-
tains an additional member (element 0) that holds the return value.

Before you can call a stored procedure that uses parameters, you
must add a Parameter object to the Parameters collection for each
parameter that the stored procedure uses. There are two methods for
populating the Parameters collection with a stored procedure’s
parameters:

á Explicitly create a Parameter object in code and append it to
the Command object’s Parameters collection for each parameter
that the stored procedure uses. Listing 9.6 gives an example of
this technique.

LISTING 9.6

POPULAT ING THE Parameters COLLECT ION EXPL IC ITLY

Dim cmdPubs As ADODB.Command
Set cmdPubs = New ADODB.Command
Set cmdPubs.ActiveConnection = connPubs

cmdPubs.CommandText = “Publishers_All”
cmdPubs.CommandType = adCmdStoredProc

Dim param As ADODB.Parameter

Set param = cmdPubs.CreateParameter(“Return”, _
adInteger, _
adParamReturnValue, , 0)

cmdPubs.Parameters.Append param

Set rsPubs = cmdPubs.Execute

12 002-8 CH 09 3/1/99 8:04 AM Page 388

Chapter 9 CREATING DATA SERVICES: PART I I 389

á Automatically populate the Parameters collection with the
appropriate members by calling the Refresh method of the
Command object’s Parameters collection. You must, of course, do
this only after you set the Command object’s CommandType and
CommandText properties for the stored procedure that you want
to call. Listing 9.7 gives an example of this technique.

LISTING 9.7

POPULAT ING THE Parameters COLLECT ION

AUTOMATICALLY WITH THE Command OBJECT’S Refresh
METHOD

Dim cmdPubs As ADODB.Command
Set cmdPubs = New ADODB.Command
Set cmdPubs.ActiveConnection = connPubs
With cmdPubs

.CommandType = adCmdStoredProc

.CommandText = “Update_Titles_Title”

‘Refresh Parameters collection
.Parameters.Refresh

‘and then set properties of each parameter:

‘@id parameter
.Parameters(“@id”).Value = txtUpdateTitleID
.Parameters(“@id”).Direction = adParamInput

‘@title parameter
.Parameters(“@title”).Value = txtUpdateTitleName
.Parameters(“@title”).Direction = adParamInput

.Execute
End With

After you have populated the Parameters collection and called the
stored procedure with the Command object’s Execute method, you can
then check the values of any Output parameters by checking the
Value property of the appropriate Parameter objects.

If the stored procedure furnishes a return value, the return value will
appear in element 0 of the Parameters collection, as illustrated in
Listing 9.8.

12 002-8 CH 09 3/1/99 8:04 AM Page 389

390 Par t I VISUAL BASIC 6 EXAM CONCEPTS

LISTING 9.8

CALL ING A STORED PROCEDURE THAT FURNISHES AN

OUTPUT PARAMETER AND A RETURN VALUE

Dim cmdPubs As ADODB.Command
Set cmdPubs = New ADODB.Command
Set cmdPubs.ActiveConnection = connPubs

cmdPubs.CommandText = “Count_Titles_For_PubID”

With cmdPubs.Parameters
‘append directly to parameters collection, using
‘the return value of the CreateParameter method

.Append cmdPubs.CreateParameter(“@PubID”, _
adVarChar, _

adParamInput, _
4, _

RTrim(txtCountPubID.Text))

.Append cmdPubs.CreateParameter(“@NumTitles”, _
adInteger, _

adParamOutput, _
, _
0)

End With

cmdPubs.Execute
lblCountTitlesPublisher = _

cmdPubs.Parameters(“@NumTitles”).Value
blnSuccess = _

cmdPubs.Parameters(0).Value

Using Stored Procedures to Execute
Statements on a Database
You can create stored procedures to do most data maintenance
chores such as adding and deleting records or updating individual
fields in existing records.

Each of these types of stored procedure is based on a type of SQL
statement, as described in the following list:

12 002-8 CH 09 3/1/99 8:04 AM Page 390

Chapter 9 CREATING DATA SERVICES: PART I I 391

á INSERT statements in SQL add new records and populate their
fields with initial values at the same time.

á DELETE statements in SQL delete existing records.

á UPDATE statement change the values of individual fields in exist-
ing records.

The following sections describe each type of SQL statement in more
detail and explain how to use stored procedures based on each type
of SQL statement to implement cursorless processes from ADO.

INSERT Statements in SQL
The SQL INSERT statement adds new records to a table. The INSERT
statement has this general format:

INSERT tablename
[(field list...)]

VALUES
(value list...)

where tablename is the name of a table in the current database, field
list is a comma-separated list of field names in the table, and value
list is a comma-separated list of values to assign to each field. The
entries in the value list must match up in order, number, and type
with the entries in the field list.

Note that the field list is optional. If you leave it out of the INSERT
statement, however, you must supply a value for every field in the
table in the value list, and the values must be listed in the same order
as the fields are listed in the original table structure.

A simple example of an INSERT statement might be this:

INSERT employees
(LastName, FirstName, HireDate)
VALUES
(“Brunner”, “Melanie”, #7/15/98#)

This would insert a record for Melanie Brunner with a hire date of
July 15, 1998 into the employee table.

Listing 9.9 shows an example of a stored procedure that uses an
INSERT statement.

12 002-8 CH 09 3/1/99 8:04 AM Page 391

392 Par t I VISUAL BASIC 6 EXAM CONCEPTS

LISTING 9.9

A STORED PROCEDURE BASED ON AN INSERT
STATEMENT

create procedure insert_titles
@id varchar(6),
@title varchar(80),
@PubID varchar(4)

AS
INSERT titles
(title_id, title, Pub_ID)
VALUES
(@id, @title, @PubID)

GO

UPDATE Statements in SQL
The SQL UPDATE statement changes the values in one or more fields
in designated rows in a table:

UPDATE tablename
SET fieldname = expression[,...]
[WHERE condition]

where tablename is a valid table name for the current database, field-
name is a valid field name in that table, expression is a valid expres-
sion that gives a value appropriate for the field, and condition is an
expression to filter rows. As the ellipses imply, you can list modifica-
tion statements for more than one field. Just separate each modifica-
tion clause from the others with commas.

A simple example of an UPDATE statement is this:

UPDATE employees
SET salary = salary * 1.05
WHERE employeeid = 432

This would give Employee #432 a five percent raise.

Note that the WHERE clause is optional (as it always is in SQL). If you
leave the WHERE clause out of an UPDATE statement, you will update
the designated fields in all the rows in the table.

Listing 9.10 provides an example of a stored procedure based on an
UPDATE statement.

12 002-8 CH 09 3/1/99 8:04 AM Page 392

Chapter 9 CREATING DATA SERVICES: PART I I 393

LISTING 9.10

A STORED PROCEDURE BASED ON AN UPDATE
STATEMENT

create procedure update_titles_title
@id varchar(6),
@title varchar(80)

AS
UPDATE titles SET title = @title WHERE title_id = @id

GO

DELETE Statements in SQL
The SQL DELETE statement removes rows from a table.

This statement has this general format:

DELETE tablename
[WHERE condition]

where tablename is a valid table name from the current database, and
condition is any valid record selection criterion. Note that the WHERE
clause is optional (as it always is in SQL). If you leave the WHERE
clause out of a DELETE statement, you will delete all the rows in the
table.

A simple example of a DELETE statement is this:

DELETE from employee where employeeid = 231

This would remove the record for Employee #231 from the table.

Listing 9.11 shows an example of a stored procedure created from
a DELETE statement.

LISTING 9.11

A STORED PROCEDURE BASED ON A DELETE
STATEMENT

create procedure delete_titles_by_id
@id varchar(6)

AS
DELETE titles
WHERE title_id = @id

GO

12 002-8 CH 09 3/1/99 8:04 AM Page 393

394 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Using Stored Procedures to Execute
Processes Without Cursors
The ADO Recordset object is versatile enough that you can perform
any needed data maintenance action by programming its object
model.

You can forego a Recordset in your code for many routine data
maintenance activities, however, and instead use the Execute method
of a Connection or Command object to make calls to SQL statements
or stored procedures that implement those SQL statements. Here are
the main areas where you could make such substitutions:

á Deleting records. Instead of calling the Recordset’s Delete
method, execute a stored procedure that uses the SQL DELETE
statement.

á Adding records. Instead of using the AddNew and Update
methods of the Recordset, execute a stored procedure that uses
the SQL INSERT statement.

á Updating existing records. Instead of changing fields in a
Do...Loop through the Recordset and then calling the Update
method, execute a stored procedure that uses the SQL UPDATE
statement.

Listing 9.12 shows ADO code that uses Recordset manipulation
(and therefore cursors) to add, delete, and modify records.

Listing 9.13 shows ADO code that calls the Execute method of
Command or Connection objects (which are cursorless) to accomplish
the same tasks with stored procedures. Listing 9.13 gives the texts of
the stored procedure creation statements as they would appear in
SQL Server.

LISTING 9.12

EXAMPLE OF A PROCESS THAT USES A CURSOR

Private Sub cmdInsert_Click()
Set rsPubs = cmdPubs.Execute
RsPubs.Fields(“ID”).Value = txtTitleID
RsPubs.Fields(“Title”).Value = txtTitle
RsPubs.Update

End Sub

x
y

12 002-8 CH 09 3/1/99 8:04 AM Page 394

Chapter 9 CREATING DATA SERVICES: PART I I 395

LISTING 9.13

EXAMPLES OF THE SAME ACTION OF LIST ING 9.12,
BUT RAN WITHOUT A CURSOR

Private Sub cmdInsert_Click()
Dim cmdPubs As ADODB.Command
Set cmdPubs = New ADODB.Command
Set cmdPubs.ActiveConnection = connPubs
With cmdPubs

.CommandType = adCmdStoredProc

.CommandText = “Insert_Titles”

‘Refresh Parameters collection
.Parameters.Refresh

‘and then set properties of each parameter:

‘@id parameter
.Parameters(“@id”).Value = txtTitleID
.Parameters(“@id”).Direction = adParamInput

‘@title parameter
.Parameters(“@title”).Value = txtTitle
.Parameters(“@title”).Direction = adParamInput

‘@output parameter
.Parameters(“@PubID”).Value = txtInsertPubID
.Parameters(“@PubID”).Direction = adParamInput

.Execute
End With
lblResults = “”
lstResults.Clear

End Sub

LISTING 9.14

STORED PROCEDURE USED BY THE EXAMPLE OF

LIST ING 9.13
create procedure insert_titles

@id varchar(6),
@title varchar(80),
@PubID varchar(4)

AS
INSERT titles
(title_id, title, Pub_ID)
VALUES
(@id, @title, @PubID)

GO

12 002-8 CH 09 3/1/99 8:04 AM Page 395

396 Par t I VISUAL BASIC 6 EXAM CONCEPTS

There are two advantages to executing a stored procedure instead of
manipulating an ADO Recordset:

á Better resource management. A Recordset object requires a
cursor, and cursors can represent a considerable set of
resources. By calling a stored procedure, you do not create
another cursor and the server does the work.

á Better management of tier integrity. You can encapsulate
standard business rules in a centralized place (the database)
with stored procedures. The stored procedures can be a “black
box” to your application. The stored procedures can be
changed to meet changing business climates.

Of course, the Recordset is more appropriate where you need local
control, or where the application itself must exercise a great deal of
intelligence about the way it processes data.

Using Stored Procedures to Return
Records to an Application
Whenever your application requires one or more records from the
data, you will definitely use a cursor, whether you choose a stored
procedure, or whether you choose an inline SQL statement.

The text of a stored procedure that returns records can look just like
the text of an inline SQL statement (although it may also use more
complicated logic than a simple SQL statement). Listing 9.15 gives
an example of a simple stored procedure that returns records.

LISTING 9.15

A SQL STATEMENT THAT WILL CREATE A STORED

PROCEDURE TO RETURN ROWS IN SQL SERVER

create procedure Publishers_All
AS

Select * from publishers Order By pub_name
GO

N
O

T
E More About Cursors For more

information on cursors, see the
section titled “Using Cursors” in this
chapter.

12 002-8 CH 09 3/1/99 8:04 AM Page 396

Chapter 9 CREATING DATA SERVICES: PART I I 397

There are several methods for getting records back from a stored
procedure. These methods are discussed here at greater length.
Before comparing the three following methods, bear in mind that all
ADO techniques for handling rows of data end up with a Recordset
object. Therefore, the three following methods are really just three
different ways of populating a Recordset object’s rows.

To get records back from a Connection object (see Listing 9.16), exe-
cute the following steps:

S T E P B Y S T E P
9.2 Getting Records Back From a Connection Object

1. Make sure that the Connection object is either open or has
a valid ConnectionString property.

2. Set a Recordset object variable to the results of the
Connection object’s Execute method.

3. When calling the Execute method, pass the following
arguments to the method (or set the corresponding prop-
erties of the Connection object):

• CommandText. The name of the stored procedure
as a text string.

• RecordsAffected (optional). A long variable that
the provider will fill with the number of records
affected by this query.

• Options. Always set options to adCmdStoredProc
when the CommandText argument represents a stored
procedure name.

After you have executed the preceding steps, the Recordset object
should be populated with the records returned by the stored
procedure.

12 002-8 CH 09 3/1/99 8:04 AM Page 397

398 Par t I VISUAL BASIC 6 EXAM CONCEPTS

LISTING 9.16

USING A CONNECTION OBJECT TO RETURN RECORDS

FROM A STORED PROCEDURE

Set rsPubs = connPubs.Execute “Titles_All”, , adCmdStoredProc

To get records back from a stored procedure using a Command object
(see Listing 9.17), execute the following steps:

S T E P B Y S T E P
9.3 Getting Records Back From a Stored Procedure

Using a Command Object

1. Set the Command object’s CommandType property to
adCmdStoredProcedure.

2. Set the CommandText property to a string representing the
stored procedure’s name.

3. Prepare the stored procedure’s parameters by using the
Command object’s Parameters collection.

4a. Set a Recordset object variable to the results of the
Command object’s Execute method, or

4b. Run the Execute method without setting the result to
point to a Recordset. Instead, make the Recordset’s
ActiveCommand property point to the Command object, and
then call the Recordset’s Open method.

5. In the call to the Command object’s Execute method, you
can pass the following arguments (all optional) to the
method:

• RecordsAffected. A long variable that the
provider will fill with the number of records
affected by this query.

• Parameters. A variant array of values to pass as
parameters to the stored procedure. Use this argu-
ment as an alternative to setting up the Command
object’s Parameters collection. Note that output
parameters will not return the correct values when
you use this Parameters argument.

12 002-8 CH 09 3/1/99 8:04 AM Page 398

Chapter 9 CREATING DATA SERVICES: PART I I 399

• Options. Use this argument as an alternative to
set the CommandType property. Always set to
adCmdStoredProc when the CommandText argument
represents a stored procedure name.

6. After you have executed the preceding steps, the Recordset
object should be populated with the records returned by
the stored procedure.

LISTING 9.17

USING A COMMAND OBJECT TO RETURN RECORDS

FROM A STORED PROCEDURE

cmdPubs.CommandText = “Titles_All”
cmdPubs.CommandType = adCmdStoredProc

Set rsPubs = cmdPubs.Execute

To get records back from a stored procedure into a Recordset
directly without using the Execute methods of Connection or
Command objects, call the Recordset’s Open method. Make sure that
first you set the appropriate properties or pass it the name of the
stored procedure as its Source argument (first argument) and
adCmdStoredProc as its Options argument (fifth argument) (see
Listing 9.18).

LISTING 9.18

RETURNING RECORDS DIRECTLY INTO A RECORDSET FROM

A STORED PROCEDURE

rsEmployees.CursorType = giCursorType
rsEmployees.CursorLocation = giCursorLocation
rsEmployees.LockType = giLocking
rsEmployees.Source = _

“Select * From Employees Order By LastName,FirstName”
Set rsEmployees.ActiveConnection = cnNWind
rsEmployees.Open

12 002-8 CH 09 3/1/99 8:04 AM Page 399

400 Par t I VISUAL BASIC 6 EXAM CONCEPTS

USING CURSORS

A cursor in a database context represents a facility for managing
recordsets as discrete rows of data. A cursor enables you to move
through a set of records and implements a pointer to a current row
in the set of records.

You don’t have to use a cursor to access data from an ADO provider.
Instead, you can manipulate the data through straight SQL state-
ments or stored procedures—and you should do so when possible,
because a cursor represents a certain amount of resource overhead.

Nevertheless, cursors are often necessary to efficient data processing.
Anytime that you create a Recordset in ADO, you create a cursor to
go along with it.

You have several choices to make when you use a cursor:

á Cursor location. You can determine whether a cursor is
implemented by the local workstation, or whether it is imple-
mented by the server.

á Cursor behavior. You can determine how freely a cursor can
move at the request of the consumer and how dynamically it
reflects concurrent changes to data made by other users.

The following sections discuss these two issues as well as how to
implement various locking strategies with cursors.

Using Cursor Locations
. Retrieve and manipulate data by using different cursor loca-

tions. Cursor locations include client side and server side.

Cursor location is important, because you need to manage where
cursors get their resources from (which would include CPU time,
memory, and/or temporary storage space on either disk drives or in
temporary database objects).

A cursor can be implemented at one of two general locations:

á Client-side cursors implement the cursor with resources on the
local workstation (the “client machine”).

á Server-side cursors implement the cursor with resources on
the server machine.

N
O

T
E Cursor Behavior Not Always as

Advertised Because of the great
array of DBMSs that lie behind cursor-
implemented rowsets, you may find
that some cursor types will give you
more or less functionality than docu-
mented for a particular combination of
cursor location, cursor type, or locking
strategy.

12 002-8 CH 09 3/1/99 8:04 AM Page 400

Chapter 9 CREATING DATA SERVICES: PART I I 401

You can determine the cursor location of a result set by setting the
CursorLocation property of an ADO Recordset or of an ADO
Connection. The CursorLocation property has two useful values:

á 2 - adUseServer. The cursor will be server side. This is the
default cursor location for ADO.

á 3 - adUseClient. The cursor will be client side.

If you set the CursorLocation property of a Connection object,
the CursorLocation property of any Recordset created from
that Connection will default to the value of the Connection’s
CursorLocation property, unless you explicitly set the Recordset’s
CursorLocation property to some other value.

The following two sections discuss the consequences of cursor-loca-
tion choice.

Client-Side Cursors
A client-side cursor uses local machine resources to implement
a cursor and its set of records.

The advantages of client-side cursors are as follows:

á Because they run locally, they provide better performance
when their result sets are a reasonable size.

á Client-side cursors generally provide better scalability, because
their performance depends on each client, and not on the
server. Therefore, client-side servers place less of a growing
demand on the server as the number of a system’s users
increases.

The disadvantages of client-side cursors are as follows:

á When the rowset returned with the cursor is very large, the
local workstation’s resources may be “swamped” by the need to
handle the high volume.

á Because a client-side cursor must bring all the data for its
rowset over the network, larger result sets can increase network
traffic.

N
O

T
E Obsolete CursorLocation Values

Supported For reasons of backward
compatibility with earlier systems, the
CursorLocation property also supports
two obsolete values, adUseNone (whose
value is 1) and adUseClientBatch
(whose value is 3, or the same as
adUseClient). These cursor location
types are no longer used.

12 002-8 CH 09 3/1/99 8:04 AM Page 401

402 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Server-Side Cursors
A server-side cursor uses server resources to implement a cursor and
its set of records.

The advantages of server-side cursors are as follows:

á Local workstation resources are never “swamped” by unexpect-
edly large rowsets.

á Because a server-side cursor does not transfer all the data in the
rowset to the workstation, there is less network traffic with
large rowsets when they are opened and less delay in opening
them.

The disadvantages of server-side cursors are as follows:

á For smaller rowsets with a lot of activity performed by the
application, server-side cursors do not perform as well, because
each request to move the cursor and each response must travel
over the network. It would be better to just transfer the smaller
rowsets to the client to start with.

á As users are added to the system, the server receives a greater
and greater resource demand as more and more concurrent
users open server-side cursors. Server-side cursors therefore
typically provide less scalability than client-side cursors.

Using Cursor Types
. Retrieve and manipulate data by using different cursor types.

Cursor types include Forward-Only, Static, Dynamic, and Keyset.

A cursor’s type, in ADO terminology, indicates some facts about how
it behaves, what you can and can’t do with it, and how thrifty or
wasteful it is with system resources.

You can set a Recordset’s cursor type by setting its CursorType just
before you open it, as shown in Listing 9.19.

N
O

T
E Client-Side and Static Cursors

When you set the CursorLocation
property to Client-Side, the only
available CursorType is Static.

12 002-8 CH 09 3/1/99 8:04 AM Page 402

Chapter 9 CREATING DATA SERVICES: PART I I 403

LISTING 9.19

SETT ING A Recordset’S CURSORTYPE PROPERTY

rsEmployees.CursorType = adOpenStatic
rsEmployees.Open

The following sections discuss the four cursor types available from
the ADO Cursor library.

Forward-Only Cursors
A Forward-Only cursor behaves a lot like sequential file access: It only
furnishes one record at a time, and then only in strict order from the
beginning to the end of the rowset.

In other words, you can’t use a Forward-Only cursor to skip around
in a Recordset’s rows. You can only move forward one record at a
time until you reach the EOF condition at the end of the Recordset.

If you attempt to use any other Recordset navigation method besides
MoveNext, you will generate a runtime error.

A Forward-Only cursor is the default ADO cursor, because it consumes
the least resources of all cursor types.

Static Cursors
Static cursors are less economical than Forward-Only cursors, but
they allow greater flexibility of movement through the rowset. A
Static cursor supports navigation in all directions, and it enables
you to make repeat visits to the same record during the same session.

The biggest drawback to a Static cursor is the fact that its rowset
doesn’t get updated with concurrent changes made by other users.

If User A opens a Static cursor on a set of records and User B
makes changes to the records during User A’s session, for example,
User A will not see the changes made by User B. To see User B’s
changes, User A’s Static cursor would have to close and then be
reopened.

The user can make changes to the Static cursor’s Recordset, but
(once again) the user cannot see changes made by others during the
time that the cursor is open. This includes additions and deletions to
the records as well as editing changes to individual records.

N
O

T
E The Most Economical Cursor The

most efficient cursor in terms of
resource usage is a Forward-Only
cursor with its lock type set to Read-
Only. This type of cursor is also
known as a “firehose cursor.” See the
section titled “Using Locking
Strategies to Ensure Data Integrity”
for more information on the Read-Only
lock type.

N
O

T
E Static Cursors and Client-Side

Cursors When you set the
CursorLocation Property to Client-
Side, the only available CursorType is
Static.

12 002-8 CH 09 3/1/99 8:04 AM Page 403

404 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Keyset Cursors
Keyset-type cursors have the same freedom of movement in any
direction as Static cursors. In addition, Keyset cursors can immedi-
ately see changes to existing records made by other users. However,
additions and deletions made by other users are not visible to a
Keyset-type cursor.

Dynamic Cursors
Dynamic cursors have all the flexibility and visibility of Keyset-type
cursors with an extra enhancement: Additions and deletions made by
other users are visible to a Dynamic cursor.

Dynamic cursors are, however, the biggest resource hogs, so you
should be very sure that you absolutely need a Dynamic cursor before
deciding to use one.

MANAGING DATABASE TRANSACTIONS

. Manage database transactions to ensure data consistency
and recoverability.

Client-server DBMSs support a feature known as the database trans-
action to help manage data integrity and (in some cases) improve
performance.

A transaction is a set of actions performed on your data that you
want to consider as a logical group. You need the concept of a trans-
action so that all the changes made by a group of actions can stand
or fall together. This promotes better data integrity.

The need for database transactions arises when a user or process
needs to make multiple changes to the data, and the changes must
all stand or fall together as a logical unit. In other words, if only part
of the changes end up in the data, the system’s integrity will be
compromised.

Consider, for example, an operation that attempts to eliminate a cus-
tomer from the system, along with all the customer’s orders and the
detail lines for each order. In a relational database system, this will
involve at least three tables. Now imagine that the process starts and
successfully eliminates the customer’s record, as well as some of the

12 002-8 CH 09 3/1/99 8:04 AM Page 404

Chapter 9 CREATING DATA SERVICES: PART I I 405

order header records. At that point, the server goes down with only
part of the process accomplished. When the system comes back up,
there will be “orphaned” order header and perhaps order detail
records.

The concept of a database transaction helps to avoid situations such
as that given in the example. A database transaction defines a group
of operations that must stand or fall together. Typically, the following
steps occur:

1. A client process defines the operations that make up a group
by beginning a transaction.

2. When the client finishes all the operations necessary for the
transaction, the server then writes or commits all the operations
at the same time on a signal from the client. At this point, the
transaction is finished.

3. If something happens in the middle of the process to halt fur-
ther activity, nothing is committed and the data integrity is
preserved.

4. The client can also explicitly tell the server to abandon or roll
back all the operations in a transaction.

In ADO, transactions are implemented with three methods
(BeginTrans, CommitTrans, and RollbackTrans) and three events of
the Connection object (BeginTransComplete, CommitTransComplete,
and RollbackTransComplete), as illustrated in Listing 9.20.

The three transaction methods are described as follows:

á The BeginTrans method defines the start of a transaction in
code. All subsequent data operations on the Connection object
will be part of a single transaction until the CommitTrans or
RollbackTrans method is called or the connection to the data-
base ends without any action.

á The CommitTrans method terminates a transaction successfully.
All data operations on the current connection that have taken
place because of the matching BeginTrans will become perma-
nent in the underlying data.

á The RollbackTrans method aborts the operations of a transac-
tion. All data operations on the current connection that have
taken place because of the matching BeginTrans will be aban-
doned and will not appear in the underlying data.

12 002-8 CH 09 3/1/99 8:04 AM Page 405

406 Par t I VISUAL BASIC 6 EXAM CONCEPTS

In Listing 9.20, the Sub procedure FundsTransfer manipulates data
to transfer funds between two accounts. You begin a transaction with
the BeginTrans method before manipulating data. If there is an error
anywhere in the data manipulation process, you should call Rollback
to cancel all changes. Otherwise, call CommitTrans to save all changes.

LISTING 9.20

USING A TRANSACTION

Public Sub FundsTransfer
On Error GoTo Transfer_Error
ConnAccounts.BeginTrans

'Code to debit first account
'Code to credit second account

ConnAccounts.CommitTrans
Exit_Transfer:

Exit Sub
Transfer_Error:

ConnAccounts.Rollback
Resume Exit_Transfer

End Sub

You can have more than one transaction pending at the same time
on a Connection object. This will work as long as you are careful to
pair BeginTrans/CommitTrans/RollbackTrans sequences. These nested
transactions will work because a CommitTrans or RollbackTrans
method only undoes the actions because the most recent pending
BeginTrans method was called.

In Listing 9.21, the programmer has defined three nested transac-
tions. Transaction A is the outer transaction; its BeginTrans and
CommitTrans methods contain the others. Transaction B contains
Transaction C for the same reason. Notice which of the transactions
each action belongs to.

LISTING 9.21

NESTED TRANSACTIONS

ConnAccounts.BeginTrans ' start of Transaction A
'actions here are part of Transaction A

ConnAccounts.BeginTrans 'start Transaction B
'actions here are part of Transaction B

ConnAccounts.BeginTrans 'start Transaction C
'actions here are part of Transaction C
ConnAccounts.CommitTrans 'end Transaction C

12 002-8 CH 09 3/1/99 8:04 AM Page 406

Chapter 9 CREATING DATA SERVICES: PART I I 407

'actions here are part of Transaction B
IFollowing logic ends Transaction B
If <something is wrong> Then

ConnAccounts.RollbackTrans 'B and C roll back
Else

ConnAccounts.CommitTrans 'B and C are committed
End If

'actions here are part of Transaction A
ConnAccounts.CommitTrans Îend Transaction A

An outer transaction controls whether an inner transaction’s
CommitTrans will be honored. If the RollbackTrans method is called
for an outer transaction, the transactions nested inside it will be
rolled back as well, regardless of whether they ended with a
CommitTrans or a RollbackTrans.

If an inner transaction is cancelled with RollbackTrans, of course,
the inner transaction (along with any other transactions nested fur-
ther inside it) is rolled back, regardless of whether the outer
transaction is committed or rolled back.

Review Listing 9.21 again, and notice that the innermost transac-
tion, Transaction C, terminates with a call to CommitTrans. However,
all of Transaction C’s actions will be rolled back, along with those of
Transaction B, if the code detects that something is wrong when it
comes time to end Transaction B. In such a case, the code calls the
RollBackTrans method on Transaction B, automatically ignoring the
CommitTrans of any transactions nested within it (in this case,
Transaction C).

The ADO Connection object also has three transaction-related events
that correspond to the completion of their respective like-named
methods:

á The BeginTransComplete event

á The CommitTransComplete event

á The RollbackTransComplete event

The BeginTransComplete event receives the following parameters:

á TransactionLevel As Long. A number telling you where this
transaction is in the hierarchy of nested transactions (1 is the
highest, or outermost transaction, and the value of the
parameter increases for more deeply nested transactions).

12 002-8 CH 09 3/1/99 8:04 AM Page 407

408 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á pError As ADODB.Error. A single Error object that contains
information if the value of the following parameter, adStatus,
is adStatusErrorsOccurred.

á adStatus As ADODB.EventStatusEnum. If you examine the
event procedure stub for this parameter in VB, you will notice
that it is the only parameter that isn’t passed ByVal. This is
because you are allowed to change it. The original value of the
parameter as passed to the event reflects, as its name implies,
the status of the attempt to begin, commit, or Rollback a
transaction (adStatusOK or adStatusErrorsOcurred). You can
set the status in the event procedure’s code so that this event
does not fire again (adStatusUnWantedEvent).

á Connection As ADODB.Connection. Points to the Connection
object that owns this transaction. Not needed in a VB environ-
ment, as each Connection object has its own separate set of
transaction events (this is not the case, for example in some
C++ environments that use ADO).

The other two transaction events, RollbackTransComplete and
CommitTransComplete, do not have BeginTransComplete’s first para-
meter (TransactionLevel), but they do have the remaining three
parameters (pError, adStatus, and pConnection).

WRITING SQL STATEMENTS

Structured Query Language (usually referred to as SQL) is the lan-
guage you use to specify the data included in a Recordset. It can also
provide you with the vehicle for specifying changes to data through
the Database object’s Execute method.

You can use a SQL Select statement in the form of a string as the
first argument to the Database object’s OpenRecordset method when
you want to open either a dynaset or snapshot-type Recordset.

You also can use a SQL statement to update data and even modify
database structure (such as table definitions and fields) when you
pass such a statement in a string to the Database object’s Execute
method.

The following sections under this heading detail some of the more
important features of SQL Select statements.

12 002-8 CH 09 3/1/99 8:04 AM Page 408

Chapter 9 CREATING DATA SERVICES: PART I I 409

Writing SQL Statements that Retrieve
and Modify Data
. Write SQL statements that retrieve and modify data.

A SQL Select statement provides a query that can be interpreted by
a particular DBMS to retrieve particular data from its tables.

The most basic form of the SQL statement specifies columns (fields) to
retrieve from one or more tables in the rows (records) of its result set.
In ADO terms, the result set will be the records of a Recordset object.
The syntax for this most elementary SQL Select statement is this:

Select FieldList From TableName

where FieldList is a comma-delimited list of field names existing in
the specified table denoted by TableName. You might specify a
Recordset containing rows, for example, each of whose contents rep-
resented the LastName and FirstName fields from the Employees table
of the current database:

Select FirstName, LastName From Employees

You can specify all fields from the table by using the asterisk
character (*) instead of writing out all their names:

Select * From Employees

You could use a SQL statement such as this as the CommandText prop-
erty of a Command object or as an argument to the Execute method of
a Connection object or the Open method of a Recordset object, as
illustrated in Listing 9.22.

LISTING 9.22

USING A SQL STATEMENT IN A STRING VARIABLE TO

OPEN A RECORDSET

Dim strSQL As String
strSQL = _
“Select [First Name],[Last Name],HireDate From Employees”

The advantage of first storing the query text to a string variable is
that it makes the line that manipulates the data object method more
readable. More importantly, it enables you to possibly build the SQL
statement in several steps in your code, thus permitting more com-
plex logic to be used in your program to query data.

N
O

T
E Field Names with Spaces Some

DBMSs (such as Microsoft Access)
permit spaces in the names of fields.
To refer to such a field in a SQL state-
ment, you should surround it with
square brackets. A field named “Last
Name” would appear as [Last Name]
in a SQL query.

12 002-8 CH 09 3/1/99 8:04 AM Page 409

410 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Using the Where Clause to Filter Rows
You can use a Where clause in a SQL statement to filter which
records are returned in the query’s result set. The syntax of a SQL
statement containing a Where clause is this:

Select FieldList From TableName Where Condition

The Condition of the Where clause can be one or more comparison
statements using the usual comparison operators such as =, >, <, ≥,
and ..., as well as other operators more specific to the SQL lan-
guage such as Like (for text comparisons) and Between...And (for
specifying a range of values).

A Where clause that only returns records with a field matching a
particular value would use the = operator, as in the following exam-
ple:

Select * From Employees Where Dependents = 0

A Where clause to return values above a certain value would use the
> operator, as in the following example:

Select * From Employees Where Salary > 40,000

You would use similar rules for the <, =, ..., and ≥ operators.

Note that when quoting literal strings for comparison in a SQL
Where clause, you use the single quotation mark character, as in the
following example:

Select * From Employees Where LastName = ‘Smith’

When using a literal date value in a Where clause comparison, you
must use the U.S. date format (this format being mm/dd/yy)—even
when you are not looking at data with a U.S. date format. You must
then set the date off with the # character. The following example
illustrates the use of a date value in a SQL Where clause:

Select * from Employees Where HireDate < #1/1/89#

You can use Between...And to specify a range of values to allow in
the result set, as in the following example, which would allow all
employee records with salaries between 40,000 and 80,000, inclu-
sive, into the result set:

Select * From Employees Where Salary BETWEEN 40000 AND 80000

N
O

T
E Other Types of Clauses In addition

to the basic SQL structure, which
specifies fields and a table, you can
add a number of different types of
clauses to the statement. Only the
Where, Order By, and Join clauses
are discussed in this chapter. You
should be aware that other types of
clauses exist for SQL Select queries.

12 002-8 CH 09 3/1/99 8:04 AM Page 410

Chapter 9 CREATING DATA SERVICES: PART I I 411

To obtain a text match with a field that contains a certain string combi-
nation (but does not exactly match the string), you can use the Like
operator and specify “wildcard” characters similar to UNIX, DOS, or
Windows operating system “wildcard” characters as used in file specifi-
cations. Use the % character to specify any number of characters and the
_ character to specify a single character. The following example shows a
query for all records with a Last Name field beginning with the letter S:

Select * From Employees Where LastName Like ‘S%’

String comparisons in Where clauses are not case sensitive.

Using the Order By Clause to Logically Sort
Rows
The Order By clause in a SQL Select statement will put the rows of
the result set in a specified order. The Order By clause contains one
field name, or several field names separated by commas. If there are
several field names, the major sort order starts with the first field
name and works on down through the list of field names. The
default sorting order for field names of any data type is Ascending
(lowest to highest in numeric order and not case-sensitive alphabetic
order for strings). You can specify descending order for any field in
the Order By clause with the keyword DESC after the field name. In
the following example, you order the employees by hire date (in
Descending order), and then by last name:

Select * From Employees Order By [Hire Date] DESC, [Last
➥Name]

Although the default sorting order is Ascending order, you may spec-
ify Ascending order for clarity with the ASC keyword.

Writing SQL Statements That Use
Joins to Combine Data from Multiple
Tables
. Write SQL statements that use joins to combine data from

multiple tables.

More often than not, you will need to relate together the records
from more than one table in a SQL statement.

N
O

T
E Wildcard Characters Can Vary The

version of SQL in VB (known as “Jet
SQL”) uses different wildcard charac-
ters from the wildcard characters of
standard SQL (“ANSI SQL”). In ANSI
SQL, the single-character wildcard is
the underscore (_), and the multichar-
acter wildcard is the percentage sym-
bol (%). In Jet SQL, the wildcard is ?
for single characters and * for multi-
ple characters, the same as the wild-
card characters used for filename
specification in the DOS operating
system.

12 002-8 CH 09 3/1/99 8:04 AM Page 411

412 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Using the Where Clause to Connect Tables
You can use the Where clause to bring data from more than one table
into the result set of a query.

You can specify more than one table’s data in the result set of a query
by just specifying the field names from each table and the table
names in the basic syntax of the Select statement. You will always
want to explicitly specify the relation between the tables with either
a Where clause or a Join clause, however, for the combination of the
data from the two tables to be meaningful.

Assume, for example, that you would like to see a list of every order’s
date from an Orders table in your database along with the customer
name for each order. Customer names are held in a Customers table
and the Orders table contains a CustomerID field that keys to the
CustomerID field in the Customers table. An example of a Select
clause that would properly return the information you are seeking
would read as follows:

Select [Order Date], [Customer Name] From Orders,
➥Customers Where Orders.[Customer ID] = Customers.
➥[Customer ID]

If it didn’t include the Where clause, the Select statement would
return a Cartesian product of the two tables—that is, it would
match every record in Orders with every customer and return a
huge, meaningless result set! Note that you don’t have to specify
which table a field comes from so long as that field’s name is unique
within the tables you have specified in the From clause. If a field’s
name isn’t unique within the tables used in the query, specify its
originating table with the tablename.fieldname syntax.

Using JOIN Clauses to Connect Tables
You can create a multitable Recordset with a query that uses a JOIN
clause. There are two types of JOIN, and these two JOIN types are
implemented by three different possible JOIN clause types. These
types of JOIN and the clauses that implement them are as follows:

• An equi-join or inner join. This type of join creates records
in a result set only when there are matching records from both
tables. You can use an INNER JOIN clause to create an equi-join.

• An outer join. Result sets created using this type of join con-
tain all the records from a specified master table and only those

12 002-8 CH 09 3/1/99 8:04 AM Page 412

Chapter 9 CREATING DATA SERVICES: PART I I 413

records from a related lookup table that match the records in
the master table. You can implement an outer join with either
the LEFT JOIN or RIGHT JOIN clause. The difference between
these two types of join is the order in which you specify the
master and lookup tables.

To specify an equi-join between the Customers table and the Orders
table, write a query as in the following example:

Select [Company Name], [Order Date] From Customers
INNER JOIN Orders ON Customers.[Customer ID] =
Orders.[Customer ID]

The result set would contain only matching information from the
Customers and Orders tables.

If you wanted to display a list of customers and the dates of their
orders, but you wanted to include even customers without any
orders, you could specify this result set with a LEFT JOIN, as in the
following example:

Select [Company Name], [Order Date] From Customers
LEFT JOIN Orders ON Customers.[Customer ID] =
Orders.[Customer ID]

You could achieve the same effect with a RIGHT JOIN clause, as follows:

Select [Company Name], [Order Date] From Orders
RIGHT JOIN Customers ON Orders.[Customer ID] =
Customers.[Customer ID]

USING LOCKING STRATEGIES TO
ENSURE DATA INTEGRITY

. Use appropriate locking strategies to ensure data integrity.
Locking strategies include Read-Only, Pessimistic, Optimistic,
and Batch Optimistic.

To support data integrity and avoid conflicts between users trying to
update the same data at the same time (concurrency conflicts), most
modern DBMSs support some sort of locking scheme.

ADO recognizes four different types of data locking, represented by
four enumerated constants:

12 002-8 CH 09 3/1/99 8:04 AM Page 413

414 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á adLockReadOnly (default) When a recordset is opened, the
user may not make any changes to the data. This ensures that
concurrency conflicts with other users are avoided.

á adLockPessimistic Provider guarantees that a record under
editing will be able to have its changes saved. This is usually
accomplished by locking the record as soon as it becomes the
current record under a cursor. The lock is released when the
cursor moves off the record or the recordset is closed.

á adLockOptimistic Provider does not guarantee that a record
under editing will have its changes saved. Provider locks the
record only during the update process.

á adLockBatchOptimistic For server-side cursors, this option
guarantees that all cursor options will be supported in the
most efficient way.

You can set the type of lock on the data underlying a Recordset by
setting the Recordset’s LockType property to one of the previously
mentioned values before you open it.

CHOOSING CURSOR OPTIONS

As you have seen in the course of this chapter, you must make sev-
eral decisions about cursors when you want to access data with VB
and ADO.

These decisions fall into the following categories:

á Do you really need a cursor at all?

á Should you build the cursor on the client or on the server?

á How should the cursor behave?

á What locking strategy should the cursor implement?

The criterion to use for choosing the right cursor for the job can be
stated in one simple, general rule: Build the cursor that uses the
fewest resources and still does the job. Remember, the most econom-
ical cursor of all is the “firehose” cursor, discussed in the sections
titled “Forward-Only Cursors” and “Using Locking Strategies to
Ensure Data Integrity.”

N
O

T
E The Most Economical Cursor As

stated earlier in this chapter, the most
efficient cursor in terms of resource
usage is a Forward-Only cursor with
its lock type set to Read-Only. This
type of cursor is also known as a
“firehose cursor.” See the subsection
titled “Forward-Only Cursor” under
the section “Using Cursor Types” for
more information on the Forward-
Only cursor type.

12 002-8 CH 09 3/1/99 8:04 AM Page 414

Chapter 9 CREATING DATA SERVICES: PART I I 415

Because of the great array of DBMSs that can be implemented with
cursor-implemented rowsets, you may find that some cursor types
will give you more or less functionality than documented for a partic-
ular combination of cursor location, cursor type, or locking strategy.

To find out what the ADO “official line” is on any given Recordset’s
capabilities (that is, what ADO believes that the Recordset can do,
based on what the provider believes that it can do), you can use the
Recordset’s Supports method, passing it one of the following nine
constants (whose names are self-explanatory):

á adAddNew

á adApproxPosition

á adBookmark

á adDelete

á adHoldRecords

á adMovePrevious

á adResync

á adUpdate

á adUpdateBatch

Each of these listed constants refers to some capability of the
Recordset (not explained here, because the Supports method is out-
side the scope of the certification exam). When one of the constants
is passed to the Supports method, the Supports method returns a
True or False value, indicating whether the Recordset has that capa-
bility.

The following line of code would set the variable blnCanUpdate to
True or False, for example, and thus tell you whether the Update
method would work for the Recordset named rsEmployees:

blnCanUpdate = rsEmployees.Supports(adUpdate)

12 002-8 CH 09 3/1/99 8:04 AM Page 415

416 Par t I VISUAL BASIC 6 EXAM CONCEPTS

This chapter covered the following topics:

á Execute Direct, Prepare/Execute, and Stored Procedures data-
access models

á Creating and programming with stored procedures

á Using the Parameters collection to exchange information with
stored procedures

á Cursor locations

á Cursor types

á Database transactions

á SQL statements and syntax

á Locking strategies

CHAPTER SUMMARY

KEY TERMS
• ActiveX Data Objects

• Concurrency

• Data consumer

• Data cursor

• Data provider

• Data Source Name

• DBMS

• Firehose cursor

• Jet

• Locking

• Open Database Connectivity

• Optimistic locking

• Pessimistic locking

• Rowset

• SQL Server

• Stored Procedure

• Structured Query Language

12 002-8 CH 09 3/1/99 8:04 AM Page 416

Chapter 9 CREATING DATA SERVICES: PART I I 417

A P P LY YO U R K N O W L E D G E

Exercises

9.1 Using SQL

This exercise provides some basic experience with SQL
for those who are less familiar with it.

Estimated Time: 30 minutes

F IGURE 9 .1
SQL Enterprise Manager’s Server Manager window.

2. Still in the Server Manager window, open the
appropriate server, open the databases folder
under that server, and select the pubs database
(see Figure 9.2).

N
O

T
E SQL Server Assumed for This

Exercise You can run SQL queries in
the command environment of just
about any contemporary DBMS. This
exercise assumes that you are using
SQL Server, which comes with the VB
Enterprise Edition, and that you can
run SQL Enterprise Manager from your
workstation.

If the only DBMS that you have is
Microsoft Access, you can run the
query texts by bringing up a New
Query and, in the resulting screen,
choosing View, SQL from the menu.
Of course, you will have to make up
your own queries for the Nwind data-
base, because the pubs database
comes only with SQL Server. You
might want to check a good book on
SQL Server, such as SQL Server
Unleashed (Sams Publishing) if you
have problems finding or accessing
the pubs database.

Most other DBMSs also have com-
mand-line utilities for executing SQL
statements against their data.

1. Open SQL Enterprise Manager to the Server
Manager window (see Figure 9.1).

F IGURE 9 .2
Selecting a database in SQL Enterprise Manager.

3. Open a Query window with Tools, SQL Query
(see Figure 9.3).

12 002-8 CH 09 3/1/99 8:04 AM Page 417

418 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

F IGU R E 9 .3
Opening a new Query window in SQL Enterprise Manager.

4. Run a basic Select query to view all records in
the titles table by typing the following text into
the Query window and clicking the run icon or
keying Ctrl+E. The text of the query could be
this:

SELECT * FROM titles

5. Modify the Select query of the preceding step to
filter just certain records. The text of the query
could be this:

SELECT * FROM titles WHERE title LIKE
➥‘%computer%’

6. Run a query to insert records into the titles
table. The text of the query could be this:

INSERT titles
(title_id, title)
VALUES
(‘TGC’, ‘The Green Computer’)

Try inserting more records with values of your
own invention. If you run exactly the same query
a second time, you will get an error from SQL
Server, because the title_id field is defined as a
unique key, and so you can’t have two records in
the table with the same value in their title_id
fields.

7. Run a query to modify the contents of one or
more of the records that you just inserted. The
text of a query could be this:

UPDATE titles SET notes = ‘ABC’
WHERE title_id = ‘TGC’

8. Run a query to delete one or more of the records
that you inserted and modified in the preceding
two steps. The text of the query could be this:

DELETE titles WHERE title_id = ‘TGC’

9. Run a query with a Where clause to join records
from the publishers and titles tables. The text
of the query could be this:

SELECT publishers.pub_id, publisher_name,
➥title_id, title FROM publishers, titles
WHERE publishers.pub_id = titles.pub_id

Note that in the list of fields, you must precede
the pub_id field name with the name of its table,
because this field name occurs in both tables.

10. Run a query that performs an inner join, match-
ing corresponding records from the
publishers and titles tables. No records will
show up from either table that do not have a cor-
responding matching record in the other table.
The text of the query could be this:

N
O

T
E Running Just One Query When

Several Are in the Query Window If
you have more than one query in the
same Query window, you can run just
one query at a time by highlighting its
text with your mouse and then clicking
the Run icon (VCR-style Run button) or
keying Ctrl+E.

12 002-8 CH 09 3/1/99 8:04 AM Page 418

Chapter 9 CREATING DATA SERVICES: PART I I 419

A P P LY YO U R K N O W L E D G E

SELECT publishers.pub_id, title_id, title
ROM publishers INNER JOIN titles
ON publishers.pub_id = titles.pub_id

11. Run a query that performs a left join, matching
corresponding records from the publishers and
titles tables, but showing all records from the
publishers table, regardless of whether they have
any matches in the titles table. The text of the
query could be this:

SELECT publishers.pub_id, title_id, title
FROM publishers LEFT JOIN titles
ON publishers.pub_id = titles.pub_id

12. Run a query that performs a right join, matching
corresponding records from the publishers and
titles tables, but showing all records from the
titles table, regardless of whether they have a
matching record in the publishers table. The
text of the query could be as follows:

SELECT publishers.pub_id, title_id, title
FROM publishers RIGHT JOIN titles
ON publishers.pub_id = titles.pub_id

F IGURE 9 .4
Saving query text.

9.2 Creating Stored Procedures

You create stored procedures in this exercise so that you
can use them in the rest of the exercises. You will use
most of these stored procedures in Exercise 9.4.

Estimated Time: 45 minutes

N
O

T
E Saving Query Texts From the Query

Window in SQL Enterprise Manager
You can save the text of SQL
Enterprise Manager Query window
queries for future use by clicking the
Save icon (the disk) in the Query win-
dow or by choosing File, Save or File,
Save As from the menu (see Figure
9.4). Be sure that you are in the
Query window and not the Result win-
dow, however. If you are mistakenly in
the Result window, you will save the
result set and not the query.

N
O

T
E SQL Server Assumed for This Exercise

You won’t be able to perform this exer-
cise unless you have access to SQL
Server or to the command environment
of some other client/server database
such as Oracle. Although you could
create and run Query objects in MS
Access for the preceding exercise, you
can’t create stored procedures in that
environment.

SQL Server comes with the VB
Enterprise Edition.

1. Open SQL Enterprise Manager, select the pubs
database, and open a Query window with Tools,
SQL Query as discussed in the first three steps of
the previous exercise.

12 002-8 CH 09 3/1/99 8:04 AM Page 419

420 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

2. Create a simple stored procedure that runs a basic
SELECT query to return all records in the titles
table. The text to create the stored procedure
could run as follows:

CREATE PROCEDURE Titles_All
AS
SELECT * FROM Titles ORDER BY title

GO

If you are new to SQL Server, don’t be alarmed by
a message that will appear when you run a non-
data query (such as a query to create a stored pro-
cedure or manipulate table or index structure):
This command did not return data, and it did

not return any rows. A moment’s reflection will
tell you that this is exactly the result you would
expect if the query operates normally.

3. Create a simple stored procedure that runs a basic
SELECT query to return all records in the publish-
ers table. The text to create the stored procedure
could run as follows:

CREATE PROCEDURE Publishers_All
AS

Select * from publishers Order By pub_name
➥return @@rowcount

GO

4. Create a stored procedure by modifying the
stored procedure of the preceding step to retrieve
only certain records, based on a parameter passed
to the stored procedure. The text to create the
stored procedure could run as follows:

CREATE PROCEDURE Find_Titles_Like_Title
@TitleName varchar(80)

AS
SELECT * FROM titles WHERE title LIKE
➥@TitleName

GO

The use of LIKE rather than = in the WHERE clause
makes the stored procedure more flexible, because
the value of the parameter can contain wildcard
characters and therefore doesn’t have to specify an
exact match.

You should note, however, that a LIKE clause does
not perform as well as =, because LIKE requires
the server to undertake more processing.

5. Create a stored procedure to insert a record into
the titles table. The stored procedure will take
parameters for the title_id and title fields of
the new record. The text to create the stored
procedure could run as follows:

CREATE PROCEDURE insert_titles
@id varchar(6),
@title varchar(80)

AS
INSERT titles
(title_id, title)
VALUES
(@id, @title)

GO

6. Create a stored procedure to return a count of the
records that fit a condition. The stored procedure
will take input parameters for pub_id and will
implement an output parameter to return the
value to the caller. The text to create the stored
procedure could run as follows:

CREATE PROCEDURE Count_Titles_For_PubID_
➥@PubID varchar(4),

@Result int output
AS

select @Result = count(*) FROM titles
WHERE Pub_ID = @pubid

GO

7. Create a stored procedure to modify the contents
of the title field of a record in the titles table.

12 002-8 CH 09 3/1/99 8:04 AM Page 420

Chapter 9 CREATING DATA SERVICES: PART I I 421

A P P LY YO U R K N O W L E D G E

The stored procedure will take an input parame-
ter for the key field title_id to find the record,
and a second parameter containing the new value
to assign to the title field. The text to create the
stored procedure could run as follows:

CREATE PROCEDURE update_titles_title
@id varchar(6),
@title varchar(80)

AS
UPDATE titles SET title = @title WHERE
➥title_id = @id

GO

8. Create a stored procedure to delete a record from
the titles table, given an input parameter that
provides the value of the title_id field of the
record to delete. The text to create the stored
procedure could run as follows:

CREATE PROCEDURE delete_titles_by_id
@id varchar(6)

AS
DELETE titles
WHERE title_id = @id

GO

9. Create a stored procedure that returns records
based on an inner join or equi-join, matching
corresponding records from the publishers and
titles tables. The text to create the stored
procedure could run as follows:

CREATE PROCEDURE Pub_Title_EquiJoin
AS
SELECT pub_name, title
FROM publishers INNER JOIN titles ON
➥publishers.pub_id = titles.pub_id

ORDER BY pub_name, title
GO

10. Create a stored procedure that returns records
based on a left join, matching corresponding
records from the publishers and titles tables,
but showing all records from the publishers
table, regardless of whether they have any
matches in the titles table. The text to create
the stored procedure could run as follows:

CREATE PROCEDURE Pub_Title_LeftJoin
AS
SELECT pub_name, title

FROM publishers LEFT JOIN titles ON
➥publishers.pub_id = titles.pub_id

ORDER BY pub_name, title
GO

11. Create a stored procedure that returns records
based on a right join, matching corresponding
records from the publishers and titles tables,
but showing all records from the titles table,
regardless of whether they have any matches in
the publishers table. The text to create the stored
procedure could run as follows:

CREATE PROCEDURE Pub_Title_RightJoin
AS

Select pub_name, title from publishers
Right Join titles
On publishers.pub_id = titles.pub_id
Order By pub_name, title

GO

12. Create a stored procedure that counts all title
records in the Titles table that share the same
Pub_ID field. This stored procedure takes a para-
meter, @PubID, that is passed from the caller. The
parameter represents the value to search for in the
Pub_ID field:

create procedure Find_Titles_PubID
@PubID varchar(4)

AS
Select * from titles WHERE Pub_ID = @pubid

GO

13. Create a stored procedure that counts all title
records in the Titles table that share the same
PubID field. This stored procedure has two para-
meters. The first parameter gives the value of
Pub_ID to filter on. The second parameter is an
output parameter (notice the special keyword in
the parameter declaration) that the caller can
check after the call to the stored procedure:

12 002-8 CH 09 3/1/99 8:04 AM Page 421

422 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

CREATE PROCEDURE Count_Titles_For_PubID
@pubID varchar(4),
@Result int output

AS
Select @Result = count(*) From titles

➥Where pub_id = @pubid
GO

14. If you need to change an existing stored proce-
dure, you must first drop it from the database
with a statement of the form:

DROP PROCEDURE ProcName

If you don’t do this, SQL Server will refuse to
create a procedure whose name already exists in
the database.

9.3 Programming with the Execute Direct
and Prepare/Execute Data-Access
Models

You perform a few simple actions on data and retrieve
records using the Execute Direct and Prepare/Execute
data-access models. To implement these models, you
will program with the Command object’s Execute method
(which always implements the Execute Direct model)
and with the Connection object’s Execute method
(which can implement either Execute Direct or
Prepare/Execute, depending on the setting of its
Prepared property).

Compare these models with the Stored Procedures
model illustrated in the next exercise and with the
direct manipulation of the Recordset object illustrated
in Exercise 8.1 in the preceding chapter.

Estimated Time: 25 minutes

1. Start a new VB standard EXE application. Set a
reference to the ADO 2.0 library, as illustrated in
step 2 of Exercise 8.1 of the preceding chapter.

2. In the default form’s General Declarations,
declare an ADO Connection object variable and
an ADO Recordset object variable as follows:

Option Explicit
Private WithEvents connNWind As
➥ADODB.Connection
Private WithEvents rsEmployees As
➥ADODB.Recordset

3. In the form’s Load event procedure, initialize the
ADO Connection object with the following code:

Private Sub Form_Load()
Set connNWind = New ADODB.Connection
Dim sConnect As String
sConnect = “Provider=

➥Microsoft.Jet.OLEDB.3.51;” & _
“Data Source= E:\Program

Files\Microsoft Visual Studio\VB98\Nwind.mdb;”
connNWind.CursorLocation = adUseClient
connNWind.Open sConnect

End Sub

Of course, your Connection string will not be
exactly the same as that of the example, because
the path to NWIND.MDB varies from system to
system.

4. Place TextBoxes on the form’s surface and name
them txtLastName, txtFirstName, and txtHireDate.
Put an appropriate Label next to each TextBox.
Also put a Label named lblEmployeeID and its
BorderStyle set to 1-FixedSingle (see Figure 9.5).

12 002-8 CH 09 3/1/99 8:04 AM Page 422

Chapter 9 CREATING DATA SERVICES: PART I I 423

A P P LY YO U R K N O W L E D G E

F IGURE 9 .5
The completed form for Exercise 9.3.

5. Create a Private Sub routine named
ShowEmployeeInfo to display a current row’s fields
in the TextBoxes and Label:

Private Sub ShowEmployeeInfo()
lstRecords.Clear
On Error Resume Next
rsEmployees.MoveFirst
txtFirstName = rsEmployees!firstname
txtLastName = rsEmployees!lastname
txtBirthDate = rsEmployees!birthdate
lblEmployeeID = rsEmployees!employeeid

End Sub

6. Write a Private Sub procedure named
ShowADOErrors to show the current elements of
the Connection object’s Errors collection:

Private Sub ShowADODBErrors()
Dim err As ADODB.Error
Dim strErrs As String
strErrs = “”
For Each err In connNWind.Errors

strErrs = strErrs & _
err.Number - vbObjectError

➥& “:” & _
err.Description & vbCrLf

Next err
MsgBox strErrs, , “Please Try again”

End Sub

7. Place a CommandButton on the form named
cmdInsert and Caption it appropriately, as in
Figure 9.5. In its Click event procedure, place the
following code:

Private Sub cmdInsert_Click()
‘Uses a Connection object (always Execute
➥Direct model)

Dim sExecuteString As String
sExecuteString = “INSERT INTO employees “ & _

“(LastName, FirstName, BirthDate) “ & _
“VALUES (“ & _
“‘“ & txtLastName & _
“‘,’” & txtFirstName & _
“‘, #” & txtBirthDate & “#)”
connNWind.Errors.Clear
On Error GoTo cmdInsert_Error
connNWind.Execute sExecuteString
Exit Sub

cmdInsert_Error:
ShowADODBErrors

End Sub

8. Place a CommandButton on the form named
cmdDelete and Caption it appropriately, as in
Figure 9.5. In its Click event procedure, place the
following code:

Private Sub cmdDelete_Click()
‘Uses a Connection object (always Execute
➥Direct model)

Dim sExecuteString As String
sExecuteString = “DELETE FROM employees “ & _

“WHERE LastName = ‘“ & _
txtLastName & “‘“ & _
“AND FirstName = ‘“ & _
txtFirstName & “‘“
connNWind.Errors.Clear
On Error GoTo cmdDelete_Error
connNWind.Execute sExecuteString
lstRecords.Clear
Exit Sub

cmdDelete_Error:
ShowADODBErrors

End Sub

12 002-8 CH 09 3/1/99 8:04 AM Page 423

424 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

9. Place a CommandButton on the form named
cmdExactMatch and Caption it appropriately, as in
Figure 9.5. In its Click event procedure, place the
following code:

Private Sub cmdExactMatch_Click()
‘Uses a Connection object (always Execute
➥Direct model)

Dim sExecuteString As String
sExecuteString = “SELECT * FROM employees

➥“ & _
“WHERE LastName = ‘“ & _
txtLastName & “‘“ & _
“AND FirstName = ‘“ & _
txtFirstName & “‘“
connNWind.Errors.Clear
On Error GoTo cmdExactMatch_Error
Set rsEmployees = connNWind.

➥Execute(sExecuteString)
ShowEmployeeInfo
Exit Sub

cmdExactMatch_Error:
ShowADODBErrors

End Sub

10. Place a CommandButton on the form named
cmdApproxMatch and Caption it appropriately as in
Figure 9.5. In its Click event procedure, place the
following code:

Private Sub cmdApproxMatch_Click()
‘Uses a Command object with Prepare/Execute
➥model

Dim sExecuteString As String
sExecuteString = “SELECT * FROM employees

➥“ & _
“WHERE LastName LIKE ‘“ & _
txtLastName & “%’” & _
“AND FirstName LIKE ‘“ & _
txtFirstName & “%’”
connNWind.Errors.Clear

Dim comNWind As ADODB.Command
Set comNWind = New ADODB.Command
Set comNWind.ActiveConnection =

➥connNWind

comNWind.CommandType = adCmdText
comNWind.CommandText = sExecuteString
comNWind.Prepared = True

On Error GoTo cmdApproxMatch_Error
Set rsEmployees =

➥comNWind.Execute(sExecuteString)
ShowEmployeeInfo
Exit Sub

cmdApproxMatch_Error:
ShowADODBErrors

End Sub

11. Place a CommandButton on the form named
cmdUpdateBirthDate and Caption it appropriately,
as shown in Figure 9.5. In its Click event proce-
dure, place the following code:

Private Sub cmdUpdateBirthDate_Click()
‘Uses a Command object with Execute Direct
➥model

Dim sExecuteString As String
sExecuteString = “UPDATE employees “ & _

“SET BirthDate = “ & _
“#” & txtBirthDate & “#” & _
“WHERE LastName = ‘“ & _
txtLastName & “‘“ & _
“AND FirstName = ‘“ & _
txtFirstName & “‘“

connNWind.Errors.Clear

Dim comNWind As ADODB.Command
Set comNWind = New ADODB.Command
Set comNWind.ActiveConnection =

➥connNWind
comNWind.CommandType = adCmdText
comNWind.CommandText = sExecuteString

On Error GoTo cmdUpdateBirthDate_Error
comNWind.Execute sExecuteString
Exit Sub

cmdUpdateBirthDate_Error:
ShowADODBErrors

End Sub

12 002-8 CH 09 3/1/99 8:04 AM Page 424

Chapter 9 CREATING DATA SERVICES: PART I I 425

A P P LY YO U R K N O W L E D G E

9.4 Programming With the Stored
Procedures Data-Access Model

You perform a few simple actions on data and retrieve
records using the Stored Procedures data-access model.
Compare this model with the other two models given
in the preceding exercise and with the direct manipula-
tion of the Recordset object illustrated in Exercise 8.1
in the preceding chapter.

This exercise depends on the stored procedures that
you created in Exercise 9.2

Estimated Time: 90 minutes

4. In the form’s Load event procedure, initialize the
connection to point to the pubs database in SQL
Server, as in the following example:

Private Sub Form_Load()
Dim sConnect As String
sConnect = “Provider=MSDASQL.1;Data

Source=ODBCpubs”
Set connPubs = New ADODB.Connection
connPubs.Open sConnect

End Sub

This example uses an ODBC provider in its
Connect string (assuming you have an appropri-
ately named DSN—ODBCpubs in the example):

Provider=MSDASQL.1;Data Source=ODBCpubs

or you could use a SQL Server provider, as in this
example:

Provider=SQLOLEDB.1;User
ID=sa;Password=lobster;Location=Chomper;
➥DataBase=pubs

N
O

T
E SQL Server and Existing Queries

Assumed for This Exercise This
exercise depends on the stored proce-
dures that you created in Exercise
9.2. It also assumes that you have
access to SQL Server and that you
can program in VB ADO with a
provider (either ODBC or SQL Server)
that gives you access to the pubs SQL
Server database.

1. Create a new VB standard EXE project with its
default startup form.

2. Add a reference to version 2.0 of the ADODB
library, as discussed in Exercise 8.1 of the preced-
ing chapter.

3. In the default form’s General Declarations sec-
tion, declare form-wide object variables for an
ADO Connection and ADO Recordset, as fol-
lows:

Option Explicit
Private WithEvents connPubs As
➥ADODB.Connection
Private WithEvents rsPubs As ADODB.Recordset

N
O

T
E Results May Vary The sample

provider in the Connect strings given
here are only examples and may not
work in your environment. You will
need to investigate your own system’s
data setup to determine which
Connect string will work for you.

5. To hold the results of stored procedures that
return Recordset objects, add a ListBox control
to the form and name it lstResults. Above
lstResults, put a blank Label control and name
it lblResults. This ListBox will contain a list of
records returned by the stored procedures that
you will run in this exercise (see Figure 9.6).

12 002-8 CH 09 3/1/99 8:04 AM Page 425

426 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

F IGU R E 9 .6
The completed form as it might appear at the end of
Exercise 9.4.

6. Add a Private Sub procedure to the form that will
display chosen fields from the Recordset rsPubs in
the ListBox that you created in the preceding step:

Private Sub ShowFieldsFromRecords(_
rs As ADODB.Recordset, _
ParamArray names())

‘Clear the ListBox
lstResults.Clear

Dim valToShow As String
Do Until rs.EOF

Dim vName As Variant
Dim strtext As String
strtext = “”
For Each vName In names

If IsNull(rs.Fields(vName).Value)
➥Then

valToShow = “<NULL>”
Else

valToShow =
rs.Fields(vName).Value

End If
strtext = strtext & “|” &

➥valToShow

Next vName
strtext = Mid$(strtext, 2)
lstResults.AddItem strtext
rs.MoveNext

Loop
End Sub

This routine assumes that the caller is sending it
an initialized Recordset object with the data cur-
sor currently pointing to the first row in the
Recordset. It also assumes that you have sent a
variable number of parameters (the ParamArray)
representing names of the fields that you want to
display in the ListBox.

The routine’s Do Until... loop traverses all the
records in the Recordset. Inside the loop, a For
Each... loop builds a single line to display in the
ListBox by traversing each element of the
ParamArray. Each ParamArray element gives a
Field name whose value you extract from the
current row in the Recordset. If the Field’s value
is NULL, you create a special string to represent
that value. You place a “|” symbol between each
field that you display.

At the end of the Do Until... loop, you drop the
initial “|” character on the string that you built in
the For Each... loop and add the string to the
ListBox.

7. Return a list of all Publisher records as follows
(assumes that the Publishers_All stored proce-
dure already exists in the pubs database, as
discussed in Exercise 9.2):

• On the form’s surface, place a Frame control
and name it fraPublishers. Inside the Frame,
place a CommandButton and name it
cmdPublishersAll. Set the Captions of the
Frame and CommandButton appropriately, as
shown in Figure 9.6.

12 002-8 CH 09 3/1/99 8:04 AM Page 426

Chapter 9 CREATING DATA SERVICES: PART I I 427

A P P LY YO U R K N O W L E D G E

• In the Click event procedure of
cmdPublishersAll, place the following code:

Private Sub cmdPublishersAll_Click()
‘Initiate a Command object and
‘point it to the form-wide

➥Connection object
Dim cmdPubs As ADODB.Command
Set cmdPubs = New ADODB.Command
Set cmdPubs.ActiveConnection =

➥connPubs

‘The Command will execute the
➥indicated stored procedure

cmdPubs.CommandText =
➥“Publishers_All”

cmdPubs.CommandType =
➥adCmdStoredProc

‘One technique for initializing a
➥stored procedure’s parameters:

‘Create a parameter object and then
➥Append

‘it to the Parameters collection of
➥the

‘Command object. Give the Return
➥value its

‘own special name, set by you.
Dim param As ADODB.Parameter
Set param = cmdPubs.CreateParameter

➥(“Return”, _
adInteger, _
adParamReturnValue, ,

➥0)
cmdPubs.Parameters.Append param

‘Set the Recordset to the result of
➥the

‘call to the Stored Procedure
Set rsPubs = cmdPubs.Execute

‘Display results and close the
➥Recordset

ShowFieldsFromRecords rsPubs,
➥“pub_id”, “pub_name”

rsPubs.Close
Set rsPubs = Nothing

‘Display the number of records
➥found

‘(information was put in the RETURN
➥parameter

‘of the Stored Procedure — name ➥427
➥(“Return”).Value & “ publishers found.”

lblResults = “Publishers
➥(PubID|Name)”
End Sub

• Run the application to test the process. When
you click the CommandButton, you should see
values in the ListBox.

8. Return a list of all Title records as follows:

• On the form’s surface, place a Frame control
and name it fraTitles. Inside the Frame,
place a CommandButton and name it
cmdTitlesAll. Set the Captions of the Frame
and CommandButton appropriately, as shown in
Figure 9.6.

• In the Click event procedure of cmdTitlesAll,
place the following code:

Private Sub cmdTitlesAll_Click()
‘Initialize a Command object and
‘point it to the form-wide

➥Connection
Dim cmdPubs As ADODB.Command
Set cmdPubs = New ADODB.Command
Set cmdPubs.ActiveConnection =

➥connPubs

‘Make the Command use the
➥appropriate

‘stored procedure
cmdPubs.CommandText = “Titles_All”
cmdPubs.CommandType =

➥adCmdStoredProc

‘Another technique for programming
➥with the

‘return value of a stored procedure:
‘Refresh parameters: no specific

➥assignments needed
‘to Parameters collection, because

➥only parameter of

12 002-8 CH 09 3/1/99 8:04 AM Page 427

428 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

‘this stored procedure is the Return
➥value,

‘and that’s implicit
cmdPubs.Parameters.Refresh

‘The Command’s Execute method
‘returns a Recordset
Set rsPubs = cmdPubs.Execute

‘We display the Recordset in the
➥ListBox

ShowFieldsFromRecords rsPubs,
➥“Title_id”, “Title”

‘Then we Close the Recordset
rsPubs.Close
Set rsPubs = Nothing

‘Return value is always element 0 of
➥Parameters collection

MsgBox cmdPubs.Parameters(0).Value &
➥“ titles found.”

lblResults = “Titles (TitleID|Title)”
End Sub

• Run the application and click the new
CommandButton. You should see the ListBox
refresh with new data.

9. Return a list of all Titles for a given Publisher as
follows:

• Place a Frame on the form and name it
fraFind. Within the Frame place a Label, a
TextBox named txtFindPubID, and a
CommandButton named cmdFind. Give appro-
priate Captions to the Frame, the Label, and
the CommandButton as shown in Figure 9.6.

• In the Click event procedure of cmdFind,
place the following code:

Private Sub cmdFind_Click()
‘Initialize the Command object
Dim cmdPubs As ADODB.Command
Set cmdPubs = New ADODB.Command
Set cmdPubs.ActiveConnection =

➥connPubs
cmdPubs.CommandType = adCmdStoredProc

cmdPubs.CommandText = “Find_Titles_
➥PubID”

‘Create a parameter object
‘To match the parameter that the
‘stored procedure is expecting
Dim parmCurr As ADODB.Parameter
Set parmCurr = cmdPubs.

➥CreateParameter(_
“@PubID”, _
adVarChar, _
adParamInput, _

4, _
txtFindPubID.

➥Text)

‘and then append it to the
➥parameters collection

cmdPubs.Parameters.Append parmCurr

‘The Command’s Execute method
‘returns a Recordset
Set rsPubs = cmdPubs.Execute

‘Display and close the Recordset
ShowFieldsFromRecords rsPubs,

➥“title_id”, “title”
rsPubs.Close
Set rsPubs = Nothing
lblResults = “Titles for Publisher “ &

_
txtFindPubID & “

➥(title_id|title)”
End Sub

• Run the application and click the new
CommandButton. You should see the ListBox
refresh with new data.

10. Return joined Publisher-Title information with
various JOIN types as follows:

• Place a Frame on the form and name it
fraJoin. Within the Frame, place three Option
Buttons named optInner, optLeft, and
optRight, respectively, and a CommandButton
named cmdJoin. Give appropriate Captions to
the Frame, the Option Buttons, and the
CommandButton, as shown in Figure 9.6.

12 002-8 CH 09 3/1/99 8:04 AM Page 428

Chapter 9 CREATING DATA SERVICES: PART I I 429

A P P LY YO U R K N O W L E D G E

• In the Click event procedure of cmdJoin,
place the following code:

Private Sub cmdJoin_Click()
‘Create and initialize a Command

➥object
Dim cmdPubs As ADODB.Command
Set cmdPubs = New ADODB.Command
Set cmdPubs.ActiveConnection =

➥connPubs
cmdPubs.CommandType =

➥adCmdStoredProc

‘Decide which stored procedure to
➥use

If optInner.Value Then
cmdPubs.CommandText =

➥“Pub_Title_EquiJoin”
ElseIf optLeft.Value Then

cmdPubs.CommandText =
➥“Pub_Title_LeftJoin”

Else
cmdPubs.CommandText =

➥“Pub_Title_RightJoin”
End If

‘Note: No parameters for these
➥stored

‘procedures.
cmdPubs.Parameters.Refresh

‘Execute method returns a Recordset
Set rsPubs = Nothing
Set rsPubs = cmdPubs.Execute

‘Display and close the Recordset
ShowFieldsFromRecords rsPubs,

➥“pub_name”, “title”
rsPubs.Close
Set rsPubs = Nothing
lblResults = cmdPubs.CommandText &

➥“ (Pub_Name|Title)”
End Sub

11. Insert a new Title into the Titles tables as fol-
lows:

• Place a Frame on the form and name it
fraInsert. Within the Frame, place three
TextBoxes named txtInsertTitleID,
txtInsertPubID, and txtInsertTitle, respec-
tively, and a CommandButton named cmdInsert.

Place a Label in the Frame for each TextBox.
Give appropriate Captions to the Frame, the
Labels, and the CommandButton as shown in
Figure 9.6.

• In the Click event procedure of cmdInsert,
place the following code:

Private Sub cmdInsert_Click()
Dim cmdPubs As ADODB.Command
Set cmdPubs = New ADODB.Command
Set cmdPubs.ActiveConnection =

➥connPubs
With cmdPubs

.CommandType = adCmdStoredProc

.CommandText = “Insert_Titles”

‘Refresh Parameters collection
.Parameters.Refresh

‘and then set properties of ➥each
parameter:

‘@id parameter
.Parameters(“@id”).Value =

➥txtInsertTitleID
.Parameters(“@id”).Direction =

➥adParamInput

‘@title parameter
.Parameters(“@title”).Value =

➥txtInsertTitle
.Parameters(“@title”).Direction

➥= adParamInput

‘@PubID parameter
.Parameters(“@PubID”).Value =

➥txtInsertPubID
.Parameters(“@PubID”).Direction

➥= adParamInput
.Execute

End With
lblResults = “”
lstResults.Clear

End Sub

• Run the application and test by entering val-
ues in the TextBox for a new title and then
clicking the CommandButton. If you now click
the Titles button, you should see the new
Title displayed in the ListBox.

12 002-8 CH 09 3/1/99 8:04 AM Page 429

430 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

12. Update an existing title’s name as follows:

• Place a Frame on the form and name it
fraUpdate. Within the Frame, place two
TextBoxes named txtUpdateTitleID and
txtUpdateTitleName, respectively, and a
CommandButton named cmdUpdate. Place a
Label in the Frame for each TextBox. Give
appropriate Captions to the Frame, the Labels,
and the CommandButton as shown in Figure 9.6.

• In the Click event for cmdUpdate, place the
following code:

Private Sub cmdUpdate_Click()
Dim cmdPubs As ADODB.Command
Set cmdPubs = New ADODB.Command
Set cmdPubs.ActiveConnection =

➥connPubs
With cmdPubs

.CommandType = adCmdStoredProc

.CommandText =
➥“Update_Titles_Title”

‘Refresh Parameters collection
.Parameters.Refresh

‘and then set properties of ➥each
parameter:

‘@id parameter
.Parameters(“@id”).Value =

➥txtUpdateTitleID
.Parameters(“@id”).Direction =

➥adParamInput

‘@title parameter
.Parameters(“@title”).Value =

➥txtUpdateTitleName
.Parameters(“@title”).Direction

➥= adParamInput
.Execute

End With
lblResults = “”
lstResults.Clear

End Sub

• Run the application and enter a known title
ID in the Title ID TextBox. Type a new title
for the record, and click the Update button.
When you click the Titles button, you should
see an updated entry in the ListBox.

13. Count the number of titles for a given publisher
as follows:

• Place a Frame on the form and name it
fraCountTitlePublisher. Within the Frame,
place a TextBox named txtCountPubID, a Label
named lblCountPublisher with its BorderStyle
set to 1-Fixed Single, and a CommandButton
named cmdCountTitlePublisher. Place a Label
in the Frame above the TextBox and one above
lblCountPublisher. Give appropriate Captions
to the Frame, the two Labels, and the
CommandButton as shown in Figure 9.6.

• In the Click event procedure for
cmdCountTitlePublisher, place the following
code:

Private Sub
cmdCountTitlePublisher_Click()

Dim cmdPubs As ADODB.Command
Set cmdPubs = New ADODB.Command
Set cmdPubs.ActiveConnection =

➥connPubs
cmdPubs.CommandText =

➥“Count_Titles_For_PubID”

With cmdPubs.Parameters
‘append directly to parameters

➥collection, using
‘the return value of the

➥CreateParameter method
.Append ➥cmdPubs.CreateParameter(

_
“@PubID”, _
adVarChar,

12 002-8 CH 09 3/1/99 8:04 AM Page 430

Chapter 9 CREATING DATA SERVICES: PART I I 431

A P P LY YO U R K N O W L E D G E

adParamInput,
4, _
RTrim

➥(txtCountPubID.Text))
.Append cmdPubs.CreateParameter(

“@Result”,
adInteger,
adParamOutput,

, _
0)

End With

cmdPubs.Execute
lblCountTitlesPublisher =

➥cmdPubs.Parameters(“@Result”).Value

End Sub

Note that this stored procedure uses an Input
and an Output parameter (the publisher ID
and the number of titles, respectively). When
you set the Parameter objects for these para-
meters, you must make sure to specify the
parameter types properly (adParamInput and
adParamOutput).

• Run the application and place a known pub-
lisher ID in the TextBox. Click the Count
button to verify that the Label refreshes to
hold the number of titles for that publisher.
(Several publishers have no titles, so it will be
normal to see zero for these publishers.)

14. Delete a Title from the data as follows:

• Place a Frame on the form and name it
fraDelete. Within the Frame, place a TextBox
named txtDeleteTitleID and a CommandButton
named cmdDelete. Place a Label in the Frame
above the TextBox. Give appropriate Captions
to the Frame, the Label, and the
CommandButton as shown in Figure 9.6.

• Place the following code in the Click event
procedure of cmdDelete:

Private Sub cmdDelete_Click()
Dim cmdPubs As ADODB.Command
Set cmdPubs = New ADODB.Command
Set cmdPubs.ActiveConnection =

➥connPubs
With cmdPubs

.CommandType = adCmdStoredProc

.CommandText =
➥“Delete_Titles_By_ID”

‘Refresh Parameters collection
.Parameters.Refresh

‘and then set properties of ➥each
parameter:

‘@id parameter
.Parameters(“@id”).Value =

➥txtDeleteTitleID
.Parameters(“@id”).Direction =

➥adParamInput

.Execute
End With
lblResults = “”
lstResults.Clear

End Sub

• Run the application and enter the title ID of
one of the Titles that you added when test-
ing the Insert stored procedure. When you
click the Titles button, the entry should be
gone.

9.5 Programming With Cursor Locations,
Types, and Locking Strategies

You experiment with the CursorLocation, CursorType,
and LockType properties of the Recordset, Connection,
and Command objects.

Estimated Time: 30 minutes

1. Use the application that you created in Exercise
8.1 of Chapter 8.

12 002-8 CH 09 3/1/99 8:04 AM Page 431

432 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

2. Add to the form four frames, as follows (see
Figure 9.7):

• fraLocking with Caption “Locking” and con-
taining the following Option Buttons with
appropriate Captions as shown in the figure.

• optReadOnly (set Value = True)

• optPessimistic

• optOptimistic

• optBatchOptimistic

• fraSupports with Caption “Supports,” Enabled
property = False, and containing the following
CheckBoxes:

◆ chkAddNew

◆ chkApproxPosition

◆ chkBookmark

◆ chkDelete

◆ chkHoldRecords

• chkMovePrevious

• chkResync

• chkUpdate

• chkUpdateBatch

3. Add three form-wide variable declarations to keep
track of the current cursor location, cursor type,
and locking strategy. The entire General
Declarations section of the form should now look
like the following (the last three lines are what
you just added):

Option Explicit
Dim WithEvents cnNWind As ADODB.Connection
Dim WithEvents rsEmployees As ADODB.Recordset
Dim cmEmployees As ADODB.Command
Public gblnAddMode As Boolean
Dim iCursorType As Integer
Dim iCursorLocation As Integer
Dim iLocking As Integer

F IGU R E 9 .7
The completed form for Exercise 9.5.

• fraCursorType with Caption “CursorType” and
containing the following Option Buttons with
appropriate Captions as shown in the figure.

◆ optForwardOnly (set Value = True)

◆ optStatic

◆ optDynamic

◆ optKeyset

• fraCursorLocation with Caption “Cursor

Location” and containing the following Option
Buttons with appropriate Captions as shown in
the figure.

◆ optUseClient (set Value = True)

◆ optUseServer

12 002-8 CH 09 3/1/99 8:04 AM Page 432

Chapter 9 CREATING DATA SERVICES: PART I I 433

A P P LY YO U R K N O W L E D G E

4. Add code to the Click events of the Option
Buttons of step 2 that will set the form-wide
variables as follows:

Private Sub optForwardOnly_Click()
iCursorType = adOpenForwardOnly

End Sub
Private Sub optStatic_Click()

iCursorType = adOpenStatic
End Sub
Private Sub optDynamic_Click()

iCursorType = adOpenDynamic
End Sub
Private Sub optKeyset_Click()

iCursorType = adOpenKeyset
End Sub
Private Sub optReadOnly_Click()

iLocking = adLockReadOnly
End Sub
Private Sub optOptimistic_Click()

iLocking = adLockOptimistic
End Sub
Private Sub optPessimistic_Click()

iLocking = adLockPessimistic
End Sub
Private Sub optBatchOptimistic_Click()

iLocking = adLockBatchOptimistic
End Sub
Private Sub optServerSide_Click()

iCursorLocation = adUseServer
End Sub
Private Sub optClientSide_Click()

iCursorLocation = adUseClient
End Sub

5. Add a Sub procedure named MarkSupports. It will
examine the current Recordset’s features using
the Supports method and will check the boxes in
the Supports frame accordingly:

Private Sub MarkSupports(rs As
➥ADODB.Recordset)

chkAddNew.Value = IIf(rs.Supports
➥(adAddNew), vbChecked, vbUnchecked)

chkApproxPosition = IIf(rs.Supports
➥(adApproxPosition), vbChecked, vbUnchecked)

chkBookmark = IIf(rs.Supports
➥(adBookmark), vbChecked, vbUnchecked)

chkDelete = IIf(rs.Supports(adDelete),
➥vbChecked, vbUnchecked)

chkHoldRecords = IIf(rs.Supports
➥(adHoldRecords), vbChecked, vbUnchecked)

chkMovePrevious = IIf(rs.Supports
➥(adMovePrevious), vbChecked, vbUnchecked)

chkResync = IIf(rs.Supports(adResync),
➥vbChecked, vbUnchecked)

chkUpdate = IIf(rs.Supports(adUpdate),
➥vbChecked, vbUnchecked)

chkUpdateBatch = IIf(rs.Supports
➥(adUpdateBatch), vbChecked, vbUnchecked)
End Sub

6. Modify the code in cmdOpenConnection_Click to
use the form-wide variable values to determine the
cursor location, cursor type, and locking strategy
of the Recordset. Also, call the MarkSupports rou-
tine after the Recordset has been initialized. The
modified Click event procedure will look like the
following (changed lines are in bold italics):

On Error GoTo cmdOpenConnection_Error
Me.MousePointer = vbHourglass
Set cnNWind = New ADODB.Connection
Set rsEmployees = New ADODB.Recordset
Dim sConnect As String
sConnect = “Provider=Microsoft.

➥Jet.OLEDB.3.51;” & _
“Data Source=C:\DataSamples\

➥Nwind.mdb “
cnNWind.CursorLocation = iCursorLocation
cnNWind.Open sConnect
rsEmployees.CursorType = iCursorType
rsEmployees.CursorLocation =

➥iCursorLocation
rsEmployees.LockType = iLocking
rsEmployees.Source = “Select * From

➥Employees Order By LastName,FirstName”
Set rsEmployees.ActiveConnection =

➥cnNWind
rsEmployees.Open
rsEmployees.MoveFirst

MarkSupports rsEmployees
Exit Sub

cmdOpenConnection_Error:
Dim adoErr As Error
For Each adoErr In cnNWind.Errors

‘ Show each error description to
➥the user

MsgBox adoErr.Description,
➥vbOKCancel, “MY ERROR MESSAGE”

Next adoErr
End Sub

12 002-8 CH 09 3/1/99 8:04 AM Page 433

434 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

In the Form_Load event procedure, place the fol-
lowing code to initialize the three Option Button
groups. This will also trigger the Click events of
the respective buttons and therefore set the global
variables:

Private Sub Form_Load()
optForwardOnly.Value = True
optReadOnly.Value = True
optClientSide = True

End Sub

7. Test the application with different combinations
of cursor options. Note the differing cursor capa-
bilities shown in the Supports frame. Figure 9.7
gives an example of what you might see.
Experiment with various actions on the data with
different cursor options selected. Note which
actions generate runtime errors with given cursor
options.

9.6 Managing Database Transactions

In this exercise, you experiment with database transac-
tions as implemented with the Connection object’s
BeginTransaction, CommitTransaction, and
RollbackTransaction methods.

Estimated Time: 20 minutes

1. Start a new VB standard EXE project with a sin-
gle form.

2. Add a reference to the ADO 2.0 library as dis-
cussed in Exercise 8.1 in the preceding chapter.

3. Add three CommandButtons and name them
cmdBeginTransaction, cmdRollbackTransaction,
and cmdCommitTransaction. Give them Captions
as illustrated in Figure 9.8.

F IGURE 9 .8
The completed form for Exercise 9.6.

4. Add a ListBox and name it lstFirstNames (refer
to Figure 9.8). You will use it to display the first
names of employees from the Employees table in
the Nwind database.

5. Declare a Connection, a Command, and a Recordset
object at the form level, as follows:

Option Explicit
Private WithEvents connNwind As ADODB.
➥Connection
Private comNWind As ADODB.Command
Private WithEvents rsEmployees As ADODB.
➥Recordset

6. Write a Sub procedure called ShowFirstNames that
will display the values of the FirstName fields of
all employee records in the ListBox:

Private Sub ShowFirstNames()
lstFirstNames.Clear
rsEmployees.Requery
rsEmployees.MoveFirst
Do Until rsEmployees.EOF

lstFirstNames.AddItem rsEmployees!
➥firstname

rsEmployees.MoveNext
Loop

End Sub

12 002-8 CH 09 3/1/99 8:04 AM Page 434

Chapter 9 CREATING DATA SERVICES: PART I I 435

A P P LY YO U R K N O W L E D G E

7. In the Form_Load event procedure, initialize the
Connection and Recordset as follows, calling
ShowFirstNames after the Recordset is initialized:

Private Sub Form_Load()
Set connNwind = New ADODB.Connection
Dim sConnect As String
sConnect = “Provider=Microsoft.Jet.

➥OLEDB.3.51;” & _
“Data Source= E:\Program Files\

➥Microsoft Visual Studio\VB98\Nwind.mdb;”
connNwind.CursorLocation = adUseClient

connNwind.Open sConnect
Set comNWind = New ADODB.Command
Set rsEmployees = New ADODB.Recordset
rsEmployees.CursorType = adOpenStatic
rsEmployees.LockType = adLockOptimistic

rsEmployees.Source = “Select * From
➥Employees Order By LastName,FirstName”

Set rsEmployees.ActiveConnection =
➥connNwind

rsEmployees.Open
ShowFirstNames

End Sub

8. Write a Sub procedure called SetButtons-
ForPendingTran. It will take a Boolean parameter
that can be used to determine how the three but-
tons are enabled:

Private Sub SetButtonsForPendingTran
➥(TranIsPending As Boolean)

cmdBeginTrans.Enabled = Not
➥TranIsPending

cmdRollBackTrans.Enabled = TranIsPending
cmdCommitTrans.Enabled = TranIsPending

End Sub

9. In the Click event procedure for cmdBeginTrans,
write the following code to initiate a database
transaction and switch the case of all the employ-
ees’ first names. At the end of the event proce-
dure, display the first names in the ListBox and
call SetButtonsForPendingTran with a True argu-
ment:

Private Sub cmdBeginTrans_Click()
connNwind.BeginTrans

rsEmployees.MoveFirst
If rsEmployees!firstname =

➥UCase$(rsEmployees!firstname) Then
Do Until rsEmployees.EOF

rsEmployees!firstname =
➥LCase$(rsEmployees!firstname)

rsEmployees.MoveNext
Loop

Else
Do Until rsEmployees.EOF

rsEmployees!firstname =
➥UCase$(rsEmployees!firstname)

rsEmployees.Update
rsEmployees.MoveNext

Loop
End If
SetButtonsForPendingTran (True)
ShowFirstNames

End Sub

10. In the Click event procedure for cmdCommitTrans,
write the following code to commit the pending
database transaction, redisplay the first names,
and call SetButtonsForPendingTran with a False
argument:

Private Sub cmdCommitTrans_Click()
connNwind.CommitTrans
SetButtonsForPendingTran (False)
ShowFirstNames

End Sub

11. In the Click event procedure for cmdRollBackTrans,
write the following code to roll back the pending
database transaction, re-display the first names, and
call SetButtonsForPendingTran with a False argu-
ment:

Private Sub cmdRollBackTrans_Click()
connNwind.RollbackTrans
SetButtonsForPendingTran (False)
ShowFirstNames

End Sub

12 002-8 CH 09 3/1/99 8:04 AM Page 435

436 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

12. Run the application and note how changes to the
records are discarded on a rollback but accepted
on a commit.

13. Also note the effect of beginning a transaction
and then exiting the application without either a
commit or a rollback. The next time you run the
application, you will see that exiting the applica-
tion with a transaction pending has the same
effect as a rollback.

Review Questions
1. Name some advantages of stored procedures over

inline SQL statements.

2. What keyword begins a SQL statement to
retrieve records?

3. What are the two cursor locations?

4. What’s the most resource-efficient combination of
cursor type and cursor locking strategy?

5. What is meant by the term “nested transaction?”

6. Write a statement using the JOIN clause to display
matching records between a table named
Customer and a table named Orders, based on
fields in each named CustID.

7. Describe the difference between pessimistic and
optimistic locking.

8. What property of what ADO object do you need
to implement the Prepare/Execute model?

9. Describe a situation where the Execute Direct
data-access model would be appropriate.

Exam Questions
1. The Execute Direct data-manipulation model is

appropriate when

A. You need to perform one-time-only opera-
tions on the data.

B. You need to execute queries typed by users.

C. You need to execute the same dynamic query
several times during a single session of your
application.

D. You need to execute the same query over
many sessions and from many different work-
stations.

2. You can implement the Execute Direct model
with (Select all that apply.)

A. An argument to the Connection object’s
Execute method.

B. An argument to the Recordset object’s Open
method.

C. The Command object’s CommandText property.

D. An argument to the Command object’s Execute
method.

3. The Prepare/Execute data manipulation model is
appropriate when

A. You need to perform one-time-only opera-
tions on the data.

B. You need to execute queries typed by users.

C. You need to execute the same dynamic query
several times during a single session of your
application.

D. You need to execute the same query over
many sessions and from many different work-
stations.

12 002-8 CH 09 3/1/99 8:04 AM Page 436

Chapter 9 CREATING DATA SERVICES: PART I I 437

A P P LY YO U R K N O W L E D G E

4. You can implement the Prepare/Execute model
with (Select all that apply.)

A. An argument to the Connection object’s
Execute method.

B. An argument to the Recordset object’s Open
method.

C. The Command object’s CommandText property.

D. An argument to the Command object’s Execute
method.

5. The Stored Procedures data manipulation model
is appropriate when (Select all that apply.)

A. You need to perform one-time-only opera-
tions on the data.

B. You need to execute queries typed by users.

C. You need to execute the same dynamic query
several times during a single session of your
application.

D. You need to execute the same query over
many sessions and from many different
workstations.

6. You can implement the Stored Procedures model
with (Select all that apply.)

A. An argument to the Connection object’s
Execute method.

B. An argument to the Recordset object’s Open
method.

C. The Command object’s CommandText property.

D. An argument to the Command object’s Execute
method.

7. Which of these SQL Server statements will cor-
rectly create a stored procedure with two parame-
ters and a return value?

A. CREATE PROCEDURE Find_Result AS
Int @MyParm1 Output

Int @MyParm2

@MyParm1 = Select LastName from Employee

➥Where

EmployeeID = @MyParm2

If ISNULL @MyParm1

Return 0

Else

Return 1

GO

B. CREATE PROCEDURE Find_Result
Int @MyParm1 Output

Int @MyParm2

AS

@MyParm1 = Select LastName from Employee

➥Where

EmployeeID = @MyParm2

If ISNULL @MyParm1

Find_Result = 0

Else

Find_Result = 1

GO

C. CREATE PROCEDURE Find_Result
Int @MyParm1 Output,

Int @MyParm2

AS

@MyParm1 = Select LastName from Employee

➥Where

EmployeeID = @MyParm2

If ISNULL @MyParm1

Return 0

Else

Return 1

GO

12 002-8 CH 09 3/1/99 8:04 AM Page 437

438 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

D. CREATE PROCEDURE Find_Result
AS

Int @MyParm1 Output

Int @MyParm2

@MyParm1 = Select LastName from Employee

➥Where

EmployeeID = @MyParm2

If ISNULL @MyParm1

Find_Result = 0

Else

Find_Result = 1

GO

8. After you have executed a SQL Server stored pro-
cedure that implements a return value, you can
check the value that the stored procedure
returned by

A. Using the individual variables corresponding
to the stored procedure’s Output parameters in
the Parameters array argument to the Command
object’s Execute method.

B. Checking the final element of the Command
object’s Parameters collection.

C. Checking element 0 of the Command object’s
Parameters collection.

D. Checking the element of the Command object’s
Parameters collection that corresponds to the
last Output parameter declared in the stored
procedure.

9. A SQL Server stored procedure designed to
return records to a VB app using ADO (Select all
that apply.)

A. Must have at least one Output parameter.

B. Must have at least one Input parameter.

C. Must implement a return value.

D. Doesn’t necessarily have any parameters.

10. A client-side cursor (Select all that apply.)

A. Can be better than a server-side cursor for
smaller rowsets.

B. Can be better than a server-side cursor if you
need visibility of other users’ changes.

C. Can be more scalable than a server-side cursor
as users are added to the system.

D. Is the only option for persistent Recordset
objects.

11. A server-side cursor does not support which of
the following Recordset properties? (Select all
that apply.)

A. AbsolutePosition

B. Bookmark

C. RecordCount

D. EOF

12. The Static cursor type (Select all that apply.)

A. Does not allow user updates of any kind on
the data.

B. Allows user updates, but only on the local
copy of the data.

C. Doesn’t make other users’ updates visible.

D. Doesn’t make other users’ deletions or inserts
visible.

12 002-8 CH 09 3/1/99 8:04 AM Page 438

Chapter 9 CREATING DATA SERVICES: PART I I 439

A P P LY YO U R K N O W L E D G E

13. A Keyset cursor has which of the following
attributes? (Select all that apply.)

A. Gives visibility of other users’ deletions of
records

B. Gives visibility of other users’ edits to existing
records

C. Allows movement in any direction through
the Recordset

D. Allows the user to update, add, and delete
records in the underlying database

14. Calling a Rollback on a transaction will

A. Cause an error if the current transaction is
nested within other transactions.

B. Have no effect if it is performed on transac-
tions nested within the current transaction.

C. Cancel all transactions nested within the cur-
rent transaction.

D. Cause an error if other transactions are
nested within the current transaction.

15. A transaction will be committed

A. When the connection to the data provider is
dropped or closed.

B. When the application ends.

C. When there is an update without an explic-
itly defined transaction.

D. When the transaction was rolled back, but is
nested inside another transaction that is
committed.

16. A SQL statement to delete all records from the
employees table would read

A. DELETE “%” FROM employees

B. DELETE * FROM employees

C. DELETE FROM employees

D. DELETE FROM employees WHERE *

17. A SQL statement to insert a new record might
read:

A. INSERT (LastName, FirstName)

INTO employees

VALUES (“Romero”, “Jose Antonio”)

B. INSERT INTO employees

(“LastName”, “FirstName”)

VALUES (“Romero”, “Jose Antonio”)

C. INSERT (“LastName”, “FirstName”)

INTO employees

VALUES (“Romero”, “Jose Antonio”)

D. INSERT INTO employees

(LastName, FirstName)

VALUES (“Romero”, “Jose Antonio”)

18. A SQL statement that uses the JOIN clause to
match records from two tables, showing all
records from one of the tables regardless of
whether they have matches in the other table
might be called what? (Select all that apply.)

A. An outer join

B. An inner join

12 002-8 CH 09 3/1/99 8:04 AM Page 439

440 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

C. An equi-join

D. A right join

19. The SQL statement

SELECT * FROM customers LEFT JOIN orders
ON customers.custid = orders.custid

will:

A. Display all customers, regardless of whether
they have any orders.

B. Display all orders, regardless of whether they
have any customers.

C. Display all orders and all customers, regardless
of whether they have matching records in the
other table.

D. Display only orders and customers that have
matching records in the other table.

20. An optimistic locking strategy does what?

A. Locks data when the cursor moves to that
data

B. Locks data when the user begins to edit

C. Locks data when the Update method is called

D. Locks data when a second user attempts to
move the cursor to that data

21. What is VB ADO’s default locking strategy?

A. adLockReadOnly

B. adLockPessimistic

C. adLockOptimistic

D. adLockBatchOptimistic

Answers to Review Questions
1. Stored procedures take up fewer workstations

resources than inline SQL statements, provide
persistent data-manipulation models, help to
encapsulate business rules, and perform faster. See
“Using Stored Procedures.”

2. The SELECT keyword begins a SQL statement to
retrieve records. See “Writing SQL Statements
that Retrieve and Modify Data.”

3. The two cursor locations are client side and
server side. See “Using Cursor Locations.”

4. The most resource-efficient combination of cur-
sor type and cursor locking strategy is the so-
called firehose cursor, which is a Forward-Only,
Read-Only cursor. See “Choosing Cursor
Options.”

5. A nested transaction is one that occurs com-
pletely within another transaction. See
“Managing Database Transactions.”

6. A SQL statement to display matching records
between a table named Customer and a table
named Orders might read as follows:

SELECT * FROM Orders
INNER JOIN Customers
ON Orders.CustID = Customer.CustID

See “Writing SQL Statements that Use Joins to
Combine Data from Multiple Tables.”

7. Pessimistic locking strategies typically lock a
record early on in the retrieve-edit-save cycle;
optimistic locking strategies wait until the last
possible moment to lock the record (the moment
the record’s changes are saved). See “Using
Locking Strategies to Ensure Data Integrity.”

12 002-8 CH 09 3/1/99 8:04 AM Page 440

Chapter 9 CREATING DATA SERVICES: PART I I 441

A P P LY YO U R K N O W L E D G E

8. You can use the ADO Command’s Prepare property
to implement the Prepare/Execute model. See
“Accessing Data With the Prepare/Execute
Model.”

9. The Execute Direct data-access model would be
most appropriate in situations where you want to
run a query just once that will not be run again.
See “How to Choose a Data-Access Model.”

Answers to Exam Questions
1. A, B. The Execute Direct data-manipulation

model is appropriate when you need to perform
one-time-only operations on the data or you
need to execute queries typed by users. The
Prepare/Execute model would be more appropri-
ate when you need to execute the same dynamic
query several times during a single session of
your application, and the Stored Procedures
model would be more appropriate when you
need to execute the same query over many ses-
sions and from many different workstations. For
more information, see the section titled “How to
Choose a Data-Access Model.”

2. A, B, C, D. You can implement the Execute
Direct model with an argument to the Connection
object’s Execute method, an argument to the
Recordset object’s Open method, the Command
object’s CommandText property, or an argument to
the Command object’s Execute method. For more
information, see the section titled “Accessing Data
With the Execute Direct Model.”

3. C. The Prepare/Execute data manipulation model
is appropriate when you need to execute the same
dynamic query several times during a single ses-
sion of your application. The Execute Direct

would be more appropriate in the first two cases,
because it might not be repeated (the Execute
Direct model is more efficient for a single execu-
tion, but Prepare/Execute is more efficient for
subsequent executions after the first one). The
Stored Procedures model is more appropriate
when you need to execute the same query over
many sessions and from many different worksta-
tions. For more information, see the sections titled
“Accessing Data with the Prepare/Execute Model”
and “How to Choose a Data-Access Model.”

4. C, D. You can implement the Prepare/Execute
model only with a Command object, because you
prepare the data statement by setting the Command
object’s Prepared property to True. For more
information, see the section titled “Accessing
Data With the Prepare/Execute Model.”

5. D. The Stored Procedures data-manipulation
model is appropriate when you need to execute
the same query over many sessions and from
many different workstations. See the explanations
for answers 5 and 7. For more information, see
the section titled “Accessing Data with the Stored
Procedures Model” and “How to Choose a Data-
Access Model.”

6. A, B, C, D. You can implement the Stored
Procedures model with an argument to the
Connection object’s Execute method, an argument
to the Recordset object’s Open method, the Command
object’s CommandText property, or an argument to
the Command object’s Execute method. For more
information, see the section titled “Accessing Data
With the Stored Procedures Model.”

7. C. The following SQL Server statement will cor-
rectly create a Stored Procedure with two parame-
ters and a return value:

12 002-8 CH 09 3/1/99 8:04 AM Page 441

442 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

CREATE PROCEDURE Find_Result AS
Int @MyParm1 Output,
Int @MyParm2

@MyParm1 = Select LastName from Employee
➥Where

EmployeeID = @MyParm2
If ISNULL @MyParm1

Return 0
Else

Return 1
GO

The problem with answer A is that it incorrectly
declares the parameters after the AS keyword.
Answer B incorrectly uses the stored procedure’s
name to set the return value. Answer D has both
A’s and B’s problems. For more information, see
the section titled “Creating Stored Procedures.”

8. C. After you have executed a SQL Server stored
procedure that implements a return value, you
can check the value that the stored procedure
returned by checking the value of element 0 of
the Parameters collection. Answers A and D are
incorrect, because a stored procedure’s return
value is not implemented as an Output parameter.
Answer B is incorrect because it is the first ele-
ment of the Parameters collection, not the last,
that holds the return value. For more informa-
tion, see the section titled “Using the Parameters
Collection to Manipulate and Evaluate
Parameters for Stored Procedures.”

9. D. A SQL Server stored procedure designed to
return records to a VB app using ADO doesn’t
necessarily have any parameters. For instance, it
could be a simple SELECT statement returning all
rows in a table. The situations described by the
other three options (at least one output parame-
ter, at least one input parameter, implement a
return value) are all possibilities for such a stored
procedure, but none of them are necessary.

For more information, see the section titled
“Using Stored Procedures.”

10. A, C, D. A client-side cursor can be better than a
server-side cursor for smaller rowsets, can be
more scalable than a server-side cursor as users are
added to the system, and is the only option for
persistent Recordset objects. Answer B is incor-
rect, because a server-side cursor provides better
visibility of other users’ changes. For more infor-
mation, see the sections titled “Client-Side
Cursors,” “Server-Side Cursors,” and “Choosing
Cursor Options.”

11. A, B, C. A server-side cursor does not support the
AbsolutePosition, Bookmark, and RecordCount
properties of the Recordset. For more information,
see the section titled “Server-Side Cursors.”

12. C, D. The Static cursor type doesn’t make other
users’ updates visible, and it doesn’t make other
users’ deletions or inserts visible. Answers A and
B are wrong, however, because a Static cursor
allows user updates on server data. For more
information, see the section titled “Static
Cursors.”

13. B, C, D. A Keyset cursor gives visibility of other
users’ edits to existing records; allows movement
in any direction through the Recordset; and
allows the user to update, add, and delete records
in the underlying database. However, a Keyset
cursor does not give visibility of other users’ addi-
tions or deletions of records. Only a Dynamic cur-
sor does this. For more information, see the
section titled “Keyset Cursors” and “Dynamic
Cursors.”

14. C. Calling a rollback on a transaction will cancel
all transactions nested within the current transac-
tion. For more information, see the section titled
“Managing Database Transactions.”

12 002-8 CH 09 3/1/99 8:04 AM Page 442

Chapter 9 CREATING DATA SERVICES: PART I I 443

A P P LY YO U R K N O W L E D G E

15. C. A transaction will be committed when there is
an update without an explicitly defined transac-
tion. In the cases of the other answers, a rollback
will occur. For more information, see the section
titled “Managing Database Transactions.”

16. C. SQL statement to delete all records from the
employees table would read:

DELETE FROM employees

For more information, see the section titled
“DELETE Statements in SQL.”

17. D. A SQL statement to insert a new record
might read as follows:

INSERT INTO employees
(LastName, FirstName)
VALUES (“Romero”, “Jose Antonio”)

For more information, see the section titled
“INSERT Statements in SQL.”

18. B, C. A SQL statement that uses the JOIN clause
to match records from two tables, showing all
records from one of the tables regardless of
whether they have matches in the other table
might be called an equi-join. An outer join
(answer A) shows all records from one of the two
tables, and only matching records from the other.
A right join (answer D) is an outer join that

shows all records from the second named table,
and only matching records from the first named
table. For more information, see the section titled
“Using JOIN Clauses to Connect Tables.”

19. A. The SQL statement

SELECT * FROM customers LEFT JOIN orders
ON customers.custid = orders.custid

will display all customers, regardless of whether
they have any orders. For more information, see
the section titled “Using JOIN Clauses to Connect
Tables.”

20. C. An optimistic locking strategy locks data when
the Update method is called. Answers A and B
describe two possible pessimistic locking strate-
gies, and answer D is not a valid locking strategy.
For more information, see the section titled
“Using Locking Strategies to Ensure Data
Integrity.”

21. A. VB ADO’s default locking strategy is
adLockReadOnly. For more information, see the
section titled “Using Locking Strategies to Ensure
Data Integrity.”

12 002-8 CH 09 3/1/99 8:04 AM Page 443

12 002-8 CH 09 3/1/99 8:04 AM Page 444

OBJECT IVE

10C H A P T E R

Instantiating and
Invoking a COM

Component

This chapter helps you prepare for the exam by cover-
ing the following objective:

Instantiate and invoke a COM component
(70-175 and 70-176).

• Create a VB application that uses a COM
component.

• Create a VB application that handles events
from a COM component.

. If you’ve used earlier versions of VB or other
Windows programming environments, you are prob-
ably already familiar with COM components under
other names, such as OLE servers (VB4 and earlier)
or ActiveX servers (VB5). A COM component has
the following characteristics:

• It provides one or more object classes that
Windows programmers can use to build
applications.

• It follows the COM (Component Object
Model) specification for implementing objects
in a computing environment and for commu-
nications between those objects. Microsoft
implements the COM specification in its
ActiveX standard. In most situations in VB,
you will hear the terms COM and ActiveX
used loosely to mean the same thing (though
this is not strictly true).

. This chapter discusses how VB programmers can
write VB programs that use existing COM compo-
nents available in the target computing environment.

. In addition, some COM components expose events
(just as built-in VB controls and other objects expose
events). As the second subobjective listed above
implies, we will also discuss how to program the
events of such components.

13 002-8 CH 10 3/1/99 8:05 AM Page 445

OBJECT IVE OUTL INE

. You also need to understand what this chapter
doesn’t cover about COM. Two objectives on the
certification exam related to the one covered here
include creating callback procedures for asynchro-
nous COM component processing (see Chapter 12,
“Creating a COM Component that Implements
Business Rules or Logic”, for coverage of this objec-
tive) and debugging VB code that uses COM
objects (see Chapter 19, “Implementing Project
Groups to Support the Development and
Debugging Process”).

. VB programmers can also create their own COM
components for use in other applications. This is an
increasingly important aspect of modern Windows
programming, and the certification exam covers
COM component creation in great detail. We dis-
cuss the creation of COM components in Chapter
12, Chapter 13, “Creating ActiveX Controls”, and
Chapter 14, “Creating an Active Document.”

COM, Automation, and ActiveX 449

Creating a Visual Basic Client Application
that Uses a COM Component 451

Setting a Reference to a COM
Component 452

Using the Object Browser to Find Out
About a COM Component’s Object
Model 453

Using the New Keyword to Declare and
Instantiate a Class Object from a COM
Component 455

Late and Early Binding of Object
Variables 456

Using the CreateObject and GetObject
Functions to Instantiate Objects 458

Using a Component Server’s Object
Model 460

Manipulating the Component’s Methods
and Properties 461

Releasing an Instance of an Object 463

Detecting Whether a Variable Is
Instantiated 463

Handling Events From a COM
Component 463

Chapter Summary 467

13 002-8 CH 10 3/1/99 8:05 AM Page 446

STUDY STRATEGIES

. Make sure that your computer has at least
one major COM component application
installed on it so you can actually do your
own COM component programming. This
would include any of the Microsoft Office
applications, especially either Microsoft Word
or Microsoft Excel (since the VB certification
exams have traditionally concentrated on
examples from these two applications). This
chapter uses examples with Excel.

. Become at least slightly familiar with the
component’s object model by using the
Object Browser and the object model’s docu-
mentation (usually available from inside the
Object Browser by pressing the F1 key).

. Experiment on your own using VB to program
the component’s object model, as discussed
in this chapter.

. Make sure you know the difference between
use of the GetObject and CreateObject func-
tions. Pay special attention to GetObject since
its parameters can be tricky (you should learn
the rules for their use by heart). GetObject
can cause runtime errors if not used properly.

. Know the different strategies for declaring
and instantiating COM components, including
the difference between early and late binding,
the use of the As New keyword, and the
CreateObject and GetObject functions.

. Experiment with programming a COM object’s
events, and in particular, make sure you know
by heart the syntax for using the WithEvents
keyword in object declarations.

13 002-8 CH 10 3/1/99 8:05 AM Page 447

448 Par t I VISUAL BASIC 6 EXAM CONCEPTS

INTRODUCTION

COM Automation lets you use functionality from a COM compo-
nent (which may be a standalone application, an ActiveX DLL
library, or a module inside an application) using objects.

Most Microsoft products and commercial vendors’ applications pro-
vide a COM interface to the services that applications provide.
Applications that provide services via a COM interface are called
COM components. The client applications that use COM compo-
nents are called COM clients. There are two basic types of COM
clients. One type of client is the ActiveX Document container. This
type of client application is used to host ActiveX Documents. The
other type of COM client, and the type that we will discuss in this
chapter, communicates with COM components through automation.
Chapter 12, “Creating a COM Component that Implements Business
Rules or Logic,” provides more detail on creating COM components.

Automation enables you to script commands to applications.
Therefore, your client applications can use a COM component that
has exposed its objects to the outside world. This chapter discusses
how to use COM components in a VB6 application.

This chapter covers the following topics:

á Understanding the meaning of COM and the ActiveX standard.

á Using GetObject and CreateObject to instantiate COM
component object variables that contain references to COM
components.

á Understanding and using early and late binding for object
variables that are instances of COM components.

á Using automation to handle a COM component’s methods
and properties.

á Using automation to handle a COM component’s events in a
VB program.

á Debugging VB code that uses objects from a COM compo-
nent.

á Releasing an instance of a COM component from memory.

á Using the Object Browser to get and interpret information
about the objects made available by a COM component.

13 002-8 CH 10 3/1/99 8:05 AM Page 448

Chapter 10 INSTANTIATING AND INVOKING A COM COMPONENT 449

COM, AUTOMATION, AND ACTIVEX
The term ActiveX describes a set of services provided as part of the
Windows operating system. The services provided with ActiveX are
based on a set of services provided with the Component Object
Model (COM), summarized as follows:

á Object Management

á Object Persistence

á Structured Storage

á Data Transfer

á Naming and Binding Services

COM provides Object Management a services by using reference
counting. With reference counting, COM enables developers to con-
trol when object references and their objects are released from mem-
ory. In Visual Basic, the management of object references is provided
by the Visual Basic runtime engine. In addition COM provides
Object Persistence services that allow objects to be stored in a file. This
is particularly important when you wish to extract an application-
specific object from a document file.

When objects are stored in files, they are stored using the Structured
Storage services provided in COM. With Structured Storage, you
can store data in a hierarchical format within a file very much as files
are stored in directories and sub-directories. Structured Storage
allows applications to read and save items to files without restructur-
ing the layout of the file.

COM provides Data Transfer a services that enable you to transfer
and share data between applications. With Naming and Binding ser-
vices (Monikers), applications can create, store, and manage objects
that provide complex operations such as asynchronous downloading
of files. These services are usually not directly accessed by the Visual
Basic developer; however you will use these services via the objects
and functions that Visual Basic provides.

ActiveX is a Microsoft standard based on COM. In earlier versions of
VB and in other documentation before 1996, Microsoft referred to
the object linking and embedding (OLE) standard. The ActiveX stan-
dard has replaced the OLE standard. ActiveX enables the programmer
to visually link or embed objects in a program just as OLE 1.0 did.

13 002-8 CH 10 3/1/99 8:05 AM Page 449

450 Par t I VISUAL BASIC 6 EXAM CONCEPTS

ActiveX also gives the programmer all the possibilities provided by
OLE 2.0 for application automation, and ActiveX reaches beyond
OLE to provide a general standard for component development and
manipulation under Windows and across the Internet.

Although you will now usually hear and read the term ActiveX, be
prepared for slips of the tongue and pen (even perhaps in the
Certification Exam, but hopefully not in this book!) that refer to
OLE. Some older features of ActiveX, such as the OLE container
control, actually still use the term OLE in their names.

COM provides the core services upon which ActiveX technology is
based. The ActiveX technology provides the following services:

á Active Documents

á ActiveX Controls

á ActiveX Servers

á ActiveX Automation

ActiveX Documents enable developers to create applications that can
host documents in their native format inside other ActiveX
Documents. Chapter 14, “Creating an Active Document,” provides
more detail on ActiveX Documents.

Developers use ActiveX Controls to extend and enhance the services
that an application provides. If you need word processing capabilities
in your application, for example, you can purchase an ActiveX
Control that provides the desired functionality. In addition, you can
write your own controls that encapsulate whatever functions you
need. Chapter 13, “Creating ActiveX Controls,” provides more detail
on ActiveX Controls.

ActiveX Servers are applications in the form of EXE or DLL files
that expose a COM-compliant object model for use by programmers
creating other applications. Chapter 12, “Creating a COM
Component that Implements Business Rules or Logic,” discusses
how to create ActiveX Servers.

As a programmer, one of the most exciting things you can do with
existing COM components is automation—the ability to declare an
object within your application that uses the functionality of a differ-
ent application (a COM component). This chapter focuses on how
to use automation within your VB application to exploit the func-
tionality of COM components.

13 002-8 CH 10 3/1/99 8:05 AM Page 450

Chapter 10 INSTANTIATING AND INVOKING A COM COMPONENT 451

A programmer might write a component specifically to be used in
other applications (an ActiveX library or ActiveX control), but many
standalone component applications can also expose objects.

Some examples of important standalone applications that also provide
COM components would be the current versions of Microsoft
Internet Explorer, Microsoft Excel, Microsoft Access, and Microsoft
Word for Windows. In fact, every component of Microsoft’s Office 97
Suite and later Office Suites is supposed to be a COM component.

A COM component contains an object structure that is visible to
client applications. Objects belonging to the component but avail-
able outside the component are known as exposed objects. In order
for an object to be an exposed object, it must be listed in the
Windows Registry.

Exposed objects have their own methods and properties that a COM
client, such as a VB application, can manipulate with standard
object syntax.

CREATING A VISUAL BASIC CLIENT
APPLICATION THAT USES A COM
COMPONENT

Here are the main steps for using a COM component’s exposed
objects in your VB application:

1. Set a reference to the server in your application or know the
server’s name and its classnames.

2. Be familiar with the server’s object members.

3. Declare an instance of the server object or objects that you
want to use.

4. Manipulate the declared objects in your code through their
members (properties, methods, and events).

5. Release the object instance from memory when your applica-
tion is done with it.

6. Provide for error handling in case the COM component’s code
generates an error.

13 002-8 CH 10 3/1/99 8:05 AM Page 451

452 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The following sections detail the steps to use a COM component’s
exposed objects.

Setting a Reference to a COM
Component
Your application must contain a reference to a component’s Object
Library before it can use the component’s object classes.

An Object Library is a collection of information about an applica-
tion’s objects. You can find this information in a .TLB (Type
Library) file, an .OLB (Object Library) file, or in an ActiveX server’s
EXE or DLL file.

To locate the COM component’s Object Library, check the compo-
nent application’s documentation to see where it stores its Object
Library.

However if the component in which you’re interested has been prop-
erly registered in the Windows Registry, you won’t ever need to
know the name or location of the Object Library. Instead, the
Windows Registry will contain information about the component in
which you’re interested. In that case, all you need to do is refer to
the Windows Registry entries for the component, as in the following
description.

In order to make a COM component’s object model available to
your application, you should execute the following steps:

S T E P B Y S T E P
10.1 Making a COM Component’s Object Model

Available to Your Application

1. Choose Project, References from the main VB menu.

2. Scroll through the Available References list until you find
the name of the COM component that you want (see
Figure 10.1). The Object Library list you see here is not a
VB-specific feature, but is generated from the Windows
Registry.

F IGU R E 10 .1
Use the References dialog box to set a refer-
ence in your project to a COM component.

13 002-8 CH 10 3/1/99 8:05 AM Page 452

Chapter 10 INSTANTIATING AND INVOKING A COM COMPONENT 453

3. Click on Browse to find and select the TLB, OLB, EXE,
OCX, or DLL file containing the server’s Object Library if
the server you need isn’t in the list (see Figure 10.2).

4. Select the desired COM component by clicking on the
check box to the left of the server name.

5. Click on OK in the References dialog box.

Using the Object Browser to Find Out
About a COM Component’s Object
Model
A COM component’s class objects have characteristics similar to VB
objects. You can manipulate their members (properties, events, and
methods) as you would the members of VB controls and other objects.

You use the Object Browser to find out about a COM component’s
object model just as you would find out about the native objects
provided by VB. To see the component’s information in the Object
Browser, you must first have set a reference to the component as
described in the previous section, “Setting a Reference to a COM
Component.”

In order to use the Object Browser with a COM component, you
must execute the following steps:

S T E P B Y S T E P
10.2 Using the Object Browser with a COM

Component

1. Access the Object Browser within VB by pressing F2 or
the toolbar button (see Figure 10.3).

2. Select the COM component from the list of references in
the Projects/Servers list.

3. Select a class from the Classes/Modules list.

F IGURE 10 .2
You can browse for the file containing a compo-
nent’s Object Library if the component isn’t
listed in the Available References list of the
References dialog box.

13 002-8 CH 10 3/1/99 8:05 AM Page 453

454 Par t I VISUAL BASIC 6 EXAM CONCEPTS

4. Select a property or method from the Methods/Properties
list. Notice the brief description of the method or prop-
erty at the bottom of the Object Browser dialog to the
right of the question mark (?) icon.

5. If the component’s Object Library has a help file, you can
click the question mark (?) icon on the Object Browser’s
Toolbar for more information about the selected method
or property (see Figure 10.4).

F IGU R E 10 .3.
The Object Browser can give you detailed infor-
mation about a COM component’s objects and
their methods and properties.

F IGU R E 10 .4.
Clicking the ? icon in the Object Browser’s
Toolbar brings up an extended help screen for
the selected item when you’re browsing infor-
mation about a COM component.

13 002-8 CH 10 3/1/99 8:05 AM Page 454

Chapter 10 INSTANTIATING AND INVOKING A COM COMPONENT 455

If you’re not already familiar with the Object Browser, you will soon
find it’s a powerful tool that helps you intelligently and efficiently
program with COM components.

Using the New Keyword to Declare and
Instantiate a Class Object from a COM
Component
After you’ve set a reference to a COM component in your applica-
tion, you can instantiate objects from the component’s classes in
your application.

You may declare an object variable for a component class that you
want to use. You can then use this object variable to point to an
instance of the corresponding class.

The New keyword is Microsoft’s preferred technique for instantiating
object variables from server classes. You can use the New keyword in
one of two ways, discussed in the following sections:

á Instantiate the object at the same time you declare it by using
the As New keyword.

á Declare the object and instantiate it later with set / New.

Many COM components don’t support the New keyword. Refer to
each component’s documentation to see whether it supports New.

If the component you want to use doesn’t support New, you will need
to use the CreateObject or GetObject function, as discussed in the
section of this chapter entitled “Using the CreateObject and
GetObject Functions to Instantiate Objects.”

Using As New to Instantiate an Object
Variable When You Declare It
If the component whose class you want to instantiate supports the
New keyword, all you need to do is declare a variable of appropriate
scope (usually Private or Public), and the object is ready to use in
your application. For example, if you want to use a class called
MyClass from a component application called MyComp, your variable
declaration in a General Declarations section might look like this:

Private objMyClass As New MyComp.MyClass

N
O

T
E VB Version Support for the New

Keyword Components created in
VB4, VB5, or VB6 always support the
New keyword. See Chapters 12, 13,
and 14 for a discussion of how to
create ActiveX components in VB6.

13 002-8 CH 10 3/1/99 8:05 AM Page 455

456 Par t I VISUAL BASIC 6 EXAM CONCEPTS

You could then manipulate the object’s methods and properties and
react to its events through your own application’s code.

Using New to Instantiate an Object Variable
After You Declare It
In the previous section, an object variable was instantiated at the
same time it was declared. If you wanted to manage your object
more tightly, you could wait until you actually needed to use the
variable before instantiating it.

It’s possible to declare an object variable without instantiating it and
then instantiate it as needed with a combination of the Set statement
and the New keyword, as illustrated in Listing 10.1.

LISTING 10.1

INSTANT IAT ING AN OBJECT VARIABLE WITH THE New
KEYWORD AFTER YOU HAVE DECLARED IT

‘General Declarations
Private objMyClass As MyComp.MyClass
.
.
.
‘later in your code
Set objMyClass = New Mycomp.MyClass

This second method, as illustrated in Listing 10.1, is preferred over
the method of the previous section (declaring the variable with As
New). The As New declaration requires extra runtime checking of the
variable type.

Late and Early Binding of Object
Variables
You can implement class objects with object variables by declaring
them as either generic object-type variables or variables of the spe-
cific type provided in the server’s class library. For example,

Dim objMyClass As New MyComp.MyClass

or

Dim objMyClass As MyComp.MyClass

13 002-8 CH 10 3/1/99 8:05 AM Page 456

Chapter 10 INSTANTIATING AND INVOKING A COM COMPONENT 457

and

Dim objMyClass As Object

would all be valid declarations for an object that will later point to
an instance of the MyComp component server’s class named MyClass.

The first two declarations are preferable, however, as they provide
early binding of the MyClass class in your application while the third,
more generic declaration, is an example of late binding.

Binding refers to the point at which a system recognizes references to
external objects in the compile-run cycle. For instance, you might
misspell a declared object’s property name in your code. Knowing
whether the object is early- or late-bound will tell you when the sys-
tem will detect the error.

If you’ve declared the object with early binding, the VB compiler
can check the component’s class library and catch any syntax errors
before the application fully compiles and runs.

If, however, you use the As Object declaration to provide late bind-
ing, the VB compiler won’t be able to check the component’s class
library and the compiler won’t detect any syntax errors in the use of
the object. Instead syntax errors with objects from the COM com-
ponent will cause runtime errors in your application.

For instance, the Excel component server’s most important object is
the Application object. Application has a Visible property which, as
you might expect, sets the object’s visibility to a user. Suppose you
have the following declaration in your code:

Dim objExcel As Excel.Application

or

Dim objExcel As New Excel.Application

And, later on, you have the following line:

objExcel.Visable = True

The compiler catches the misspelling of the Visible property’s name
as soon as you try to run the application during design mode or
when you try to make an executable file.

If, however, you’d declared the object with the line

Dim objExcel As Object

the compiler wouldn’t be able to check the syntax of

objExcel.Visable = True

N
O

T
E Additional Support for Early Binding

in the IDE When you write code that
uses early-bound object variables,
you’ll notice that the VB runtime envi-
ronment is able to recognize the
object model behind the variable by
offering you a drop-down list of possi-
ble members whenever you type the
variable’s name followed by a period.

N
O

T
E When to Use Late Binding You don’t

need to set a reference to a compo-
nent with the Project References dia-
log box if you’re going to use late
binding. For some components (those
without an available Object Library,
such as the versions of Microsoft
Word through version 7.0), late bind-
ing is the only option because the
application provides no Object Library
to set a reference.

13 002-8 CH 10 3/1/99 8:05 AM Page 457

458 Par t I VISUAL BASIC 6 EXAM CONCEPTS

against Excel’s class library. The error (Visible is misspelled) goes
undetected until such time as VB attempts to execute this line, at
which point the application would generate a runtime error.

You must use late binding if a component server’s class library isn’t
available to you. For instance, Microsoft Word for Windows 7.0 and
below doesn’t provide a class library for its object classes. You must,
therefore, always use the As Object syntax to declare a Word 7.0
object.

Using the CreateObject and GetObject
Functions to Instantiate Objects
Because many COM components do not yet support the As New
keyword, you will need to create and instantiate object variables for
these components’ classes with standard variable declarations and the
CreateObject or GetObject functions.

The CreateObject and GetObject functions return a reference to a
server class object. Use them with the Set keyword to assign their
return values to a previously declared class object variable:

Set objExcel = GetObject(,”Excel.Application”)

or

Set objExcel = CreateObject(“Excel.Application”)

The CreateObject function takes a single required argument, which
is the name of the class you’re instantiating. It always instantiates a
new object in your application. It also takes a second optional argu-
ment which is a string representing the share name of the server
where you can create a remote object.

GetObject
You can use GetObject to create an object from an already running
instance of a server.

GetObject takes two possible parameters. You must always specify at
least one of the two parameters:

á GetObject’s first parameter is a String giving the path and filename
of a data file associated with the server application and its class.

Only Recent Versions of Excel
Support Early Binding Early bind-
ing onlyworks with versions 7.0 and
later of Excel. If your Excel compo-
nent is a version earlier than 7.0,
you must use late binding.

W
A

R
N

IN
G

Can’t Use As New to Declare an
Object With Late Binding If you
use late binding with an As Object
declaration, you can’t use the New
keyword when you instantiate the
object variable. You must use
CreateObject or GetObject, as dis-
cussed in the following section.

W
A

R
N

IN
G

13 002-8 CH 10 3/1/99 8:05 AM Page 458

Chapter 10 INSTANTIATING AND INVOKING A COM COMPONENT 459

á GetObject’s second parameter is the same as CreateObject’s
single parameter: the name of the class you’re instantiating.

There are several rules to keep in mind when using GetObject’s
parameters:

á If you leave the first parameter completely blank (that is a sin-
gle comma before the second argument), GetObject will always
reference an existing object. If there is no existing object, a
runtime error occurs.

á If you specify a valid filename in the first parameter and the file
is of the type associated with the server application, you may
leave the second parameter blank. GetObject will open the file
with the associated server application. GetObject will use an
existing reference to the object if it exists, or it will open a new
copy of the object if none existed before in the application.

á If you specify a blank filename (“ ”) in GetObject’s first para-
meter, then you must specify the second parameter. GetObject
will then always open a new copy of the object regardless of
whether one already exists in the application.

The possible configurations of these two parameters are summarized
in Table 10.1.

TABLE 10.1

POSSIBLE COMBINATIONS OF FILENAME AND SERVER.CLASS
ARGUMENT SETTINGS FOR GETOBJECT FUNCTION

FileName Server.Class Effect

Blank Blank Not a possible combination.

Blank Server.Class Always uses an existing instance.

Runtime error if there is no existing instance.

Empty String Server.Class Always opens a new instance of the server.

FileName Blank Opens server of type associated with FileName.

Uses instance if Available otherwise opens new
instance.

FileName Server.Class file specified with a new instance of the server.

Limitations on Support for
GetObject The following
discussion of GetObject applies to
many Microsoft products and other
COM components. However, the
use of GetObject is application-
specific. In fact, some ActiveX
server applications don’t support
GetObject at all. You should refer
to the application’s documentation
to find out whether GetObject is
supported and, if so, what the
proper syntax would be for using
GetObject. If GetObject isn’t avail-
able, you must always use
CreateObject.

W
A

R
N

IN
G

13 002-8 CH 10 3/1/99 8:05 AM Page 459

460 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Comparing GetObject and CreateObject
Since several exam questions usually rely on the confusion between
GetObject and CreateObject, it is useful to emphasize the difference
between these two functions:

á CreateObject always creates a new instance of the server
object.

á GetObject can use a running instance of the server object but
can also create a new instance depending on the syntax you
use, as detailed in the following section.

Using a Component Server’s Object
Model
An object class belonging to a COM component may contain other
classes or class collections. Subclasses or collection elements might
repeat this nesting structure and could, in turn, contain other object
classes and collections.

Only objects in the topmost level of the component’s hierarchy can
be created directly with CreateObject(). The subordinate objects in
the hierarchy either already exist as subobjects of the higher objects
or must be created with methods of the higher objects.

In ActiveX terminology, the highest-level objects are said to be
Public and Creatable, whereas subobjects are Dependent or Public
but Not Creatable. That is these subobjects can be seen by client
applications, but the only way to reference them or create them is to
go through the Public objects above them in the object model hier-
archy.

For instance, one of the Excel component hierarchy’s topmost
objects is the Application object. An Application object can contain
(among other objects) a collection object called WorkBooks, which in
turn can contain individual WorkBook objects. Each WorkBook object
of the collection can in turn contain a collection of WorkSheet
objects, and each WorkSheet object can contain a Range object.

You would initialize the Application object as you’ve seen in the pre-
vious two sections:

Dim objExcel As Excel.Application
Set objExcel = CreateObject(“Excel.Application”)

13 002-8 CH 10 3/1/99 8:05 AM Page 460

Chapter 10 INSTANTIATING AND INVOKING A COM COMPONENT 461

You must always refer to the WorkBooks collection indirectly through
the Application object, adding a new WorkBook to the WorkBooks col-
lection with the Add method:

objExcel.Workbooks.Add

As an alternative, you can declare another variable to point to the
newly added element of the Workbook collection. The Excel server
contains a Workbook class. You can declare a variable of this class and
use the Set keyword to assign the declared object variable to the
results of the Add method:

Dim wb As Excel.Workbook
Set wb = objExcel.Workbooks.Add

You could add a Worksheet object to the Workbook object’s Worksheet
collection. A full example might look like Listing 10.2.

LISTING 10.2

USING THE EXCEL OBJECT MODEL TO MANIPULATE

EXCEL OBJECTS

‘General declarations section
Option Explicit
Private objExcel As Excel.Application
Private wb As Excel.Workbook
Private ws As Excel.Worksheet

Private Sub Form_Load()
Set objExcel = CreateObject(“Excel.Application”)
Set wb = objExcel.Workbooks.Add
Set ws = wb.Worksheets.Add

End Sub

You can use the Object Browser or refer to a COM component appli-
cation’s documentation to find out about its object model hierarchy,
as mentioned in the section of this chapter on the Object Browser.

Manipulating the Component’s
Methods and Properties
After you have instantiated an exposed object from a COM compo-
nent’s class in your application, you can programmatically manipu-
late it in the same way you would any other object in VB, such as a
control or a form.

13 002-8 CH 10 3/1/99 8:05 AM Page 461

462 Par t I VISUAL BASIC 6 EXAM CONCEPTS

You must, of course, know how to use the object’s methods and
properties. If the component application has a class/type library, the
Object Browser gives you a list and a brief description of each
method or property and possibly more extended documentation if
the component developer has provided a Help file along with the
class library. You may also want to refer to any documentation on
the component’s classes as published by the component application’s
vendor.

The Excel component’s various classes, for example, have methods
and properties that enable you to manipulate an Excel application
and every aspect of an Excel Spreadsheet or Chart. Assuming that
objExcel is an instance of Excel.Application (see the previous three
sections in this chapter), the following lines of code would terminate
the running instance of Excel without prompting the user to save
any changes:

Dim wb As Excel.Workbook
For Each wb In objExcel.Workbooks

‘consider workbook as saved - don’t_prompt
wb.Saved = True

Next wb
‘End Excel application
objExcel.Quit

The Excel component’s Worksheet class contains a subclass known
as the Range object. The Range object uses a string argument that
defines the range of cells to be manipulated. Range, in turn, has a
Value property that you can either read or write. The effect of setting
or getting the Range object’s Value property is to read or set the cell
value specified in the argument to the Range object. The following
line of code assumes that the current VB form contains a TextBox
control named txtCellValue and that there’s a Worksheet object vari-
able named ws:

txtCellValue.Text = ws.Range(“A1”).Value

This line of code would assign the contents of cell A1 to the TextBox
control.

The following line of code would reverse the process, setting the
contents of cell A1 to be the same as the contents of the TextBox
control:

ws.Range(“A1”).Value = txtCellValue.Text

13 002-8 CH 10 3/1/99 8:05 AM Page 462

Chapter 10 INSTANTIATING AND INVOKING A COM COMPONENT 463

Releasing an Instance of an Object
It is a good practice to free the memory taken up by an object vari-
able after you no longer need it. You can release the object by setting
it to Nothing, as in the line

Set xl = Nothing

where xl is the name of the COM component’s object variable.

Detecting Whether a Variable Is
Instantiated
If an object variable holds a value of Nothing, then the variable
doesn’t currently hold an instance of any object. You should check
an object variable to see if it holds Nothing before attempting to
refer to it in your code with a line such as

If xl Is Nothing Then . . .

Although it might seem contorted, you will often see syntax such as
the following in applications that use COM component objects:

If Not xl Is Nothing Then
‘Do some stuff with the xl object

End If

HANDLING EVENTS FROM A COM
COMPONENT

In order to handle the events of a COM component object instance,
you must declare it using the WithEvents keyword. For example, you
might declare an instance of an Access Report in a form’s General
Declarations with the line:

Private WithEvents RPT As Access.Report

In the Code Window for the form, you’d see RPT listed as one of
the form’s objects (see Figure 10.5). If you chose the RPT object
from the left side drop-down list, then you’d see the list of proce-
dures for the events supported by this object (see Figure 10.6).

13 002-8 CH 10 3/1/99 8:05 AM Page 463

464 Par t I VISUAL BASIC 6 EXAM CONCEPTS

There are several important limitations on programming using the
WithEvents keyword:

á You can’t use WithEvents keyword in a Standard Module (a
.BAS file).

á You can only declare an Object variable using WithEvents in
the General section of a module.

F IGU R E 10 .5.
The object you declared using WithEvents is
visible in the list of objects for the module
where you declared it.

F IGU R E 10 .6.
The object’s event procedures are available
to you when you declare the object using
WithEvents.

13 002-8 CH 10 3/1/99 8:05 AM Page 464

Chapter 10 INSTANTIATING AND INVOKING A COM COMPONENT 465

á You can’t use the As New keyword in a declaration that uses
WithEvents.

á Not all ActiveX component applications support the
WithEvents keyword. In particular, only components whose
object classes are registered in the Windows Registry will sup-
port WithEvents and then not even all of those components.
Obviously, you can’t handle events for those components that
don’t support WithEvents.

For a more detailed discussion of how to program with COM com-
ponents’ events, see the section “Handling a Class Event” in Chapter
12, “Creating a COM Component that Implements Business Rules
or Logic.”

NEEDS
A loan department in a large bank has a complex
set of operations it uses to process and track
loans. Management would like to automate them
more fully but wants to keep the processes
flexible.

Existing processes are semi-automated with fairly
standardized templates and management reports
in Microsoft Office Suite applications, such as
Excel and Word, and data stored in a SQL Server
database.

Management would like to keep the flexibility of
the Microsoft Office suite as a way of maintaining
and enhancing their templates and reports, but
training users to maintain them and other users
to use them is becoming more difficult and costly
as the system evolves.

CASE STUDY: A LOAN PROCESSING APP THAT USES EXCEL

AND WORD

R EQ U IR EMEN TS
From the scenario, we could identify the following
requirements:

• Prevent accidental changes to template doc-
uments in Word and Excel to improve system
integrity. Users should need as little aware-
ness as possible of the management of
these documents.

• Allow users to enter only standard, format-
ted information into Excel and Word docu-
ments. This would improve efficiency and
data integrity.

• Provide an automated interface between the
standard Excel/Word documents and the
database to improve data integrity and sys-
tem efficiency.

continues

13 002-8 CH 10 3/1/99 8:05 AM Page 465

466 Par t I VISUAL BASIC 6 EXAM CONCEPTS

CASE STUDY: A LOAN PROCESSING APP THAT USES EXCEL

AND WORD

• Create a VB user interface for each of the
main functions to be automated.

• Use the respective COM component’s object
model to make a writeable copy of the tem-
plate for the user, without user intervention,
when a particular function calls for the use
of one of the Excel or Word document tem-
plates.

• Gather input from the user in the VB inter-
face (thus providing controlled input) and
perform any necessary saving, routing, or
printing in the VB application, once again
using automation on the COM component.

• Automatically generate documents, such
as routine client correspondence and loan
papers, from the existing data and provide
an automated interface to the user for
doing this.

DES IGN SPEC I F ICAT IONS
We might provide a solution based on automation
of Word and Excel COM components coupled with
SQL Server data access.

An outline of the solution could read as follows:

• Create a VB application with Excel and Word
COM components.

continued

13 002-8 CH 10 3/1/99 8:05 AM Page 466

Chapter 10 INSTANTIATING AND INVOKING A COM COMPONENT 467

This chapter has covered the following key topics that you need to
understand in order to master the certification exam objectives:

á Main steps to create a VB application that uses a COM
component

á Setting a reference to a COM component

á Using the Object Browser to find out about a COM
component

á Using the New keyword to declare and instantiate a COM
component’s class object

á Using As New to instantiate an object variable when you
declare it

á Using New to instantiate an object variable after you declare it

á Late and early binding of object variables

á Using CreateObject and GetObject

á Using a COM component’s object model

á Manipulating a COM component’s methods and properties

á Releasing a COM object’s instance and detecting whether an
object variable is instantiated

á Using the WithEvents keyword

á Programming the events of COM components

CHAPTER SUMMARY

KEY TERMS
• ActiveX

• Automation

• Class

• Component Object Model (COM)

• COM Client

• COM Component

• Early Binding

• Instance

• Instantiate

• Late Binding

• Object Browser

• Object Model

• Object Linking an Embedding (OLE)

• Reference Counting

13 002-8 CH 10 3/1/99 8:05 AM Page 467

468 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Exercises

10.1 Defining and Initializing Object
Variables

In this exercise, you look at how to define object vari-
ables and assign them to objects by using the New key-
word.

Estimated Time: 10 minutes

You will create the following types of object variables:

• Define a variable called objMyObject of the type
Object.

• Use the New Keyword to create a new Form Object
and assign it to the object variable.

• Use the Set Keyword to create a new Form Object
and assign it to the object variable.

• Add and remove the Data Access Object (DAO)
Library reference from your project.

To perform these tasks, follow these steps:

1. Dim objVar as object. (The statement defines the
variable that will hold the object reference.)

2. Dim objVar as New Form1. (This defines the
variable and assigns a new object instance to the
variable.)

3. Set objVar = New Form1. (Use the Set keyword
to assign an instance of the object to the variable.)

4. Add the Data Access Object (DAO) Library ref-
erence to your project. (Choose the
Project/References menu item. This menu opens
the References dialog box, which enables you to
add and remove the Object Library reference.)

10.2 Late Bound Variables Versus Early
Bound Variables

In this exercise, you look at using an early and a late
bound object variable.

Estimated Time: 20 minutes

The tasks to be performed are as follows:

• Use early binding to create and use Excel
Application Objects.

• Use late binding to create and use Excel
Application Objects.

To use early binding in your applications, a reference to
the Object Library of the desired application is needed
in your Visual Basic project. The Object Library to be
used in this exercise is Microsoft Excel 8.0 Object
Library. The same exercise can be performed with other
Object Libraries using different Objects. To perform
the first task, follow these steps:

1. Create a new Visual Basic application.

2. Add the Microsoft Excel 8.0 Object Library refer-
ence to the project.

3. Add a button (btn1) to the default form (called
Form1). In the form, add the Click event code
for the button for creating an early bound object
as follows (note that the variable objEarly is
defined as a module level variable):

Dim objEarly As Application
Private Sub btn1_Click()
‘Create a new Application Object
Set objEarly = New Application

‘Set the Object to be Visible
objEarly.Visible = True

‘Create A new Workbook
objEarly.Workbooks.Add

13 002-8 CH 10 3/1/99 8:05 AM Page 468

Chapter 10 INSTANTIATING AND INVOKING A COM COMPONENT 469

A P P LY YO U R K N O W L E D G E

‘Send some data
objEarly.ActiveCell = “Hello World”
End Sub

With the early binding approach, Visual Basic knows
exactly what methods and properties an object sup-
ports because the object is defined as an Application
object. With late binding, Visual Basic does not know
what methods and properties an object supports; this
information must be resolved using a slowing process.
The btn2 Click event demonstrates the use of late
binding in creating objects. The code for this event is
as follows:

‘General Declarations section
Private objLate As Object

Private Sub btn2_Click()

‘Create a new Application Object
Set objLate = New Application

‘Show the Excel Window
objLate.Visible = True

‘Create A new Workbook
objLate.Workbooks.Add

‘Set Cell value
objLate.ActiveCell = “Hello World 2”

End Sub

Notice that with late binding, the object is defined as
an Object data type. This allows the variable to have a
pointer to any object type. With early binding, how-
ever, the object variable is defined as an Application
object.

Therefore, the only types of objects that the object
variable can refer to are Application objects. The use
of early binding allows Visual Basic to perform data
type, parameter, and syntax checking on methods and
properties at compile time. With late binding, Visual
Basic does not provide any syntax checking on meth-
ods and properties until runtime.

10.3 Creating Objects with the
CreateObject Function

In this exercise, you look at creating objects with the
CreateObject function.

Estimated Time: 15 minutes

The tasks to be performed are as follows:

• Use the CreateObject function to create early
bound objects.

• Use the CreateObject function to create late
bound objects.

The key to creating early or late bound objects is with
the definition of the object variable. To create early
bound objects with the CreateObject function, follow
these steps:

1. Add an Object Library reference to the desired
library reference using the References dialog box.

2. Define an object variable of the desired type, such
as Application, Workbook, and so on. For example:

Dim objVar as Excel.Application

N
O

T
E Object Types and Object Libraries

Keep in mind that the object types will
vary based on the type of object
library you are using.

3. Use the CreateObject statement to create and
return the object reference. For example:

Set objVar = CreateObject
➥(“Excel.Application”)

To create a late bound object reference, no Object
Library reference is needed. The late bound object ref-
erence can be created by following these steps:

13 002-8 CH 10 3/1/99 8:05 AM Page 469

470 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

1. Define the object variable as Object variable type.
This can be done as follows:

Dim objVar as Object

2. Use the CreateObject statement to create and
return the object reference as follows:

Set objVar = CreateObject(“Excel.Application”)

10.4 Obtaining Object References with the
GetObject Function

In this exercise, you look at obtaining object references
by using the GetObject function.

Estimated Time: 20 minutes

The tasks to be completed are as follows:

• Obtain an Excel 8.0 Workbook object reference by
using the GetObject function using the file
Ex0904.xls.

• Create an Excel ChartObject reference.

• Copy the chart to the Clipboard and paste it to
an image control.

Figure 10.7 shows what happens when the application
is executed.

To add an Object Library reference to your project, fol-
low these steps:

1. Select the Project/References menu. This will pre-
sent the Object Library References dialog box. At
this point you can add or remove Object Library
references.

2. To open a file with the GetObject function, the
following code can be used (assume that the vari-
able has already been defined):

Set objVar = GetObject(App.Path & “\Ex1104.xls”)

3. After the object is returned, a ChartObject can be
obtained from it by using the ChartObjects col-
lection.

4. The Chart’s graphic information can be copied
using the Copy method of the ChartObject.

The code that creates the object variable and copies the
ChartObject’s image to the image control is as follows:

Private Sub btn3_Click()
Dim objWkb As Workbook
Dim objWkSheet As Worksheet
Dim objChart As ChartObject

‘Get the XL Workbook from the file
Set objWkb = GetObject(App.Path & “\Ex0904.xls”)

‘Get The first worksheet object
Set objWkSheet = objWkb.Worksheets(1)

‘Get the first chart object
Set objChart = objWkSheet.ChartObjects(1)

‘Check if Chart Object is valid
If objChart Is Nothing Then

MsgBox “No ActiveChart Found”
Else

‘Copy Image to ClipBoard
objChart.Copy

‘Past the Image Control
img.Picture = Clipboard.GetData()

End If

End Sub
F IGU R E 10 .7
The sample application solution.

13 002-8 CH 10 3/1/99 8:05 AM Page 470

Chapter 10 INSTANTIATING AND INVOKING A COM COMPONENT 471

A P P LY YO U R K N O W L E D G E

10.5 Using WithEvents

In this exercise, you demonstrate the use of WithEvents
in a COM component’s object declaration.

Estimated time: 30 minutes

The tasks to be completed are as follows:

1. Create a new EXE project with a standard form
and add CommandButtons, Labels, and TextBoxes
to the form, as described in Table 10.2 and illus-
trated in Figure 10.9.

TABLE 10.2

PROPERTIES OF CONTROLS TO PLACE ON

FORM FOR EXERCISE 10.5

Control Property Value

Label Name lblSourceCell

Caption Source Cell

Label Name lblResultCell

Caption Result Cell

TextBox Name txtSourceCell

Text 0

TextBox Name txtResultCell

Text <BLANK>

CommandButton Name cmdInitExcel

Caption Initialize Excel

CommandButton Name cmdRecalcResult

Caption Recalc Result

Enabled False

2. Set a reference to the Excel library as in the pre-
vious exercise.

3. Include the following code in the event proce-
dures of the project’s objects:

Option Explicit

Dim WithEvents xl As Excel.Application

Private Sub CmdInitExcel_Click()
Dim Wb As Excel.Workbook
Set Wb = xl.Workbooks.Add
xl.Range(“A1”).Value = 0
xl.Range(“A2”).Formula = “=A1/2”
cmdRecalcResult.Enabled = True
cmdInitExcel.Enabled = False

End Sub

Private Sub cmdRecalcResult_Click()
xl.Range(“A1”).Value = txtNewValue.Text

End Sub

Private Sub Form_Load()
Set xl = New Excel.Application

End Sub

Private Sub Form_Unload(Cancel As Integer)
Dim Wb As Excel.Workbook
For Each Wb In xl.Workbooks

Wb.Saved = True
Next Wb
xl.Quit
Set xl = Nothing

End Sub

4. In a Code Window, activate the drop-down list
for Objects and note that the xl object appears in
the list. Then select the object.

5. In the drop-down list for events, choose the
SheetCalculate event procedure, as in Figure
10.8, and enter the following code:

Private Sub xl_SheetCalculate(ByVal Sh As
➥Object)

MsgBox Sh.Name & “ recalculated”
txtResult.Text = xl.Range(“A2”).Value

End Sub

6. Now run the application and click the command
button to initialize Excel. This button becomes
disabled, and the second CommandButton becomes
enabled.

13 002-8 CH 10 3/1/99 8:05 AM Page 471

472 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

7. Every time you change the contents of the source
cell’s TextBox and click the Recalc button, you will
also see the message box, as shown in Figure 10.9,
followed by a change to the resulting TextBox.

Review Questions
1. What Visual Basic statement can be used to

define an Excel.Application object using the Dim
statement?

2. Write the statement(s) that will define an object
variable and return a valid object reference of
type Excel.Application.

3. Assume that you have a COM component with
an application name of MyApp and an object called
Spreadsheet. Write the statement that will create
an instance of the Spreadsheet object.

4. If the following code is executed and the compo-
nent is not running in memory, what occurs?

Set objInfo = GetObject(,”Word.Application”)

5. Assume that you have a COM component with
an application name of MyApp and an object called
Spreadsheet. Write the declaration for a
Spreadsheet object that will allow you to pro-
gram with the object’s events.

Exam Questions
1. Which types of files can contain COM compo-

nents?

A. (.EXE) Executables

B. (.FRM) Visual Basic files

C. (.DLL) Dynamic Linked Libraries

D. (.BAT) Bat files

2. Which of the following statements will instantiate
a new WordDoc object?

A. Dim objMyVar As WordDoc

B. Dim objMyVar As New WordDoc

F IGU R E 10 .8▲
The New object and its event procedures.

F IGU R E 10 .9▲
The form for Exercise 10.5.

13 002-8 CH 10 3/1/99 8:06 AM Page 472

Chapter 10 INSTANTIATING AND INVOKING A COM COMPONENT 473

A P P LY YO U R K N O W L E D G E

C. Dim objMyVar As Object
Set objMyVar = New WordDoc

D. Dim objMyVar As Object
Set objMyVar = GetObject(“App.WordDoc”)

E. All these statements

3. The reference to Object Libraries provides Visual
Basic with which of the following information?

A. It is not used.

B. A list of objects.

C. Object types supported by the ActiveX Server
and their properties and methods.

D. Functions for creating object libraries.

4. Which of the following statements will define an
object variable and return a valid object reference
of type Application?

A. Dim x as Object
Set x = New Application

B. Dim x as new Application

C. Dim x as Application

D. Dim X as Object
Let X = new Application

5. Assume that you have a COM component with
an application name of MyApp and an object
called Spreadsheet. Which one of the following
statements enables you to access that object?

A. Dim objX as new
CreateObject(“SpreadSheet”)

B. Dim objX as Object
Set objX = CreateObject(“MyApp”)

C. Dim objX as Object
Set objX =

CreateObject(“MyApp.SpreadSheet”)

D. Dim objX as Object
Set objX = CreateObject(“SpreadSheet”)

E. This cannot be done because the object refer-
ence library is not added to the project.

6. If the following code is executed and the server is
not running in memory, what occurs?

Set objInfo = GetObject(“Word.Application”)

A. The application is loaded into memory and
an object reference is returned.

B. A runtime error occurs.

C. The application will not be loaded because
the path is not correct.

D. The application is loaded into memory and
nothing is returned.

7. Assume that you have a COM component
named MyApp and an object class MyClass that
supports events. The proper way to declare an
instance of MyApp.MyClass so that you can pro-
gram with its events is

A. Private WithEvents objMine As
MyApp.MyClass

B. Private WithEvents objMine As New
MyApp.MyClass

C. Private objMine WithEvents As New
MyApp.MyClass

D. Private objMine WithEvents As
MyApp.MyClass

8. When you program with an object class using
WithEvents (pick all that apply):

A. You must place the object’s declaration in the
General section of the module.

B. You must write the event procedures “from
scratch” in the General section of the module.

13 002-8 CH 10 3/1/99 8:06 AM Page 473

474 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

C. You cannot place the declaration in a
Standard Code Module.

D. You must place code in all the event proce-
dures that the object provides.

Answers to Review Questions
1. A variable of the type Application can be defined

as follows:

Dim objApp as Application

If necessary you can define and create the object
as follows:

Dim objApp as new Application

See “Late and Early Binding of Object Variables.”

2. Two methods can be used to define and create
the application object. These methods are as
follows:

Dim x as Object
Set x = New Application

or

Dim x as New Application

See “Using New to Instantiate an Object Variable
After You Declare It.”

3. The CreateObject statement is used to create the
instance of the object. This is done as follows:

Dim objX as Object
Set objX = CreateObject(“MyApp.SpreadSheet”)

See “Using the CreateObject and GetObject
Functions to Instantiate Objects and Its Sub-
Sections.”

4. A runtime error will occur because an instance of
the object is not running in memory. See “Using
the CreateObject and GetObject Functions to
Instantiate Objects and Its Sub-Sections.”

5. You can declare an object for programming with
its events as follows:

Private WithEvents xl as Excel.Application

See “Handling Events from a COM
Component.”

Answers to Exam Questions
1. A, C. Type Library references are usually found in

Type Library files, Executables, or Dynamically
Linked Libraries. For more information, see the
section titled, “Setting a Reference to a COM
Component.”

2. B, C. Both B and C assume that there is a Type
Library reference in the project. If the Type
Library reference is absent, the application will
not compile. The example in answer A is syntac-
tically correct, but this does not instantiate an
object. D is syntactically incorrect and would not
work under any circumstance (GetObject requires
a blank argument, blank string, or filename as its
first argument). For more information, see the
section titled, “Setting a Reference to a COM
Component.”

3. C. The Type Library will provide the information
needed for early binding such as the object types,
properties, and methods supported. For more
information, see the section titled, “Manipulating
the Component’s Methods and Properties.”

13 002-8 CH 10 3/1/99 8:06 AM Page 474

Chapter 10 INSTANTIATING AND INVOKING A COM COMPONENT 475

A P P LY YO U R K N O W L E D G E

4. A, B. Answer A uses late binding to create the
object. Answer B uses early binding to create the
object. For more information, see the section
titled, “Late and Early Binding of Object
Variables.”

5. C. The CreateObject statement requires a ProgID
that is made up of the application name and the
object name. For more information see the section
titled, “Using the CreateObject and GetObject
Functions to Instantiate Objects and Its Sub-
Sections.”

6. B. A runtime error occurs because the GetObject
requires that an instance of the requested ActiveX
Server is running on the machine. For more
information, see the section titled, “GetObject.”

7. A. Private WithEvents objMine As MyObj.MyClass
gives the correct syntax for declaring an object
variable to use its event procedures. The other
choices are all syntactically incorrect and would
cause compiler errors. In particular, you can’t use
the New keyword in a WithEvents declaration.
For more information, see the section titled,
“Handling Events from a COM Component.”

8. A, C. WithEvents declarations must go into the
General section of a module, and they cannot be
placed in a Standard Code Module. B is incorrect
because you can find an object’s pre-loaded event
procedures by using the drop-down boxes in the
Code Window (just as you would for any control
or Form). D is incorrect—although if it sounds
familiar, that’s because this is one of the rules for
programming with a class object that uses the
Implements keyword. For more information, see
the section titled, “Handling Events from a
COM Component.”

13 002-8 CH 10 3/1/99 8:06 AM Page 475

13 002-8 CH 10 3/1/99 8:06 AM Page 476

OBJECT IVE

11C H A P T E R

Implementing
Error-Handling Features

in an Application

This chapter covers the following objective and its
subobjectives:

Implement error handling for the user interface
in distributed applications (70-175 and
70-176).

• Identify and trap runtime errors.

• Handle inline errors.

• Determine how to send error information
from a COM component to a client com-
puter. (This subobjective is covered in
Chapter 12, “Creating a COM Component
that Implements Business Rules or Logic”
in the section called “Handling Errors in the
Server and the Client.”

. The subobjectives discussed in this chapter can be
expanded as follows:

• To identify and trap runtime errors in an appli-
cation, you must know how to set up an error
trap within a procedure using a combination of
the On Error statement, labeled locations, and
the Resume statement. In addition you must
know how to recognize and handle different
types of errors. You must also know the conse-
quences of not using an error trap in every pro-
cedure in the call stack.

• Inline error handling refers to a specific error-
trapping technique that does not use a labeled
location. With inline error handling, you write
error-handling code in place immediately after
the lines you expect to cause errors; you do not
use the Resume statement.

14 002-8 CH 11 3/1/99 8:07 AM Page 477

OUTL INE STUDY STRATEGIES

Setting Error-Handling Options 479

Setting Break on All Errors 480

Setting Break in Class Modules 480

Setting Break on Unhandled Errors 481

Using the Err Object 481

Properties of the Err Object 482

Methods of the Err Object 485

Using the vbObjectError Constant 486

Handling Errors in Code 487

Using the On Error Statement 487

Inline Error Handling 489

Error-Handling Routines 490

Trappable Errors 492

Using the Error-Handling Hierarchy 494

Common Error-Handling Routines 496

Using the Error Function 499

Using the Error Statement 499

Inline Error Handling 500

Chapter Summary 502

. Create an application with at least one proce-
dure that calls a second procedure. Put an
error-handling routine in both procedures, as
described in this chapter, and experiment
with them.

. Experiment with various combinations of dis-
abling error handling in the two procedures to
familiarize yourself with the way errors are
handled in the call stack.

. Write a routine that uses inline error handling
and experiment with it.

. Check out the VB sample applications. There
is a sample VB application included with the
VB 6 installation that demonstrates error-
handling techniques. It is called Errors.vbp
and is in the Errors folder under the folder
where your sample VB applications are
installed. Experiment with it.

14 002-8 CH 11 3/1/99 8:07 AM Page 478

Chapter 11 IMPLEMENTING ERROR-HANDLING FEATURES IN AN APPLICATION 479

INTRODUCTION

This chapter discusses error handling in Visual Basic applications.
Being able to trap, identify, and handle errors is a vital part of devel-
oping a user-friendly application. Error trapping and error handling
can provide important feedback to the user about why an error
occurred. The information provided through error handling can also
help the developer find, correct, and prevent errors.

Trapping and handling errors in an Executable is covered in this chapter
as well as dealing with errors at design time while debugging a project.
You will learn different ways to trap errors when they occur and to han-
dle different error situations. In this chapter, recommendations for creat-
ing common error handling procedures are provided along with
examples of how error information should be presented to the user.

This chapter covers the following topics:

á Setting error handling options

á The Err object

á Handling errors in code

á The error handling hierarchy

á Common error handling routines

á The Error function

á The Error statement

SETTING ERROR-HANDLING OPTIONS

The first time you will encounter errors in your application is when
you are still testing your application in the VB IDE.

No matter how careful you are in coding, you will always find some-
thing that you did incorrectly—or a condition you did not anticipate—
the first time you run your application. How you want to handle these
errors when you run in the development environment depends on
several factors. You might want to stop your application and go into
Debug mode every time your application generates a runtime error. You
may also want to bypass runtime errors or allow any error handling that
you have already coded to take control.

14 002-8 CH 11 3/1/99 8:07 AM Page 479

480 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Visual Basic provides several different options for you to use in the
development environment. These choices for handling errors impact
your application only while you are in the IDE and do not affect an
Executable created with Visual Basic. The choice you make depends
on how complete your code is and the type of application you are
developing.

Setting Break on All Errors
Error-handling options are set in the development environment with
the Options dialog box. From the Visual Basic menu, choose Tools
and then Options. The Options dialog box appears. The error-
handling options are on the General tab, as shown in Figure 11.1.

The first option for error handling in the development environment
is to Break on All Errors. If this option is selected and a runtime
error occurs in your application, the program will stop immediately.
Execution will stop regardless of any error-handling procedures you
have in your code (discussed later in “Handling Errors in Code”). The
program stops regardless of whether the code that caused the error is
in a class module that is part of your Visual Basic environment.

Remember that these options are in effect only when you are run-
ning your code in the Visual Basic development environment, not
for Executables. Breaking on All Errors is usually used when you
have very little error handling in your procedures and you expect
some runtime errors to occur. It enables you to find and correct the
errors while you run your project interactively.

Setting Break in Class Modules
The second option for handling errors at runtime is to Break in Class
Modules when there is no error handling present. This option is used
for projects that contain class modules, especially projects that are
using ActiveX components created as other Visual Basic projects.

When debugging ActiveX components, it will be important for you
to see the code that generates an error in the ActiveX project. With
this option you need to be able to see the line of code that generated
an error in a class module. If you did not use this option, errors gen-
erated in a class module would return back to the client program
instead of breaking in the class module.

F IGU R E 11 .1
The error-handling options available.

14 002-8 CH 11 3/1/99 8:07 AM Page 480

Chapter 11 IMPLEMENTING ERROR-HANDLING FEATURES IN AN APPLICATION 481

Breaking in class modules is different than breaking on all errors
when error handling is in place. If Break in Class Modules is selected
and error handling is in place for the code that generated a runtime
error, the error handler would be executed and the continued pro-
gram execution would depend on that error handler.

Setting Break on Unhandled Errors
The final option for error handling in the IDE is to Break on All
Unhandled Errors. For this option if an error occurs and an error-
handling routine is in place, that error handler will be run and execu-
tion will continue without entering Break mode. If no error-handling
routine is active (see the section “Using the Error-Handling Hierarchy”)
when a runtime error occurs, the program will go into Break mode.

The difference between breaking in class modules and breaking on
unhandled errors comes into play when the code that generated a
runtime error is in a class module. In Break in Class Module option,
if an unhandled error occurred in a class module, Visual Basic would
enter Break mode at that line of code in the class module. In the
Break on All Unhandled Errors option, if the unhandled error occurs
in a class module, Visual Basic enters Break mode at the line of code
that referenced the procedure in the class module.

USING THE ERR OBJECT

Visual Basic uses the Err object to provide information to your
application for error handling. The Err object can be used to retrieve
information about the type of runtime error that has occurred. The
information contained in the Err object can be used to determine
how and whether your application should continue. It can also be
used to present information to the user, if either the user can take
some action to correct the problem or if error information has to get
back to the developer.

This section defines and describes the properties and methods of the
Err object. You can use the properties to retrieve information about an
error that has occurred. They can also be set with other information
that can be used by other procedures in an application. The Err object
can be manipulated with the methods of the object. In some cases it is
necessary to use these methods to pass information between modules.

14 002-8 CH 11 3/1/99 8:07 AM Page 481

482 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Properties of the Err Object
The properties of the Err object identify an error by number,
description, and source. These properties are set by whatever gener-
ated the error. Usually this is the Visual Basic application or an
object used by the Visual Basic application. They can also be set by a
Visual Basic developer in class modules to identify errors to external
users of those class objects (see the section “Sending Information
from a COM Component” in Chapter 12, “Creating a COM
Component that Implements Business Rules or Logic”).

After an error occurs, the properties of the Err object can be used to
identify the problem and to determine what action, if any, should be
taken to correct the error.

Number Property
The Number property of the Err object identifies an error by number.
It is set by Visual Basic when a runtime error occurs. It can also be
set in code by a developer to identify a user-defined error. The use
of the Err object for user-defined errors are described later in this
chapter (see “Sending Information from a COM Component” in
Chapter 12).

When a runtime error occurs, the Err.Number property can be used
to determine what that error was and how it should be handled.
Some error numbers that Windows generates are described later in
this chapter in the section titled “Handling Errors in Code.”

The Number property contains a long integer value. Visual Basic error
numbers and “user-defined” numbers (that is error numbers imple-
mented by the programmer) range from 0 to 65,535. If you define
any of your own errors in your application, use numbers below the
65,535 limit specified by Visual Basic. Also, be careful not to use a
number already defined by Visual Basic. VB reserves numbers up
through 512 for itself, so the practical range available to you for your
own “user-defined” errors is 513-65,535 (see “Trappable Errors” later
in this chapter).

VB documentation further recommends that you add the constant
vbObjectError to your error code so that calling routines can
definitely identify your error as other than a standard VB error.
Microsoft is preparing us for the day when they will need to use
errors between 513 and 65,535.

14 002-8 CH 11 3/1/99 8:07 AM Page 482

Chapter 11 IMPLEMENTING ERROR-HANDLING FEATURES IN AN APPLICATION 483

Description Property
A brief description of an error is available in the Description prop-
erty of the Err object. The text corresponds to the error identified by
Err.Number.

When a runtime error occurs in a Visual Basic application such as a
division by 0 or an overflow, the Err.Number and Err.Description
properties get set and can be used to handle the error or display
information to the user. The easiest way to display error information
is with a message box, as follows:

Msgbox Err.Number & “-” & Err.Description

Where you code this message box depends on how you have imple-
mented error handling for your application (see the section
“Handling Errors in Code”).

As with the Err.Number, the Err.Description can be set in code. If
you set the Err.Number property in your code, you should also set
the Err.Description property to provide a description of the error. If
you do not set the Description property and you use an error num-
ber recognized by Visual Basic, the description will be set for you
automatically. If Visual Basic does not recognize the error, it sets the
Description property to Application-Defined or Object-Defined
Error. This is discussed in more detail later in this section, under the
section titled “Raise Method.”

Source Property
The Source property of the Err object is a string expression of the
location at which the error occurred in your application. If an unex-
pected runtime error occurs, Visual Basic sets the Err.Source for you.
If the error occurred in a standard module, the source will be set to
the project name. If the error occurred in a class module, Visual Basic
uses the project name and the class module name for the source. For
errors in class modules, the source will have the form project.class.

Like the Number and Description properties, the Source property can
be set in code. Even if Visual Basic generates the error and populates
the properties of the Err object, you might want to overlay the
source with a more descriptive text. Because Visual Basic uses only
the project, class, and form names to create the source description,
you may want to add to the source to specify a more exact location
for the error. You could add the name of the procedure in which the
error occurred, for example.

Numeric Range For Your Own Error
Numbers Implementing user-
defined errors with numbers in the
range between 0 and 512 (the
range reserved for VB-defined
errors) will cause confusion for
other developers working with your
projects. If you accidentally use an
error number that already has
meaning to Visual Basic, another
developer will not know whether
the error should be treated as a
user-defined error or as a standard
error. Even if you use a number in
the range that is not defined in the
current release of Visual Basic
(513-65,535), it might be imple-
mented in subsequent releases. To
avoid confusion, it is best to imple-
ment user-defined error numbers in
the 513 through 65,535 range,
adding the constant offset amount
vbObjectError to your error number
as discussed above and in the sec-
tion in this chapter devoted to
vbObjectError.

W
A

R
N

IN
G

14 002-8 CH 11 3/1/99 8:07 AM Page 483

484 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The Err.Source property is typically used in an error-handling rou-
tine within a procedure or a common error-handling procedure for
the application (see the section “Handling Errors in Code”).

HelpFile Property
If you are generating errors within your code and you want to pro-
vide additional help—beyond the Err.Description—for the user,
you could have a help file associated with the error information. The
HelpFile property is a string expression that contains the path and
filename of the help file.

The HelpFile property is used in conjunction with the HelpContext
property described in the following section. Together they can be
used to provide the user with optional help when an error message is
displayed in a message box.

HelpContext Property
The HelpContext property of the Err object defines a help topic
within the file identified by the HelpFile property. Together the two
can be used to add additional help to a message box when an error is
displayed to the user. An example of using a help file in conjunction
with an error might look like this:

Dim Msg As String

Err.Number = 61 ‘Disk Full
Err.Description = “Your disk is full. Try another drive.”
Err.HelpFile = “project1.hlp”
Err.HelpContext = 32 ‘context ID for a topic within the
➥help file

Msg = Err.Number & “-” & Err.Description & vbCrLf & _
“To see more information, press F1.”

MsgBox Msg, , “Error in Project1”, Err.HelpFile,
➥Err.HelpContext

This displays a message box containing the error number, descrip-
tion, and the option to get help from the help file identified by the
HelpFile and HelpContext properties, as shown in Figure 11.2.

LastDLLError Property
The LastDLLError property is a read-only property used by DLLs to
return error information to Visual Basic applications. For versions of
Visual Basic prior to 5.0, it is important to know that LastDLLError
is only available in 32-bit Windows operating systems.

F IGU R E 11 .2
An error message with a Help option.

14 002-8 CH 11 3/1/99 8:07 AM Page 484

Chapter 11 IMPLEMENTING ERROR-HANDLING FEATURES IN AN APPLICATION 485

If an error occurs in a DLL, the function or sub-routine will signify
the error through a return value or an argument. Check the docu-
mentation for that DLL to determine how errors will be identified.
If an error does occur, you can check the LastDLLError property of
the Err object to get additional information for that error. When
the LastDLLError property is set, an error exception is not raised and
error handling in your Visual Basic application will not be invoked.

Methods of the Err Object
The Err object has two methods that you can invoke in your
applications. These methods are also invoked automatically in
Visual Basic applications as described in the following sections.

Clear Method
The Clear method of the Err object reinitializes all the Err proper-
ties. You can use the Clear method at any time to explicitly reset
the Err object. Visual Basic also invokes Clear automatically in the
following three situations:

á When either a Resume or Resume Next statement is encountered.

á At an Exit Sub, Exit Function, or Exit Property statement.

á Each time an On Error statement is executed.

Raise Method
The Raise method of the Err object is used to generate errors
within code. You can use Raise to create your own runtime errors
that will be used elsewhere in your application. The Raise method
can also be used to pass error information from a class module to
another application that uses objects of that class.

The arguments of the Raise method correspond to the properties of
the Err object. They are as follows:

á Number. This is a required argument. It is a long integer
that contains the error number. Remember that Visual Basic
errors fall between 0 and 65,535, inclusive, and VB reserves
error numbers 0-512 for itself. If you are defining any of
your own errors, use numbers within the range 513-65,535.

LastDLLError Only Available in
32-Bit Code Because the
LastDLLError property is only avail-
able in 32-bit Windows operating
systems, you must be cautious
when developing code that will be
conditionally compiled for both
16-bit and 32-bit environments.
Make sure that you do not include
references to LastDLLError in code
that will be compiled for a 16-bit
executable.

W
A

R
N

IN
G

14 002-8 CH 11 3/1/99 8:07 AM Page 485

486 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Microsoft documentation also recommends adding the con-
stant vbObjectError to your error code, as discussed below in
the section on vbObjectError and in “Sending Errors from a
COM Component” in Chapter 12.

á Source. An optional argument identifying where an error
occurred. Source is a string property that can contain any infor-
mation that will help point to the exact location of the prob-
lem. It may contain the class module name, form name, and
procedure. The standard is to set the Source to project.class.

á Description. An optional argument describing the error that
has occurred. If the description is not set, Visual Basic exam-
ines the Number argument to determine whether the error num-
ber is recognized (between 0 and 65,535). If Number does map
to a Visual Basic error, the Description property is set auto-
matically. If Number does not correspond to a Visual Basic error,
the Description is set to Application-Defined or Object-
Defined Error.

á HelpFile. Identifies a help file and a path to the file. This
optional argument sets the Err.HelpFile property, which can
be used with the HelpContext property, to provide help to the
user. If HelpFile is not specified, the path and filename for the
Visual Basic Help file is used.

á HelpContext. Used with the HelpFile argument, the optional
HelpContext argument identifies a topic within the HelpFile.
If the HelpContext is not specified, Visual Basic uses the help
topic of the Visual Basic Help file corresponding to the Number
argument (if a topic is available).

The Raise method is usually used within class modules. It allows
you to generate your own runtime errors to pass information to
another application using your application as a server. The Raise
method is discussed further in the section titled “Sending Errors
from a COM Component” in Chapter 12.

Using the vbObjectError Constant
When you return error information from a class module, you must be
aware that some special handling is required. If you want to generate a

14 002-8 CH 11 3/1/99 8:07 AM Page 486

Chapter 11 IMPLEMENTING ERROR-HANDLING FEATURES IN AN APPLICATION 487

certain numbered error in a class module, you should add a constant
number, vbObjectError (a number in the range of negative two billion
on most systems), to your error number before you invoke the Raise
method. You should do this to signal the error is generated in the class
object but raised to the calling routine or application.

If you wanted to raise error number 500 in your class module,
for example, you would invoke the Err.Raise method and pass
vbObjectError + 500 as the error number. The calling program or
module interpreting the runtime error generated by the Raise
method should then strip off the vbObjectError constant to interpret
your error.

HANDLING ERRORS IN CODE

There are several ways to handle errors in your Visual Basic applica-
tions. The simplest but least effective way is not to do anything. Let
the errors occur. Windows will generate error messages to the user,
and the application will shut down. A better way to handle errors
is to trap the errors with the Visual Basic statement On Error. By
coding On Error, you are handling errors in a more graceful manner.
You have the option of trying to correct the problem through code,
to bypass the code that caused the error, or to shut down the appli-
cation if the error is unrecoverable.

This section discusses the On Error statement and the different ways
of using it in procedures. The discussion examines inline error han-
dling and error-handling routines found at the end of procedures.
Some trappable errors will also be covered with recommendations on
how to use them and what to look for in code.

Using the On Error Statement
The On Error statement in Visual Basic identifies how errors will be
handled for a particular routine. It can be used to turn on and turn off
error handling for a procedure and, in some cases, sub-routines and
functions called from the procedure in which it is coded (see “Using
the Error-Handling Hierarchy”). An On Error statement instructs
Visual Basic on what should be done if a runtime error occurs.

N
O

T
E Error Numbers That You Can Use

Currently not all the numbers between
0 and 66,535 are being used by
Visual Basic. Some of the numbers
are used; others are being reserved
for future use. Using the
vbObjectError enables you to define
your own error numbers. It also pre-
vents rewrite in the future—when later
versions of Visual Basic that use more
error numbers are released.

14 002-8 CH 11 3/1/99 8:07 AM Page 487

488 Par t I VISUAL BASIC 6 EXAM CONCEPTS

It is good practice to place error handling in every procedure.
Generally it is especially important in any routine prone to errors.
These include routines that process database information, routines
that read from and write to files, and procedures that perform calcu-
lations. If an application contains code that relies on some outside
events—such as a network connection being available or a disk being
ready in a drive—there are always situations that are beyond the
control of the developer. For these instances good error-handling
routines are very important.

Different routines require different types of error handling. The syn-
tax of the On Error statement can be coded several ways, depending
on each situation.

Goto <line>
The first way to code the On Error statement is as follows:

On Error GoTo Main_Error

where Main_Error is a line label in a procedure. This is the most
common use of the On Error statement and gives the developer the
most control over error handling. A procedure using this format
would look something like this:

Private Sub Main()
On Error GoTo Main_Error
‘ ... some processing ...
Exit Sub

Main_Error
‘ error handling code

End Sub

As in the preceding procedure, it is generally best to put the On
Error statement as the first executable statement in a procedure so
that any other lines of code will fall under the control of the On
Error statement. In this example when an error occurs anywhere
after the On Error statement, execution will continue in the error-
handling code.

Error-handling code can contain any Visual Basic statements that
can be coded elsewhere. It is important, however, to keep error-
handling code simple to prevent additional errors from occurring.
If a runtime error occurs in the error-handling code, then the new
error will not be handled in the error handler. Instead, the error will
be passed up the call stack until either an error handler is encoun-
tered, or until the error becomes a runtime error.

14 002-8 CH 11 3/1/99 8:07 AM Page 488

Chapter 11 IMPLEMENTING ERROR-HANDLING FEATURES IN AN APPLICATION 489

Resume Next
The second way of coding an On Error statement is with a Resume
Next clause. With a Resume Next clause, the On Error would look
like this:

On Error Resume Next

Resume Next tells Visual Basic that when a runtime error occurs,
ignore the statement that caused the error and continue execution
with the next statement.

GoTo 0
The last way to code the On Error statement is with the GoTo 0
clause, as in the following:

On Error GoTo 0

This is different from the other On Error statements in that it dis-
ables rather than enables error handling for the current routine. Even
if there is a line labeled “0”, error handling will be disabled.

Inline Error Handling
Not all error handling occurs at the end of a procedure, and you are
not limited to one On Error statement in each sub-routine or func-
tion you code. Sometimes the error-handling requirements change
from the beginning of a routine to the end of a routine. There may
be some sections of your code where you expect errors to occur—
and don’t care—and there are other lines where you do not expect
errors and want to be warned when they occur.

You may have a procedure that reads information from a file, for
example, does some processing, and exits. If the file is not found,
you want to exit the routine. If any other error occurs, you want to
display a message box. Your code could look something like this:

Private SubA()
‘ set the initial error handling to go to line SubA_Exit
On Error Goto SubA_Exit

Dim sFile as String
sFile = “filename.dat”

‘ do some additional processing

14 002-8 CH 11 3/1/99 8:07 AM Page 489

490 Par t I VISUAL BASIC 6 EXAM CONCEPTS

‘ Reset the error handling to go to line SubA_Exit
‘ for the Open statement.
On Error Goto SubA_Exit
Open sFile For Input As #1

‘ Reset to original error handling
On Error Goto SubA_Error
‘ continue processing...

SubA_Exit
Exit Sub

SubA_Error
‘ error handling

End Sub

In this example, the On Error statement is used three times. First at
the beginning of the sub-routine, the On Error statement is used to
tell Visual Basic to go to the error-handling code at SubA_Error when
an error occurs. Then before the Open statement, On Error is used
again to say that if any error occurs to go to line SubA_Exit and then
to leave the routine. Finally the On Error statement is used again to
send errors to the SubA_Error line after the Open statement has run
successfully.

The number of On Error statements in a procedure is only con-
strained by the limit on total lines and bytes of code for Visual Basic
procedures. In addition, you can use any of the On Error types in
the same procedure. You can use the Resume, Resume Next, Goto
<line>, and Goto 0 all in the same procedure, and each can be used
several times to toggle between different types of error handling.

Error-Handling Routines
This chapter has already discussed the Err object and has also exam-
ined the options for the On Error statement in Visual Basic. In addi-
tion, the error-handling routines within sub-routines and functions
have been mentioned. This section continues the discussion of error-
handling routines in procedures and recommends some standards for
their creation.

Error-handling routines are sections of code that are executed in the
event of an error. They can range from being very simple with only a
few lines of code to being very lengthy. Unlike inline error handling,
using an error-handling routine enables you to localize all your
exception processing in one place within a procedure.

14 002-8 CH 11 3/1/99 8:07 AM Page 490

Chapter 11 IMPLEMENTING ERROR-HANDLING FEATURES IN AN APPLICATION 491

Some things to remember when you code error routines within your
Visual Basic procedures include the following:

á Keep your error-handling routines simple. If another error occurs
in your error-handling routine, your application will generate a
fatal error and shut down.

á Error-handling routines are generally found at the end of a proce-
dure. Make sure that you put an Exit Sub or Exit Function
statement before the error-handling routine so that during nor-
mal execution, your program does not fall through to the
error-handling code.

á Use the On Error Goto <line> statement to control program flow
in the event of an error.

á Anticipate the types of errors that are common to the functionality
of your code. This will enable you to handle different errors in
different ways. It could also prevent fatal errors from occurring
(see “Trappable Errors” later in this section).

á If you need to display error messages to users, provide information
useful to them. A user typically does not understand errors such
as Invalid File Format. Instead provide a message that states
The file you selected is not an Excel spreadsheet.

á When you display error messages to the user, also include informa-
tion that will help you—as the developer—track down errors.
Include the form, class, or standard module name. Identify the
procedure in which the error occurred. Add any other addi-
tional information that will help you find and correct problems.

á Consider logging errors. You might wish to implement some sort
of persistent record of errors (writing to a text file or database,
for example). This will take the burden for error reporting off
the user who could forget or misreport error messages. If you
decide to log errors, however, be aware that logging routines
themselves might cause runtime errors (since database and text
file access are prime sources of runtime errors).

á Whenever possible, give the user the chance to correct problems. If
they try to read a file from a floppy drive and forget to insert a
disk, for example, provide an opportunity for them to retry the
operation.

14 002-8 CH 11 3/1/99 8:07 AM Page 491

492 Par t I VISUAL BASIC 6 EXAM CONCEPTS

No matter how hard you try, conditions beyond your control will
sometimes cause errors to occur in your application. Using some or
all of the preceding tips will provide a more user-friendly environ-
ment for your users. These tips help provide more information to
the user when an error occurs, and will also make it easier to track
down and debug problems in an application.

Trappable Errors
In parts of your applications, you can anticipate the types of errors
that can occur. If your application is reading and writing to disk
files, for example, you know that you may encounter some file
errors. Disks can be full, the user may not have placed a disk or
CD-ROM in a drive, or a disk could be unformatted or corrupt.

Errors that you can anticipate and code for in your applications can
be found in Visual Basic’s Help file. If you search Help for
“Trappable Errors,” you will get a list of errors for which you can
trap in your application (see Figure 11.3).

F IGU RE 11 .3
Visual Basic’s Help for Trappable Errors.

Help will provide you with a description of the error and the num-
ber corresponding to that error. These will be the same number and
description found in the Err.Number and Err.Description properties
after the runtime error has occurred. If you select an error message
from Help—as shown in Figure 11.3—you will get further informa-
tion for that error, as shown in Figure 11.4.

14 002-8 CH 11 3/1/99 8:07 AM Page 492

Chapter 11 IMPLEMENTING ERROR-HANDLING FEATURES IN AN APPLICATION 493

It makes sense to anticipate and code for errors that could occur
frequently in your application. If you know where errors may occur
and what those errors are, you can handle them gracefully.

Instead of displaying an error message and ending your application
when the user has not placed a disk in a drive, you may want to give
the user a chance to use a disk or cancel what he or she was trying to
do. You can trap for error number 71, Disk not ready, and prompt
the user for his or her input. As part of your error-handling routine,
you might include the following:

If Err.Number = 71 Then ‘ Disk Not Ready
If Msgbox(“Disk not ready. Retry?”, vbYesNo) = vbYes

➥Then
Resume

Else
Exit Sub

Endif
Endif

Now the user has a choice. If he or she places a disk in the drive and
clicks on the Yes button, the process can continue. If the No button
is clicked, Visual Basic will exit the sub-routine.

If a disk has not been formatted, you may want to give the user the
option to format that disk. If a disk is full, you can let the user insert
a new disk. Always be aware of the problems that can occur, espe-
cially because of user interaction, and code accordingly.

F IGURE 11 .4
Detailed Help for Visual Basic errors.

14 002-8 CH 11 3/1/99 8:07 AM Page 493

494 Par t I VISUAL BASIC 6 EXAM CONCEPTS

USING THE ERROR-HANDLING
HIERARCHY

Unless you code error-handling routines in every procedure you
write, Visual Basic needs a way of finding that error handler when a
runtime error occurs. This section discusses the methods by which
Visual Basic finds that error-handling procedure and what happens
if one is not found.

Developers of Visual Basic programs control error handling with the
On Error statement. The On Error statement dictates how a runtime
error will be handled when encountered. If a procedure in your code
is executing and an error occurs, Visual Basic looks for On Error
within that procedure. If the On Error statement is found, the com-
mands following On Error are executed. If an error handling does
not exist in the procedure in which the error occurred, Visual Basic
goes up in the calling chain to the code that called the current pro-
cedure to look for an On Error statement. Visual Basic continues
going up the calling chain until some kind of error handling is
found. If there is no procedure in the calling chain with error han-
dling, the application ends with a fatal error.

The following example shows how errors will be handled in a simple
code example:

Private Sub Main()
Call SubroutineA

End Sub
Private Sub SubroutineA()

Call SubroutineB
End Sub
Private Sub SubroutineB()

Dim I as Integer
Dim J as Integer
I = 0
J = 10 / I

End Sub

If you have these three procedures in your application, you can see
that this code will generate a runtime error in SubroutineB. The
statement J = 10 / I will generate a “divide by zero” error. When
this application runs, sub-routine Main starts, and then it calls
SubroutineA, which in turn calls SubroutineB. After the runtime
error occurs in SubroutineB, Visual Basic must determine how to
handle the error.

14 002-8 CH 11 3/1/99 8:07 AM Page 494

Chapter 11 IMPLEMENTING ERROR-HANDLING FEATURES IN AN APPLICATION 495

In this case, when the error occurs in SubroutineB, Visual Basic looks
in SubroutineB for error handling specified by an On Error state-
ment. Because it is not coded, Visual Basic goes up the calling chain
to SubroutineA and checks there for error handling. Again because
none is found, Visual Basic goes up the chain to Main. Because Main
does not have any error handling either, a fatal error occurs and the
application shuts down.

Now consider the case where sub-routine Main is modified to look
like this:

Private Sub Main()
On Error GoTo Main_Error

Call SubroutineA
Exit Sub

Main_Error:
Msgbox “An error occurred.”
Resume Next

End Sub

When this code runs, a division by 0 still occurs in SubroutineB.
Visual Basic still checks for error handling in SubroutineB and then in
SubroutineA. When it is not found, Visual Basic checks Main for an On
Error statement. This time it finds one and does whatever the error-
handling statement instructs. In this case there is a statement instruct-
ing that execution continue at the label Main_Error. A message box is
displayed, and then a Resume Next statement is encountered.

You must be aware of the point that a Resume Next or a Resume state-
ment will send you to after the error occurs. A Resume Next statement
will not send you back into SubroutineB to the statement after the
divide by 0. It sends you instead to the statement in Sub Main after
the line that made the call to the procedure that generated the error.
In this case the Exit Sub statement would be executed next.

It is important to remember two important things about the error-
handling hierarchy. The first is that Visual Basic will search up the
procedure in the calling chain until an error handler is found. As an
example look at a case where there are three procedures in the calling
chain: ProcA, ProcB, and ProcC. ProcA calls ProcB, which in turn calls
ProcC. If an error occurs in ProcC, Visual Basic will look in that pro-
cedure for an error handler. If one is not found, Visual Basic will go
up the calling chain to ProcB and look for an error handler there.

14 002-8 CH 11 3/1/99 8:07 AM Page 495

496 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Again if one is not found, Visual Basic will check ProcA. The second
thing to remember is that if there is no error handler in the calling
chain, a fatal error occurs and the application shuts down.

COMMON ERROR-HANDLING
ROUTINES

Sometimes while you are creating an application with error-handling
routines in procedures, you may find yourself writing the same code
over and over again. All your error-handling routines may be
anticipating the same error numbers. Instead of duplicating the same
error-handling code in many procedures, you can create a common
error-handling function and call it from the individual error-
handling routines within your other procedures.

Assume, for example, that you are developing an application that
does extensive file processing. You find that many of your procedures
check for errors 53 (File Not Found), 58 (File Already Exists),
and 61 (Disk Full). Without a common error-handling routine,
you might find yourself coding the following in every procedure

that references files:

fErrorHandler:

Dim msg As String

Select Case Err.Number
Case 53 ‘ file not found

msg = “File not found. Do you want to try
➥again?”

If MsgBox(msg, vbYesNo) = vbYes Then
Resume

Else
Exit Function

End If
Case 58 ‘ file already exists

msg = “The file already exists. Do you wish to
➥overlay?”

If MsgBox(msg, vbYesNo) = vbYes Then
Resume Next

Else
Exit Function

End If
Case 61 ‘ disk full

MsgBox “The disk you specified is full. The
➥operation cannot continue.”

End
End Select

14 002-8 CH 11 3/1/99 8:07 AM Page 496

Chapter 11 IMPLEMENTING ERROR-HANDLING FEATURES IN AN APPLICATION 497

Your error handlers can be even longer, trapping additional errors
that your users might encounter.

Instead of repeating the same code many times in different procedures,
you should move your error-handling code to a common error-
handling function. You may find yourself not only using the common
function many times within a project, but also find yourself including
the common error handling in many projects you write. For this
reason it is best to put your common error-handling function in a
separate standard module so it can be easily ported to other projects.

When you create a common error-handling function, consider the
following:

á A common error-handling routine needs to know what error
occurred. The easiest way to pass this information is by passing
the Err object to the function.

á You need to know the results of the error handling. Will execution
continue? Should the line of code that caused the exception be
bypassed or run again? This information can be passed back as
the return value or as an argument of the function.

á The error-handling function or module may be used in other
projects. Try not to reference forms or procedures specific to
one project. This will prevent rewrites later.

á Code the function to handle as many trappable errors as you can.
The more types of errors you trap for the more specific and
user-friendly your error handling can be. Even if you do not
code for all the trappable errors, you can add to the function at
a later time.

á Include handling of any errors for which you do not have specific
error handling. For example, your error handler may trap for
errors 53, 58, and 61. Include some code to handle any other
errors. Unexpected errors always occur in applications. In addi-
tion future releases of Visual Basic may include more trappable
errors than the current release.

When you create an error-handling function, you must decide
how to tell a calling procedure what should be done after the error
handling has completed. Do you want the code to retry (Resume),
bypass the code (Resume Next), or shut down the application?

14 002-8 CH 11 3/1/99 8:07 AM Page 497

498 Par t I VISUAL BASIC 6 EXAM CONCEPTS

One way to do this is to pass back the information through the
return code of the function by using constants:

Public Const iRESUME = 1
Public Const iRESUME_NEXT = 2
Public Const iEXIT_PROCEDURE = 3
Public Const iEXIT_PROGRAM = 4

Remember to include the constant definitions in the BAS module
that contains the error-handling function.

The error code that you previously had in many procedures through-
out your application can now be combined into one error-handling
function:

Public Function fErrorHandler(objError As Object) As
➥Integer

Dim msg As String

Select Case objError.Number
Case 53 ‘ file not found

msg = “File not found. Do you want to try
➥again?”

If MsgBox(msg, vbYesNo) = vbYes Then
fErrorHandler = iRESUME

Else
fErrorHandler = iEXIT_PROCEDURE

End If
Case 58 ‘ file already exists

msg = “The file already exists. Do you wish to
➥overlay?”

If MsgBox(msg, vbYesNo) = vbYes Then
fErrorHandler = iRESUME_NEXT

Else
fErrorHandler = iEXIT_PROCEDURE

End If
Case 61 ‘ disk full

MsgBox “The disk you specified is full. The
➥operation cannot continue.”

fErrorHandler = iEXIT_PROGRAM
Case Else ‘ covers all other errors

msg = objError.Number & “=” &
➥objError.Description & _

vbCrLf & “Source = “ & objError.Source
MsgBox msg
fErrorHandler = iEXIT_PROGRAM

End Select

End Function

Now that your error handling has been centralized in a common
function, the error handling in individual procedures can be simpli-
fied to something that looks like this:

14 002-8 CH 11 3/1/99 8:07 AM Page 498

Chapter 11 IMPLEMENTING ERROR-HANDLING FEATURES IN AN APPLICATION 499

sub1_error:

Select Case fErrorHandler(Err)
Case iRESUME

Resume
Case iRESUME_NEXT

Resume Next
Case iEXIT_PROCEDURE

Exit Sub
Case iEXIT_PROGRAM

End
End Select

For most of your procedures, the preceding code will be sufficient for
handling errors. The common error function will be called, and the
way of handling any given error will be returned. There are always
times, however, where you will customize the error handling in differ-
ent sub-routines and functions to handle unique situations. For these
cases it is best not to alter a common error-handling function.

USING THE ERROR FUNCTION

A function related to errors and error processing is the Error func-
tion. The Error function has one argument—an error number. It
returns a string description of the error corresponding to that num-
ber. For example, if you coded the following:

Msgbox Error(61)

the user would see a message box with the error description Disk
full, as shown in Figure 11.5.

If the error number is not specified, the description of the most
recent runtime error is displayed (the same value as Err.Description).
If there have been no runtime errors, the result is a 0 length string.
If the error number is valid but has no Visual Basic definition, the
return value will be Application-Defined or Object-Defined Error.
An error will occur if the error number is not valid.

USING THE ERROR STATEMENT

The Error statement can be used to simulate or force errors to occur.
The syntax is as follows:

Error <error number>

F IGURE 1 1 .5
An error message from the Error function.

14 002-8 CH 11 3/1/99 8:07 AM Page 499

500 Par t I VISUAL BASIC 6 EXAM CONCEPTS

For example,

Error 51

generates an Internal Error.

The Error statement is available in Visual Basic 6 for compatibility
with older versions. With Version 6, you should use the Raise
method of the Err object.

INLINE ERROR HANDLING

Another form of the On Error statement is On Error Resume Next.
This alternative is used to handle an error immediately after the line
causing the error rather than branching to a specified error handler.
Another use of On Error Resume Next is to simply allow your appli-
cation to ignore errors that you don’t need to handle at all.

In Listing 11.1, you can assume that the GetObject function might
cause a runtime error. Notice that this code attempts to handle the
error on the following line by first evaluating the current value of
Err.Number.

LISTING 11.1

THE ON ERROR RESUME NEXT STATEMENT ALLOWS US TO

HANDLE ERRORS AS THEY OCCUR

Private Sub XLInLine()
Dim errTemp As Long
On Error Resume Next
Set xl = GetObject(, “Excel.Application”)
Select Case Err.Number

Case 0
MsgBox “Successfully Opened Excel”

Case 429
Set xl = CreateObject(“Excel.Application”)

Case Else
MsgBox “Fatal error #” & Err.Number _
& “ (“ & Err.Description & “)” & _
“: Passing the buck”
End

End Select
Err.Clear

End Sub

14 002-8 CH 11 3/1/99 8:07 AM Page 500

Chapter 11 IMPLEMENTING ERROR-HANDLING FEATURES IN AN APPLICATION 501

The example also checks to see if the value of Err.Number is 0, which
indicates that no error has occurred.

Notice that the Err object’s Clear method is called after the Select
Case structure handles the error. You need to call Err.Clear because
inline error handling doesn’t use the Resume statement, and Resume is
what you normally rely on to reset the Err object. If an error had
occurred in the code in Listing 11.1 and Err.Clear hadn’t been used,
the Err object would continue to store information about this error.
This could mislead a called procedure, which might have its own
error handlers and would depend on the value of Err.Number to
function properly.

Remember to call Err.Clear after each place where, in a routine
where you handle inline errors, an error could occur in any of these
locations, and you must handle each one individually.

Generally, you’ll want to be careful about using inline error han-
dling. Your procedures can get quite long and more difficult to con-
struct and maintain since an error handler must follow each line that
could cause an error.

As we mentioned previously, the On Error Resume Next statement is
used for inline error handling. There are other times, however, when
the On Error Resume Next statement comes in handy.

There are basically two uses for On Error Resume Next:

á Ignore errors and keep on processing. This is useful when you
might expect an error to occur occasionally, but the error does
not affect the remaining code. For example, the code in Listing
11.2 will process all the controls on the current form.

LISTING 11.2

USING ON ERROR RESUME NEXT TO IGNORE UNIMPORTANT

ERRORS

On Error Resume Next
For each ctrlCurr In Controls

ctrlCurr.Text = UCase(ctrlCurr.Text)
Next ctrlCurr

14 002-8 CH 11 3/1/99 8:07 AM Page 501

502 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á Whenever the loop hits a control without a Text property,
such as a Label, VB generates a runtime error. In Listing 11.2,
the error is not relevant and does not require handling because
you want VB to simply ignore any control that does not apply
(controls without a text property). The On Error Resume Next
statement tells the system to ignore the error and keep going.

á Process errors immediately after they occur. This is possible
because VB sets the values of Err.Number and Err.Description
when an error occurs even if On Error Resume Next is in effect.
This enables you to use a second style of local error trapping—
inline error handling—as previously discussed in this section.

Inline error handling therefore offers you an alternative, and often
less cumbersome, way to process errors in a routine.

This chapter covered the following topics:

á Setting error-handling options including Break on All Errors,
Break in Class Modules, and Break on Unhandled Errors.

á Using the Err object including its properties (Number,
Description, Source, Helpfile, HelpFileContext, and
LastDLLError) and methods (Clear and Raise).

á Using the vbObjectError constant when returning error
information from a class module.

á Constructing an error trap with various forms of the On Error
statement.

á Constructing inline error handlers with On Error Resume Next.

á Writing error-handling routines.

á Using the error-handling hierarchy.

á Using the Error function to return descriptions of errors.

CHAPTER SUMMARY

KEY TERMS
• Compile error

• Error handling

• Error number

• Fatal error

• Syntax

• Syntax error

• Trappable error

14 002-8 CH 11 3/1/99 8:07 AM Page 502

Chapter 11 IMPLEMENTING ERROR-HANDLING FEATURES IN AN APPLICATION 503

A P P LY YO U R K N O W L E D G E

Exercises

11.1 The Error Processing Hierarchy

In this exercise, you create a simple application that
illustrates the error hierarchy. You will create a project
with multiple layers of sub-routine calls to see how
Visual Basic finds error-handling routines. You will
also code several On Error statements to handle errors
instead of allowing Visual Basic to generate fatal errors
and shut down your application.

Estimated Time: 15 minutes

1. Open a new project with a standard module and
no forms. Make sure that you set the project
options so that execution starts in Sub Main.

2. Create three sub-routines: Main, SubA, and SubB.
In Main add a call to SubA. In SubA add a call to
SubB.

3. In SubB you will want to force a runtime error.
Dimension a variable as an integer. Then divide
the variable by 0. For example:

Dim I as Integer
I = 1 / 0

4. Run the application. You should get a dialog box
indicating division by 0. It will give you the
option to end the application or debug. If this
happened in an Executable, the application
would shut down.

5. Stop the program. Edit sub-routine Main and add
error trapping. Create an error-processing rou-
tine at the end of the sub-routine. Use
Main_Error as the line label. Then add a message
box that displays “Error trapping in sub
Main.”. Remember to put an Exit Sub before the
Main_Error label. Your Main should look like this:

Sub Main()

On Error GoTo Main_Error

Call SubA

Exit Sub

Main_Error:

MsgBox “Error handling in sub Main.”
End

End Sub

6. Run the application again. This time you should
get your own error message, not the fatal error
displayed last time.

7. Now add error handling to SubA similar to that
of Main.

8. Run the application again. Did you get the error
message from SubA or from Main? Because Visual
Basic searches up the calling chain for error han-
dling, you will get the error message from SubA.

11.2 Trapping Specific Errors

In this exercise, you build on the code you created in
Exercise 11.1. You will add error handling to trap for
specific errors and code for each accordingly. You will
also use message boxes to allow the users to make deter-
minations on how execution will continue.

Estimated Time: 15 minutes

1. Using the project you started in Exercise 11.1,
edit SubB. Add an error-handling routine at the
end of the procedure:

Private Sub SubB()

On Error GoTo SubB_Error

Dim i As Integer

14 002-8 CH 11 3/1/99 8:07 AM Page 503

504 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

i = 1 / 0

Exit Sub

SubB_Error:

‘ error processing for SubB

End Sub

2. Now add a Select Case statement to the error
handling. The first case you will test for is divi-
sion by zero, error number 11 (see “Trappable
Errors” in Visual Basic help).

‘ error processing for SubB

Select Case Err.Number
‘If div by 0 error, handle here
Case 11

‘Ask use to continue
Dim iAnswer As Integer
iAnswer = MsgBox(“Division by

➥zero. Continue?”, vbYesNo)
If iAnswer = vbYes Then

Resume Next
Else ‘user doesn’t want to

➥continue
End

End If
‘If some other error, raise error

➥here
‘and it will be handled by calling

➥routine’s
‘error handler
Case Else

Err.Raise Err.Number
End Select

3. Run the application again. Was the error trapped
correctly?

4. Edit SubB again. Add a statement after the divi-
sion by zero to move a long integer value (that is
99,999) into the I variable. This will cause an
overflow.

5. Add code to the error handler to trap for an over-
flow error. Use Visual Basic help to find the error
number for an overflow.

6. Save and run the application again. When you
get the error message for division by zero, make
sure you continue processing to get to the line of
code that creates the overflow condition.

11.3 Handling Errors Inline

In this exercise, you adapt the code created in Exercises
11.1 and 11.2 to implement inline error handling.

Estimated Time: 15 minutes

1. Using the project, that you started in Exercise
11.1 and modified in 11.2, edit SubB to perform
inline error handling, as follows:

Sub SubB()
On Error Resume Next
Dim I As Integer
‘Enabled one of the following statements:
‘I = 1 / 0
‘I = 999999999
If Err.Number <> 0 Then

Select Case Err.Number
Case 11

MsgBox “Division by Zero”
Case 6

MsgBox “Overflow”
End Select
Err.Clear

End If
End Sub

2. Notice the changes made to the routine from
Exercise 11.2.

3. You’ve changed the On Error GoTo statement to
On Error Resume Next.

4. Instead of creating a labeled error handler, you
simply insert error-handling code after the line
where you expect an error to occur.

5. You also have removed the Resume Next state-
ments from the error-handling code of Exercise
11.2. This is because On Error Resume Next
would not support Resume statements.

14 002-8 CH 11 3/1/99 8:07 AM Page 504

Chapter 11 IMPLEMENTING ERROR-HANDLING FEATURES IN AN APPLICATION 505

A P P LY YO U R K N O W L E D G E

6. You also had to make a call to Err.Clear in order
to clear the error condition. This was not
required in the previous exercises because the
Resume statements automatically clear the error
condition.

7. Notice that there are two statements (both com-
mented on in the example) that can cause an
error. Run the application several times, first
enabling one statement (division by 0) and then
the other (integer overflow). You should see dif-
ferent error messages in the two cases because the
error handler will recognize the difference in the
error numbers.

Review Questions
1. What Visual Basic object is used to identify a

runtime error that has occurred in an application?
What property of that object describes the error?

2. If you are coding a class module and want to
return error information through the Err object,
what method of the Err object do you use to do
this?

3. You code an application that starts in Sub Main.
Main calls sub-routine Sub1. A runtime error
occurs in Sub1. Neither Main nor Sub1 has error
handling. What happens to your application?

4. Early in the development stage of an application,
you want to run and debug your code interac-
tively. What is the best error option to choose so
that execution stops every time a runtime error is
generated?

5. What statement would you place in VB code to
enable inline error handling?

Exam Questions
1. In your application procedure, SubA calls proce-

dure SubB. A runtime error occurs in SubB, but
that procedure does not have any error handling.
What does Visual Basic do?

A. Generates a fatal error and shuts down the
application

B. Checks SubA for an error handler

C. Displays a Windows error message and
continues execution

D. Adds error handling to SubB

2. An error occurs in your application, and you
want to display information in a message box.
You will display the description of the error for
your user, and you also want to display the error
number so that you as the developer can identify
the exact error that occurred. What two proper-
ties of the Err object do you want to use?

A. Err.ErrDescription and Err.ErrNumber

B. Err.Desc and Err.Number

C. Err.Message and Err.Num

D. Err.Description and Err.Number

3. What does the statement On Error Goto 0 do?

A. Disables error handling

B. Causes a runtime error

C. Generates a syntax error

D. Causes execution to continue with the first
statement in a procedure when an error
occurs

14 002-8 CH 11 3/1/99 8:07 AM Page 505

506 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

4. Which three are options for handling errors at
design time?

A. Break On All Errors

B. Break On Fatal Errors

C. Break On Unhandled Errors

D. Break In Class Modules

5. What Visual Basic constant should be added to
custom error numbers returned from a server
application with the Raise method?

A. vbCustomError

B. vbErrorConstant

C. vbUserError

D. vbObjectError

6. In Visual Basic 6, what is the best way to generate
a runtime error?

A. The Error statement

B. The Error function

C. Err.Raise

D. Divide by zero

7. What will happen if an error occurs in a com-
piled VB executable application and Visual Basic
does not find an error-handling routine?

A. A message will be displayed, and execution
will continue with the next line of code.

B. A message will be displayed, and the applica-
tion will end.

C. No message will be displayed, and execution
will continue with the next line of code.

D. No message will be displayed, and the appli-
cation will end.

8. What is the best error-handling option to use
when debugging ActiveX components?

A. Break On All Errors

B. Break On Unhandled Errors

C. Break In Class Modules

D. None of these

9. In which environment can the LastDLLError
property of the Err object be used?

A. 16-bit only

B. 32-bit only

C. 16-bit and 32-bit

D. Neither 16-bit nor 32-bit

10. Which of the following are valid options for the
On Error statement?

A. Resume

B. Resume Next

C. Goto 0

D. Goto <line number>

11. If you are raising an error in your code and want
to pass the location—such as the procedure
name—at which the error occurred, which
property would you use?

A. Err.Source

B. Err.Context

C. Err.Location

D. Err.Procedure

14 002-8 CH 11 3/1/99 8:07 AM Page 506

Chapter 11 IMPLEMENTING ERROR-HANDLING FEATURES IN AN APPLICATION 507

A P P LY YO U R K N O W L E D G E

Answers to Review Questions
1. The Err object, instantiated by Visual Basic,

provides information about runtime errors. The
Description property gives a brief description
of the error. See “Using the Err Object.”

2. The Raise method of the Err objects enables you
to return error information from a class module.
The arguments of the Raise method specify the
error number, description, source, and help infor-
mation. See “Using the Err Object.”

3. A fatal error occurs and your application shuts
down. When an error occurs, Visual Basic
searches up through the calling chain for an error
handler. If none is found, a fatal error occurs. See
“Using the Error-Handling Hierarchy.”

4. The Break On All Errors option will stop execu-
tion in the IDE every time an error occurs,
regardless of any error handling in place. This
option is set on the General tab of the environ-
ment’s Options dialog box. See “Setting Error-
Handling Options.”

5. To enable inline error handling, place the
statement

On Error Resume Next

in your code. This will prevent VB’s runtime
error-handling system from taking over when an
error occurs and will make you, the programmer,
responsible for reacting to any error conditions
that are generated. See “Resume Next” and “Inline
Error Handling.”

Answers to Exam Questions
1. B. Visual Basic will search up a calling chain to

find an error handler. If SubB does not have error
handling, Visual Basic will check SubA for an
error handler. If no error handling exists in the
calling chain, a fatal error occurs and your appli-
cation ends. For more information, see the sec-
tion titled “Using the Error-Handling Hierarchy.”

2. D. Err.Description is a brief description of the
error. Err.Number is the Visual Basic number cor-
responding to the error. For more information see
the section titled “Using the Err Object.”

3. A. On Error Goto 0 disables error handling. For
more information see the section titled
“Handling Errors in Code.”

4. A, C, D. The option that is not valid is Break On
Fatal Errors. For more information see the section
titled “Setting Error-Handling Options.”

5. D. Use of the vbObjectError differentiates Visual
Basic errors from user-defined errors.

6. C. The recommended way to generate runtime
errors is with the Err.Raise method. The Error
statement can also be used, but it is available in
Visual Basic 6 only for the purpose of backward
compatibility. For more information see the sec-
tions titled “Sending Information from a COM
Component” in Chapter 12, and “Creating a
COM Component” and “Using the Error
Statement” in this chapter.

14 002-8 CH 11 3/1/99 8:07 AM Page 507

508 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

7. B. The user will see a message corresponding to
the error that occurred and the application will
stop executing. For more information see the sec-
tion titled “Handling Errors in Code.”

8. C. Because most ActiveX components consist of
class modules, you usually want to use the Break
In Class Modules option in the event an error
does occur. For more information see the section
titled “Setting Error-Handling Options.”

9. B. The LastDLLError property of the Err object is
only available in 32-bit environments. For more
information see the section titled “Using the Err
Object.”

10. B, C, D. Only Resume is not a valid option for
the On Error statement although it can be used
within an error-handling routine. For more infor-
mation see the section titled “Handling Errors in
Code.”

11. A. The Err.Source property is used to identify
the location of an error. For more information see
the section titled “Using the Err Object.”

14 002-8 CH 11 3/1/99 8:07 AM Page 508

OBJECT IVES

12C H A P T E R

Creating a COM Component
that Implements

Business Rules or Logic

This chapter helps you prepare for the exam by cover-
ing the following objectives and subobjectives:

Create a COM component that implements
business rules or logic. Components include
DLLs, ActiveX controls, and Active documents.

. A COM component provides reusable, encapsu-
lated functionality to client programs running in a
Windows environment. You can use VB to create
one of the several types of COM components.

Choose the appropriate threading model for
a COM component.

. A COM component’s threading model affects the
way that the COM component handles requests
from clients and manages memory.

Compile a project with class modules into
a COM component.

• Implement an object model within a COM
component.

• Set properties to control the instancing of
a class within a COM component.

• Determine how to send error information
from a COM component to a client
computer.

. Class modules are the backbone of COM object
programming. You create a class module within
a COM object and then implement its methods,
properties, and events for clients to manipulate. You
need to take special considerations into account to
pass error information between COM components
and clients.

15 002-8 CH 12 3/1/99 8:09 AM Page 509

OBJECT IVES OUTL INE

Use Visual Component Manager to manage
components.

. Visual Component Manager is an add-in provided
through Visual Studio. You can use Visual
Component Manager to manage source code or
compiled components to make your components
more available for reuse in future projects.

Create callback procedures to enable asyn-
chronous processing between COM compo-
nents and Visual Basic client applications.

. You can create special classes in COM components that
COM clients can instantiate and pass to COM compo-
nent instances. The special class instances can then be
used to notify the client when particular events happen.

Register and unregister a COM component.

. If a COM component is registered in a machine’s
Windows Registry, client programs can instantiate
objects from the component and manipulate them.
You need to know how to manually register and
unregister COM components.

Implement messages from a server component
to a user interface.

. This objective is a subobjective of the objective
“Implement online user assistance in a distributed
application.” The other subobjectives for online user
assistance are discussed in Chapter 7, “Implementing
Online User Assistance in a Distributed Application.”
This single subobjective is discussed here for better
logical continuity.

Overview of COM Component
Programming 513

The COM Specification and the ActiveX
Standard 514

Comparing In-Process and Out-of-Process
Server Components 515

Steps in Creating a COM Component 517

Implementing Business Rules with
COM Components 518

Implementing an Object Model with
a COM Component 519

Implementing COM Components
Through Class Modules 520

The Uses of Class Modules 520

Starting a Class Module in a Standard
EXE Project 520

The Class Module Name Property 520

Implementing Custom Methods in Class
Modules 523

Implementing Custom Properties in
Class Modules 524

Implementing Custom Events in Class
Modules 528

Built-In Events of Class Modules 530

Using Public, Private, and Friend 532

Storing Multiple Instances of an Object
in a Collection 533

Declaring and Using a Class Module
Object in Your Application 538

Managing Threads in a COM Component 541

N
O

T
E MTS Objective in Chapters 14 and 15

This chapter does not cover one of the
objectives listed under the COM com-
ponent heading in Microsoft’s pub-
lished certification exam objectives
list. That objective, “Design and create
components that will be used with
MTS,” is covered in Chapter 16.

15 002-8 CH 12 3/1/99 8:09 AM Page 510

OUTL INE

Managing Threads in ActiveX Controls
and In-Process Components 542

Managing Threading in Out-of-Process
Components 542

The Instancing Property of COM
Component Classes 544

Using Private Instancing for Service
Classes 545

Using PublicNotCreatable Instancing for
Dependent Classes 545

Instancing Property Settings for
Externally Creatable Classes 546

Deciding Between SingleUse and
MultiUse Server Classes 549

Handling Errors in the Server and the
Client 549

Passing a Result Code to the Client 550

Raising an Error to Pass Back to the
Client 551

Managing Components with Visual
Component Manager 552

Storing VCM Information in Repository
Databases 553

Making VCM Available in the VB IDE 553

Publishing Components with VCM 555

Finding and Reusing Components
with VCM 559

Using Interfaces to Implement
Polymorphism 561

Steps to Implement an Interface Class 563

Providing Asynchronous Callbacks 572

Providing an Interface for the Callback
Object 574

Implementing the Callback Object in the
Client 575

Manipulating the Callback Object in the
Server 577

Registering and Unregistering a COM
Component 579

Registering/Unregistering an
Out-of-Process Component 579

Registering/Unregistering an In-Process
Component 580

Sending Messages to the User from
a COM Component 581

Managing Forms in an Out-Of-Process
Server Component 581

Managing Forms in an In-Process
Server Component 582

Choosing the Right COM Component
Type 583

Implementing Scalability Through
Instancing and Threading Models 584

Under-the-Hood Information About
COM Components 585

Chapter Summary 587

15 002-8 CH 12 3/1/99 8:09 AM Page 511

STUDY STRATEGIES

. Create a COM component that implements busi-
ness rules or logic. Components include DLLs,
ActiveX controls, and active documents.

. For the first general objective (“Create a COM
component that implements business rules or
logic”), become familiar with the material dis-
cussed in this chapter’s major sections: “Steps
in Creating a COM Component,” “Implementing
Business Rules with COM Components,”
“Implementing an Object Model with a COM
Component,” and “Implementing COM
Components Through Class Modules.” Do
Exercise 12.1.

. For the objective that refers to threading mod-
els, see the section titled “Managing Threads in
a COM Component” and Exercise 12.2.

. Choose the appropriate threading model for a
COM component.

. Compile a project with class modules into a
COM component.

. Implement an object model within a COM
component.

. Set properties to control the instancing of a
class within a COM component.

. Determine how to send error information from a
COM component to a client computer.

. For the objective and subobjectives listed under
“Compile a project with class modules,” see
the sections titled “Declaring and Using a
Class Module Object in Your Application,”
“The Instancing Property of COM Component
Classes,” and “Handling Errors in the Server
and the Client.” Review Exercise 12.1 and do
Exercises 12.3 and 12.4.

. For the objective “Use Visual Component
Manager to manage components,” see the sec-
tion and subsections under “Managing
Components with Visual Component Manager.”
Complete Exercise 12.5.

. For the objective that refers to callback proce-
dures, see the section titled “Providing Asynch-
ronous Callbacks.” Complete Exercise 12.6

. For the objective that refers to registering and
unregistering a COM component, see the sec-
tion titled “Registering and Unregistering a
COM Component.” Complete Exercise 12.7.

. For the objective that refers to implementing
messages from a server component to a user
interface, see the section titled “Sending
Messages to the User from a COM
Component.” Complete Exercise 12.8.

15 002-8 CH 12 3/1/99 8:09 AM Page 512

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 513

INTRODUCTION

An object is externally creatable when an application that can serve as
an ActiveX client can declare an instance of (that is, instantiate) that
object as a variable and then manipulate the methods and properties
of that object.

You can register your server component in the Windows Registry in
one of several ways. These ways are discussed in more detail in the
section titled “Registering and Unregistering a COM Component.”

A Visual Basic project provides an externally creatable object through
certain project settings and by possessing a class module whose
properties you have set appropriately.

An externally creatable object also typically provides a gateway to
other objects that can’t be directly created by clients. Every COM
component provides at least one externally creatable object. The
server component’s externally creatable objects, together with the
other objects indirectly exposed by the externally creatable objects,
is known as an object hierarchy or object model.

You can implement your own COM component’s object model with
custom object classes. Although you can create custom object classes
specific to a single application, Microsoft’s published documentation
and courseware are full of examples of classes used to implement
COM components.

OVERVIEW OF COM COMPONENT
PROGRAMMING

Recall the syntax you saw in the preceding chapter for instantiating
ActiveX objects in a client application:

Dim xl as Excel.Application

and

set xl = CreateObject(“Excel.Application”)

or

set xl = GetObject(,”Excel.Application”)

N
O

T
E Getting Information About a COM

Component Developers of potential
client applications can find out about
your server component by looking at
the Windows Registry, or by using
utilities such as VB’s Object Browser.

15 002-8 CH 12 3/1/99 8:09 AM Page 513

514 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Some server components (including any server components that you
create with VB) support Microsoft’s recommended standard, Dim As
New. Assuming you had created a server component MyServer with a
class MyClass, you could set up an object variable reference to the
server component class with the line:

Dim objSvr As New MyServer.MyClass

This is the only line of code you would need, because the As New
keyword declares and instantiates the object variable in a single line
of code.

A somewhat more resource-efficient way to use the New keyword
would be to declare the object variable without the New keyword,
only using New when you’re ready to use the object in code:

Dim objSvr As MyServer.MyClass
‘Later in code:
Set objSvr = New MyServer.MyClass

This means that the resources to instantiate the object would not be
required until the time that the object was actually needed.

The common thread in each of these sample lines is the servername.
classname syntax you use when referring to your server component
class.

The preceding statements that reference the system name of the
server component and its class (Excel.Application or
MyServer.MyClass) assume that you have already set a reference to
the server component in the client project.

In this chapter, you see how to create, test, and maintain server com-
ponents that can behave as Excel.Application did in the examples
from Chapter 13.

The COM Specification and the
ActiveX Standard
Microsoft now uses the term ActiveX as the name for its standard for
enabling objects to be instantiated and communicate with each other
in a Windows environment. ActiveX is an extension of the older
OLE standard. The main difference between ActiveX and OLE stan-
dards is that Microsoft markets ActiveX as a technology for providing
Internet-enabled, docucentric computing solutions.

15 002-8 CH 12 3/1/99 8:09 AM Page 514

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 515

You will still see the term OLE used in Microsoft documentation
and in the names of many of its internal object types and events.
This is because the OLE standard is still one part of ActiveX, the
part that provides object linking and embedding. In fact, OLE
stands for “object linking and embedding.”

ActiveX and OLE, in turn, are based on a more generalized standard
or specification known as the Component Object Model, or COM.
The COM specification lays out the general blueprint for any object
standard and defines how separate object components can communi-
cate with and manipulate each other.

Comparing In-Process and
Out-of-Process Server Components
VB6 enables you to create two types of COM components:

á Out-of-process server components. Out-of-process server
components are always EXE files.

á In-process server components. In-process server compo-
nents are always DLL files.

The difference between these server component types is with respect
to the client application.

When a server component runs out-of-process with respect to its
client, it has the following characteristics:

á It can run as a standalone application completely apart from
the client.

á It does not share the same address space under the operating
system.

á Its public creatable classes can be instantiated either as
SingleUse or MultiUse objects. (See “The Instancing Property
of COM Component Classes” later in this chapter for a
discussion of these concepts.)

15 002-8 CH 12 3/1/99 8:09 AM Page 515

516 Par t I VISUAL BASIC 6 EXAM CONCEPTS

When a server component runs in-process with its client, it has these
important features:

á The server component and client share the same executable
space under the operating system.

á The server component and client share some of the same
memory.

á An in-process server component’s public creatable classes can
be instantiated only as MultiUse objects. (See “The Instancing
Property of COM Component Classes” later in this chapter.)

As you might imagine, there are pros and cons to both in-process
and out-of-process server components.

Performance: In-Process Server Components
Win the Contest
Because an in-process server component shares the same process space
with its client at runtime, communication between the in-process
server component and its client can avoid the ActiveX interface. The
client can therefore call the in-process server component very efficiently.

Flexibility and Availability: Out-of-Process
Server Components Win the Contest
Here is a list of things only an out-of-process server component can do:

á Provide classes that are either SingleUse or MultiUse. (See
“The Instancing Property of COM Component Classes” later
in this chapter.)

á Display modeless forms.

á Use the End statement (although not recommended in every
application because it prevents the firing of an Unload or
Terminate event).

15 002-8 CH 12 3/1/99 8:09 AM Page 516

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 517

STEPS IN CREATING A COM
COMPONENT

To implement a server component application, you must define
classes that will become the server component’s exposed objects.

In this section, you learn the basic steps for creating a server compo-
nent and implementing classes in the server component. Later in this
chapter, you also see how to test, fine-tune, maintain, and
distribute your server component.

To create a server component application, follow these basic steps:

1. Start a new project for the server component class. Use the
ActiveX DLL template for in-process component or EXE
template for out-of-process component.

2. Change the project’s name to match the name you want to
give your server component application. This choice of name
is important, because it is the name that the Windows Registry
will use to identify the server component and the name that
clients will use when they instantiate objects from the server
component with the servername.classname syntax.

For each object class that you want to implement in the server
component, follow these steps:

1. Add a class module to the server component project.

2. Set the class module’s Name property to match the name you
want to give the class.

3. If the class is to be externally creatable, make sure that the class
module’s Instancing property is set to SingleUse, MultiUse,
GlobalSingleUse, or GlobalMultiUse. (The ActiveX DLL or
ActiveX EXE automatically sets this property, but you should
check it anyway.) If the class should not be directly created by
clients, choose one of the other Instancing property’s options
(see the following section titled “The Instancing Property of
COM Component Classes”).

15 002-8 CH 12 3/1/99 8:09 AM Page 517

518 Par t I VISUAL BASIC 6 EXAM CONCEPTS

4. Implement the class object’s members (methods, properties,
and events) according to the guidelines given in the sections
under “Implementing COM Components Through Class
Modules” later in this chapter.

5. Create the other classes you need to round out your object’s
functionality.

IMPLEMENTING BUSINESS RULES
WITH COM COMPONENTS

. Create a COM component that implements business rules or
logic. Components include DLLs, ActiveX controls, and active
documents.

In a multitier business solution, the most common three tiers are as
follows:

á User-interface tier

á Business-rules or business-logic tier

á Data-access tier

The user-interface tier typically resides on each user’s workstation;
the business-rules or business-logic and data-access tiers more often
reside on a network server.

You can use ActiveX with VB to create COM components that
implement business logic in the solutions that you develop.

The objects provided by COM components to implement business
logic are often known as business objects. You might, for example,
provide a business object to the system in the form of a COM com-
ponent that gives credit information and performs credit validation
for customers.

When designing your system, you need to determine where compo-
nents for the business-logic tier should reside and what the best form
of implementation should be.

The first question to ask when designing a business-logic tier is this:
“How should the tier be implemented?” Some possibilities might
include the following:

15 002-8 CH 12 3/1/99 8:09 AM Page 518

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 519

á Implement as part of the user interface (compiled into that
tier’s executable). Although this might be the easiest to program
in the beginning, it would quickly become a maintenance
nightmare. Every time that your company changes the way it
does business, you would need to make a change to the applica-
tion and then distribute it to all the users. An email with a note
to please rerun the install would probably not be sufficient—if
a business rule changes, it should change for all users at the
same time; it would be hard to count on all users to implement
the change at, say, 12:00 a.m. on a particular date.

á Implement as part of the system’s data structure (a trigger or a
stored procedure). This would eliminate the problem of having
to update every user’s workstation. Such a choice will almost
certainly confuse the functions of any data tiers and the busi-
ness-logic tier, however. The business-logic tier would not be a
separate unit and so couldn’t be easily separated from the data
when needed. This solution also impedes scalability. What
would happen, for instance, if the data itself were someday
split into more than one database? Business rules would have
to be distributed among those databases. If any business rules
were duplicated between the databases, they would have to be
maintained in two places.

á Implement as a COM component on a server. This solution
would provide the most long-term stability for maintainability
and scalability. It would guarantee that future changes to the
business rules would only require maintenance in one place.
It would also guarantee that upward scaling of the system to
accommodate more users or increased resources for reasons
unrelated to business rule changes would not require changes
in the component or its implementation.

IMPLEMENTING AN OBJECT MODEL
WITH A COM COMPONENT

. Implement an object model within a COM component.

To implement an object model in a COM component, you typically
would use one or more classes of objects.

15 002-8 CH 12 3/1/99 8:09 AM Page 519

520 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á Define the major real-world objects that the component needs
to model. These major objects will become the classes of the
COM component.

á Define the attributes and behaviors of these real-world objects.
The attributes will become properties of the classes and the
behaviors will become methods or events.

á Identify any repeating groups of objects from among the
attributes of the class—that is, groups of subobjects that can
belong to the class and whose number might vary. An
employee can have one or more previous jobs, for example, so
PrevJobs could be an attribute of an Employee class. Such
repeating groups of objects can be implemented in Collection
objects, which in turn contain zero or more individual mem-
bers known as Dependent objects.

An Employee class in a Human Resources COM component might
have properties such as HireDate, Salary, and VacationTimeAccrued;
methods such as Promote, TakeVacationTime, Hire, and Fire; and
events such as VacationAccrualChange.

IMPLEMENTING COM COMPONENTS
THROUGH CLASS MODULES

. Compile a project with class modules into a COM component.

To create COM components in VB, you must first know how to cre-
ate and manipulate a class module. This section and the following
subsections discuss the basics of VB class modules and show how to
use objects created from classes in a standalone (non-ActiveX) pro-
ject. The information in these sections is referenced again
during the VB ActiveX programming discussion in later sections.

The Uses of Class Modules
You use class modules to implement your own custom object variable
types in VB. Just as VB provides the programmer with TextBox, Form,

15 002-8 CH 12 3/1/99 8:09 AM Page 520

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 521

CommandButton, or RecordSet object types, so you can provide other
programmers (or yourself) with, say, Employee, FileLocation, or other
object types. And just as the predefined object types have their partic-
ular properties, events, and methods, so can you define custom prop-
erties, events, and methods for your custom objects.

Each custom object type that you wish to define must have a class
module behind it. You can use class modules in two different
environments:

á As part of an ActiveX component server. As part of a
server, your class gets registered in the Windows Registry and
other applications can create object instances of it.

á As part of a standard EXE. Code in the rest of the applica-
tion outside the class module can declare and manipulate
object variables based on the class modules you provide within
the application.

The following subsections concentrate on the basics of creating and
manipulating a class in a standard EXE. Later sections extend the
use of classes to the world of COM components.

Starting a Class Module in a Standard
EXE Project
You can add a Class module to your project by choosing the Project,
Add Class Module VB menu option. From the resulting dialog box
(see Figure 12.1), you can choose Class Module, VB Class Builder,
Complex Data Consumer, Data Source, or OLE DB Provider.

If you choose the Class Module icon, you will find yourself in the
new class module’s code window.

The Class Module Name Property
Your class module’s Name property is important because it is the name
that controller code will use when it instantiates a copy of your class
as an object. You can change the class name from the Project
Explorer by following these steps:

N
O

T
E Class Builder Utility Not Used in This

Chapter Most of the techniques in
this chapter assume that you are
manually manipulating the class mod-
ule without benefit of the Class
Builder utility.

Add-in modules are beyond the scope
of the VB certification exam.

F IGURE 12 .1
Dialog box for adding a new class module to
your project.

15 002-8 CH 12 3/1/99 8:09 AM Page 521

522 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á In Project Explorer, right-click the name of the class module to
bring up the pop-up menu for this class module (see Figure 12.2).

á Choose the Properties option from the pop-up menu. The
only property listed is the Name property, and you can change it
here (see Figure 12.3).

Changing the Name of a Class
That Is Already in Use Be careful
when you change the name of a
class that is already in use,
because controller code depends
on the name of the class to instan-
tiate objects.

W
A

R
N

IN
G

F IGU R E 12 .2.
The pop-up menu of the class module

F IGU R E 12 .3.
The properties dialog box of a class module in
a standard EXE project.

15 002-8 CH 12 3/1/99 8:09 AM Page 522

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 523

Implementing Custom Methods in
Class Modules
When you create methods in a class, you can call them in the rest of
your code just as you would call methods for any standard VB class.

To provide methods for your class, just create Public procedures in
the class module (both Sub and Function procedures will work).
Code from other parts of the application or in ActiveX controllers
can then call these procedures directly as methods of the object
Class.

The example in Listing 12.1 defines a Public Sub procedure
SearchPath in the class module FileFind. Code residing elsewhere in
the application can call the SearchPath method of the object Class.
The calling code passes to the method the name of the directory to
search and a file specification to search for.

LISTING 12.1

IMPLEMENTING A METHOD WITH A Public
PROCEDURE

[In the Class module]
Public Sub SearchPath(strDirToSearch As String, _

strFileSpec As String)

‘Add a backslash to the directory
‘name if one’s not there already
If Right(strDirToSearch, 1) <> “\” Then

strDirToSearch = strDirToSearch & “\”
End If

‘Get the name of the first file in the
‘directory fitting the specified pattern
Dim strName As String
strName = Dir$(strDirToSearch & strFileSpec)

‘Loop through all file names in the directory
‘fitting the specified pattern
Do Until strName = “”

‘Add this file to our list
frmFiles.lstFiles.AddItem strName
‘get the next file name in the list
strName = Dir$

Loop
End Sub

continues

15 002-8 CH 12 3/1/99 8:09 AM Page 523

524 Par t I VISUAL BASIC 6 EXAM CONCEPTS

[In the General Declarations of a Form]
Private FF As FileFind

[In the calling routine]
Private Sub cmdFindFiles_Click()

lstFiles.Clear
Set FF = New FileFind
FF.SearchPath _
dirFind.Path, _
txtFileSpec.Text

End Sub

Implementing Custom Properties in
Class Modules
You can create custom properties as part of the functionality that
your Class object provides to calling code. You can implement these
custom properties either as Public variables of the Class or by using
special Property Let/Set and Property Get procedures.

Implementing Properties as Public Variables
A Public variable in a class module automatically implements a
property of the class. You can declare Public variables in a class
module in the same way you declare Public variables for other mod-
ules such as forms and standard (BAS) modules.

To add a property called “Name” to a class, you just write the fol-
lowing lines in the General Declarations section of a class module:

Public Name as String

This is, of course, the same way that forms use Public variables.
Therefore, when calling code accesses your class by instantiating an
object, the caller can manipulate the properties of the object it has
declared with the standard object.property syntax, as in the
following line:

objMine.Name = “Geryon”

and later

MsgBox objMine.Name

LISTING 12.1 continued

IMPLEMENTING A METHOD WITH A Public
PROCEDURE

15 002-8 CH 12 3/1/99 8:09 AM Page 524

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 525

The basic advantage of implementing an object property with a
Public variable is that it is very easy to do. The downside is that

á You can’t create a read-only property, because Public variables
are always writable.

á You have no way of triggering an automatic action when the
property is manipulated (such as hiding an object when a
Visible property is set to False).

á Different simultaneous instances of a class share the same
Public variables, and thus cause all sorts of possible confusion
in your calling code.

To get around these disadvantages, you must give up the idea of
using Public variables to implement class properties and instead use
Property Let/Set and Property Get procedures as described in the
following sections.

Implementing Properties with Property
Procedures
With some additional work, you can overcome the disadvantages of
properties implemented as Public variables.

You can use the special Property procedures instead. To implement
the Name property of a class with Get and Let procedures, you put the
code shown in Listing 12.2 in your class module rather than a
Public variable declaration.

LISTING 12.2

IMPLEMENTING A CLASS PROPERTY WITH Property
Get AND Let PROCEDURES

[General Declarations section of Class]
Private gstrName As String

[General Code section of Class]
Public Property Let Name(strVal As String)

gstrName = strVal
End Property
Public Property Get Name() As String

Name = gstrName
End Property

15 002-8 CH 12 3/1/99 8:09 AM Page 525

526 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Using a Private Variable of the Class to Store a
Property
Notice in Listing 12.2 that you still declare a variable in the class’s
General Declarations section as you would when implementing prop-
erties with Public variables, but this time the variable is a Private
variable. This means the variable won’t be visible outside the class.
You use it to store the value of the property you are implementing,
but code won’t access this variable directly. Instead, Property Let and
Get procedures will be the gateway to the property.

Allowing Writes to a Property with Property Let
The Property Let procedure is a Sub procedure that will run when-
ever the controlling code attempts to assign a value to the property,
as when, say, it runs code such as:

objMine.Name = “Ciacco”

Notice that the Property Let procedure in Listing 12.2 takes a sin-
gle parameter. The parameter holds the value that the controlling
code is trying to assign to the property. If your controlling code had
run the single line listed here, the value of the parameter strVal in
the Property Let procedure would be “Ciacco”. The Property Let
in Listing 12.2 then does what Property Let procedures almost
always do: It stores the incoming parameter value in the Private
variable (gstrName in this case) where the value of the Name property
is being held.

Allowing Reads of a Property with Property Get
Property Get is a Function procedure that will run whenever con-
trolling code attempts to read the value of the property named by
the procedure, as in either of the two lines in Listing 12.3. Notice
that the Property Get in Listing 12.2 takes no parameters, but has a
return type and sets a return value equal to the name of the Property
Get procedure, just as any normal Function procedure does. That is
because the Property Get’s job is to pass a value back when control-
ling code requests it. Typically, the Property Get will do just as the
example in Listing 12.2 does: It will get the value of the property
from the value stored in a Private variable of the class.

15 002-8 CH 12 3/1/99 8:09 AM Page 526

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 527

LISTING 12.3

CONTROLLER CODE THAT READS THE VALUE OF AN
OBJECT’S PROPERTY

ThisName = objMine.Name
MsgBox “And then we met “ & objMine.Name

Implementing a Read-Only Property
If you would like a property to be read-only for controller code, all you
have to do is leave out the Property Let procedure from your class.

That way, the controller has no way of writing the property. You can
still store the value of the property in a Private variable of the class
module. Other parts of your server class can manipulate the property
by changing the Private variable, but the controller application can’t
change it directly.

Listing 12.4 implements an Integer-type property to track the num-
ber of times the Name property changes. The tracking property
is called Accesses, and is stored in a class Private variable called
giAccesses. The Accesses property would be updated indirectly
through giAccesses every time the Name property gets changed
by a controller (the Property Let Name procedure increments
giAccesses). Because there is no written Property Let Accesses
procedure, however, there is no way for controlling code to change
the Accesses property directly.

LISTING 12.4

IMPLEMENTING A READ-ONLY CLASS PROPERTY BY
OMITT ING ITS PROPERTY LET PROCEDURE

[General Declarations of Class]
Private giAccesses As Integer
Private gstrName As String

[Code section of Class]
Property Get Accesses() As Integer

Accesses = giAccesses
End Property

Don’t Use Public Variables to
Store Intermediate Property Values
Don’t use class Public variables to
store Property Let/Get’s intermedi-
ate values, because then controller
code can read and write them
directly, which will confuse the issue
of how to access the property’s
value. Always use class Private
variables to store the values of
properties that you implement with
Property procedures.

W
A

R
N

IN
G

continues

15 002-8 CH 12 3/1/99 8:09 AM Page 527

528 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Public Property Let Name(strVal As String)
gstrName = strVal
giAccesses = giAccesses + 1

End Property

Public Property Get Name() As String
Name = gstrName

End Property

Implementing Custom Events in Class
Modules
You can define and fire your own custom-defined events in a class
module. The act of firing an event from within the class module’s
code is known as raising the event. When an object instantiated from
your class raises an event, the controller code can handle that event
in an event procedure.

Declaring the Event
You must first define the event by declaring it in the General Decla-
rations section of the class. The syntax for an event declaration is

Public Event EventName (argument list)

where argument list is a list of arguments declared by name and type
similar to the parameter list you would declare in a regular proce-
dure. You might declare an event named FileFound, for example,
with the following line in a class’s General Declarations section:

Public Event FileFound _
(FileName as String, _
FilePath As String)

The controlling code would then be able to write an event procedure
that received two String-type parameters. As the following section
shows, it is the responsibility of the code in the class that raises the
event to determine which values the arguments will hold.

LISTING 12.4 continued

IMPLEMENTING A READ-ONLY CLASS PROPERTY BY
OMITT ING ITS PROPERTY LET PROCEDURE

15 002-8 CH 12 3/1/99 8:09 AM Page 528

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 529

Unless you specify otherwise with the ByVal keyword, the arguments
are passed by reference. This means that the event procedure in the
controller code could change the value of the parameters. Modifiable
arguments provide a way for an object and its controller to commu-
nicate with each other during processing, because you could specify
arguments whose purpose is to carry a message back from the con-
troller. In the following example, a third Boolean parameter is
added: Cancel. The controller might change this to tell our class
object to stop processing:

Public Event FileFound _
(FileName as String, _
FilePath As String, _
Cancel as Boolean)

Raising the Event and Implementing
Callbacks in a Class Object
The only other thing you need to do in the class to implement an event
is to fire, or raise, the event in a single line of code, typically in a method
of the class, as shown in Listing 12.5 with the RaiseEvent keyword.

Although, as just stated, you raise the event with a single line of
code, you will probably need to write several more lines to fully
implement the firing of the event, especially if the event provides
arguments to the controller: Before firing the event, you will want
to prepare the value of the arguments to be passed to the controller,
and after the event fires, you will want to check the arguments’ val-
ues to see whether the controller has changed any of them.

Notice that the code checks the value of the Cancel argument in
Listing 12.5 after the event fires to see whether the controller wants
this code in our class to continue processing. Because controllers can
modify an event’s arguments, this effectively implements callback
functionality between controller and object.

LISTING 12.5

RAIS ING A CUSTOM EVENT FROM THE CODE IN
YOUR CLASS

‘. . .code to assign values of strName and strDir
‘initialize value for
‘Cancel argument
blnCancel = False

continues

15 002-8 CH 12 3/1/99 8:09 AM Page 529

530 Par t I VISUAL BASIC 6 EXAM CONCEPTS

‘fire the event
RaiseEvent FileFound(strName, strDir, blnCancel)

‘check to see whether controller
‘changed the Cancel argument
If blnCancel Then Exit Sub

Built-In Events of Class Modules
Every Class module comes with two predefined events: Initialize
and Terminate.

You can find the event procedure stubs for these two events in the
class module’s code window by clicking the Objects drop-down list
(left-hand list box at the top of the code window) and choosing the
Class object.

The Procedures drop-down list (right-hand list box at the top of the
code window) then displays the Initialize and Terminate event
procedure stubs, which you may navigate to with the mouse
(see Figure 12.4).

F IGU R E 12 .4
Navigating to a class module’s Initialize and
Terminate event procedures.

LISTING 12.5 continued

RAIS ING A CUSTOM EVENT FROM THE CODE IN
YOUR CLASS

15 002-8 CH 12 3/1/99 8:09 AM Page 530

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 531

The Initialize Event
The Initialize event happens whenever a routine in another part
of the application or in an ActiveX client uses your class module to
instantiate a new copy of an object.

You therefore want to put code in the Initialize event procedure
that is appropriate for—well—initialization.

You might set default initial values of properties from the Windows
Registry or Private constants, for instance. If your class accesses data,
you might open database files here. The example in Listing 12.6 ini-
tializes a classwide Private variable that is used as the storage for
a pair of Property Let/Property Get procedures.

LISTING 12.6

IN IT IAL IZ ING A PROPERTY’S VALUE IN THE CLASS
MODULE’S INITIALIZE EVENT PROCEDURE

Private Sub Class_Initialize()
iNumberOfAccesses = 0

End Sub

You should remember that the Initialize event takes place before
your object is completely instantiated. Therefore, it is not a good
place to do things such as instantiating another object variable of the
same class: This would cause an infinite recursive loop, as successive
copies of the object would try to instantiate each other.

The Terminate Event
The Terminate event happens whenever a routine in another part of
the application or in an ActiveX client destroys the object instance
of your class module. An object gets destroyed in one of two ways:

á The variable that was used to hold your class module’s object
goes out of scope in the calling code.

á The calling code explicitly destroys the object with the syntax
Set Object = Nothing.

You might use the Terminate event procedure to close data files or
write information to the Windows Registry or INI files, or just to
give a farewell message to your user.

15 002-8 CH 12 3/1/99 8:09 AM Page 531

532 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Using Public, Private, and Friend
If a property or method is added to a class module, it becomes part
of the class. This property or method is usable by other modules in
the same project as the class module. It is also available to other pro-
jects, as a property or method of objects derived from that class. This
is the default setting for the scope of a property or method. There
are three other ways of defining the scope of a property or method:

á Public

á Private

á Friend

Using the Public Keyword
If the Public keyword is used when defining a property or method,
the property behaves as though the Public keyword is not used. This
is because the default scope of a property or method defined in a
class module is Public.

Public properties and methods are available to other modules in the
same project as the class module. They are also available to other
projects as properties and methods of an object derived from that
class module. Most properties and methods will be defined as
Public.

Consider the following, for example:

Public Property Get HireDate() as Date
Public Sub Save()

Using the Private Keyword
Using the Private keyword when defining a property or method cre-
ates a property or method private to that class module. Only code in
that class module can access the property or method.

Private methods are typically support routines used by the proper-
ties of a class. For example, you may need some helper routines that
perform date calculations.

Consider the following, for example:

Private Function NextWorkDay(FromDate as Date) As Date
Private Sub PrintForm(FormName As String)

N
O

T
E Define Properties and Methods as

Public Explicitly defining properties
and methods as Public when creating
them will avoid confusion later
because you or another programmer
may assume that the scoping is not
Public. Also, there is the slight (actu-
ally, very unlikely) but possible chance
that Microsoft will change the default
at some later date. This could lead to
large sections of your code breaking.
Avoid these possibilities and explicitly
define properties by using the appro-
priate scope when you create them.

15 002-8 CH 12 3/1/99 8:09 AM Page 532

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 533

Using the Friend Keyword
Using the Friend keyword when defining a property or method cre-
ates a property or method private to the project containing the class
module. Code in the same class module as the procedure can access
the property or method. Code in other modules in the same project
can also access the property or method. This is useful when creating
helper classes that should not be used by other programs.

Friend properties and methods are often used when a number of
classes assist the main class that other programs will use. A class used
to write another object to a file, for example, might have two meth-
ods: Load and Save. These methods, declared as Friend, would allow
the calling object to access them. They would not be available to
other projects.

Consider the following, for example:

Friend Sub Load(FileName As String)
Friend Function Save(FileName As String) As Boolean

By explicitly setting the scope for each of the properties and methods
in a class, you can better control how other modules and programs
access them. Most properties and methods will be Public; however,
having access to the Private and Friend keywords allows for greater
control of access.

Storing Multiple Instances of an
Object in a Collection
A controller may need to create an indefinite number of copies of a
single object class. The FileFind method might instantiate a special
File object for every file it finds, for instance. You don’t know, how-
ever, exactly how many Files might get created. You have already
seen a concept in VB that enables you to implement something like
this: the collection.

To implement your own custom collection in a project, you need to
add two classes:

á A dependent class, which implements a single object of the
collection

á A dependent collection class, which implements the collection of
dependent Class objects

N
O

T
E Don’t Use As Object to Declare

Friend Objects When declaring an
object that has properties or methods
declared as Friend, you must declare
the object explicitly. If the object is
declared As Object, the Friend prop-
erties will not be available for use.

15 002-8 CH 12 3/1/99 8:09 AM Page 533

534 Par t I VISUAL BASIC 6 EXAM CONCEPTS

These classes are in addition to at least one other class that probably
already exists in your project: the parent class, which is considered to
“own” the dependent collection class.

By convention, a to dependent class Name is a singular noun and a
dependent collection class Name is the plural form of the same
noun. You might name a dependent collection class Files and a
dependent class File, for example.

Setting Up the Dependent Class
To start a dependent class in your server project, just insert a class
module into the project and make sure that the new module is
named appropriately. As mentioned earlier, the name of the depen-
dent class should be a singular noun.

You can then give the dependent class any features you need individ-
ual elements of the collection to have, such as custom properties,
methods, or events.

Setting Up the Dependent Collection Class
Once again, insert a class module into the project and make sure
that it is named appropriately: Typically, the name will be the plural
form of the dependent class name.

Now, in the General Declarations section of the newly inserted mod-
ule, declare a Private Collection variable, for example:

Private colFiles As New Collection

The Collection type has special methods and properties discussed
in the next section that enable you to implement a collection of
objects.

You declare the Collection in the General Declarations section so
that the collection gets initialized as soon as an object is instantiated
from this class. You declare it as Private so that controller code can’t
directly manipulate the Collection object. Instead, the controller
code will have to go through wrapper methods (Public procedures)
that you create in this class.

15 002-8 CH 12 3/1/99 8:09 AM Page 534

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 535

Implementing Built-In Collection Features in
the Dependent Collection Class
Collection objects have three built-in methods and one built-in
property:

á The Count property, which returns the number of items in the
collection

á The Add method, which adds a new item to the collection and
returns a pointer to the new item

á The Remove method, which removes an item, given its index or
unique key

á The Item method, which returns a pointer to an existing item,
given its index or unique key

As mentioned in the preceding section, you don’t call these features
directly from outside the dependent collection class. Instead, you need
to write Public wrapper functions that, of course, become methods of
the dependent collection class. These methods then mediate between
controller calls to the collection and the collection itself.

The following sections list the wrapper methods you must write for
each of these features.

The Collection’s Count Property and Class Wrapper
Method
You need to write a Count method in the dependent collection class
to wrap the collection’s Count property. This method just calls the
Private Collection object’s Count property and returns its value,
as in Listing 12.7.

LISTING 12.7

A WRAPPER METHOD FOR THE COLLECT ION’S COUNT
PROPERTY

Public Function Count() As Long
Count = colFiles.Count

End Function

15 002-8 CH 12 3/1/99 8:09 AM Page 535

536 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The Collection’s Add Method and Class Wrapper
Method
You need to write an Add method in the dependent collection class
to wrap the collection’s Add method. You will implement this as a
Function returning an object variable pointing to the newly added
item, as in Listing 12.8. Notice that you pass the wrapper Add
method any properties that you want to assign to the new object you
will create. You initialize a new object variable whose type is an
object of the dependent class. You then assign the properties that
were passed into the wrapper and call the built-in Add method of the
Collection object to add the newly created object to the Collection
and give it a key value. Finally, you set the return value of your
wrapper method to point to the newly added item.

LISTING 12.8

A Class ADD METHOD TO WRAP THE COLLECT ION’S
ADD METHOD

Public Function Add (ByVal Name As String, _
ByVal Path As String) _

As File

‘Initialize new object variable
Dim filNew As New File

‘assign parameters to its
‘properties
FilNew.Name = Name
FilNew.Path = Path

‘Add it to the collection
colFiles.Add filNew, Name

‘Let the return value of this
‘function point to it
Set Add = filNew

End Function

The Collection’s Delete Method and Class Wrapper
Method
You need to write a Remove method in the dependent collection class
to wrap the collection’s Remove method. You will implement this as
a Sub procedure that takes an argument indicating the index in the

15 002-8 CH 12 3/1/99 8:09 AM Page 536

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 537

collection of the object to be deleted, as in Listing 12.9. Notice that
the parameter is declared as a Variant rather than as an Integer or a
Long as you might expect for an Index value. The reason for this is
that controlling code can use either a numeric index or a String-type
key value to look up an item in the collection.

LISTING 12.9

A WRAPPER FUNCTION FOR THE COLLECT ION’S
REMOVE METHOD

Public Sub Remove (ByVal Index As Variant)
colFiles.Remove Index

End Sub

The Collection’s Item Method and Class Wrapper
Method
The Item method you will write wraps around the collection’s built-
in Item method, as you can see in Listing 12.10. The method will
return a pointer to a particular item in the collection. To do so, it
must take an Index parameter, which can be either an Integer array
index of a unique key of type String. As with the Remove method,
this parameter must be declared as a Variant to accommodate both
these possibilities.

LISTING 12.10

AN ITEM WRAPPER METHOD FOR THE
COLLECT ION’S BUILT- IN ITEM METHOD

Public Function Item _
(ByVal Index As Variant) _
As Variant

Set Item = colFiles.Item(Index)
End Function

Initializing the Collection in the Parent Class
The Parent class shows us just the tip of the collection’s iceberg. It
doesn’t have to do much to implement this custom object class col-
lection, but it does need to refer to the collection, because it provides the
gateway to the collection by being the only externally creatable class.

15 002-8 CH 12 3/1/99 8:09 AM Page 537

538 Par t I VISUAL BASIC 6 EXAM CONCEPTS

You need to put a statement in the Parent class’s General
Declarations that initializes a pointer to the dependent collection
class. If the dependent collection class were named Files, for exam-
ple, you would put a line in the Parent class’s General Declarations
that would read as follows:

Public Files As New Files

Declaring and Using a Class Module
Object in Your Application
The previous sections of this chapter have discussed how you can
implement a custom object’s properties, methods, events, and
collections in a class module.

Now it is time to see how to use a custom object in controlling code.
Such code might reside in another module in the same application
or in a separate ActiveX client.

Declaring and Instantiating a Class Object
You have two basic options for actually instantiating a Class object:
Declare it like any other variable and assign its contents later, or
instantiate the object when you declare it.

Declare Now, Instantiate Later
You can declare the custom object somewhere in your code just as
you would declare a VB variable of a standard variable type. Use the
class name as the variable, as in the following example:

Private FF As FileFind

Later in your code, you need to use the Set and New keywords to
instantiate the object:

Set FF = New FileFind

Instantiate When You Declare
You can declare a Class object and instantiate it with a single state-
ment by using the New keyword in the declaration statement:

Private FF As New FileFind

15 002-8 CH 12 3/1/99 8:09 AM Page 538

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 539

Declaring WithEvents
If you plan to program the Class object’s event procedures, you must
use the WithEvents keyword in the declaration, as in the following
example:

Private WithEvents FF As FileFind

You can’t use the New keyword in a WithEvents declaration, so you
always have to instantiate these Class objects later, as described ear-
lier in the section titled, “Instantiate When You Declare”.

Manipulating Class Object Properties and
Methods
After you have instantiated your Class object, manipulating the
object’s properties and methods becomes quite straightforward: You
use exactly the same techniques and syntax as you would use to
manipulate VB’s standard objects.

You manipulate a Class object’s properties with the Object.Property
syntax, as in the following example:

objMy.Name = “Vergilio”
MsgBox objMy.Path

You manipulate a Class object’s methods with the Object.Method
syntax, as in the examples in Listing 12.11.

LISTING 12.11

CALL ING CUSTOM METHODS IN CONTROLL ING CODE

‘Method without argument or return value
objName.ShowMsg

‘Method with argument
objName.KillFile “MY.BAK”

‘Method with return value
strDir = objName.FindFile(“VB.EXE”)

15 002-8 CH 12 3/1/99 8:09 AM Page 539

540 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Handling a Class Event
You handle a Class object’s event just as you would handle events for
a VB control: by writing code in the predefined stub of its event pro-
cedure. To make the object’s event procedure available in a form or
another class module, you must declare the object variable with the
special WithEvents keyword in the General Declarations section, as
in the following example:

Private WithEvents FF As FileFind

where FF will be the name of the object variable, and FileFind is the
name of its class.

After you insert this declaration in your code, you will be able to see
the object variable in the Objects list box at the upper-left corner of
the code window of the file (Form or Class) where you put the decla-
ration. When you choose the object from this list, you will then be
able to see the object’s events in the Events list box at the upper-right
corner of the code window. If you use the Events list box to navigate
to the event you are interested in, you will find your cursor blinking
inside the predefined event procedure stub for that event, just as you
would for any control you had placed on a VB form (see Figure 12.5).

At this point, all you need to do is to write code in the event proce-
dure, as in Listing 12.12. If the event procedure furnishes parame-
ters, you can use them and, if appropriate, change them. The event
procedure in Listing 12.12 takes three parameters. The first two are
informational, and the third (Cancel) could be changed to True to
tell the object to stop the process that is generating these events (in
this case, a file search process).

LISTING 12.12

EVENT-HANDL ING CODE FOR A CUSTOM OBJECT
NAMED FF
Private Sub FF_FileFound _
(strFileName As String, _
strFilePath As String, _
Cancel As Boolean)
iFilesFound = iFilesFound + 1
If iFilesFound [me] 20 Then
‘tell object to stop processing if
‘we found the maximum number of files

Cancel = True
End If

End Sub

15 002-8 CH 12 3/1/99 8:09 AM Page 540

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 541

MANAGING THREADS IN A COM
COMPONENT

. Choose the appropriate threading model for a COM component.

VB6 gives programmers some capabilities for managing threads in
COM components. A thread, simply defined, is a single path of
execution in a computer.

In Win16 (Windows for Workgroups and Windows 3.x), every
application had one and only one separate thread.

In Win32 (Windows 95, Windows NT, and beyond), a single appli-
cation may use more than one thread. This might be advantageous if
the application instantiates multiple objects at the same time. Each
object could have its own thread, or the application might have a
fixed number of threads to use and could manage its objects across
these threads.

All VB6 applications use a type of threading known as apartment-
model threading. When threads run under the apartment model, the
object in each thread is unaware of objects in other threads and has
its own separate copy of global data.

Can’t Use As New in WithEvents
Declaration When you declare
an object using the WithEvents key-
word, you can’t instantiate it
at the same time with the New key-
word. You must instantiate the
object later in your code.

W
A

R
N

IN
G

Can’t Use WithEvents in a
Standard Module You can’tuse
the WithEvents keyword in a stan-
dard module.

W
A

R
N

IN
G

F IGURE 12 .5
Navigating to the event procedure for a custom
object’s event.

15 002-8 CH 12 3/1/99 8:09 AM Page 541

542 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The options for threading are different for COM components,
depending on the type of component that you are developing.
The following sections discuss these options.

Managing Threads in ActiveX Controls
and In-Process Components
If your application is an in-process component (ActiveX DLL) or an
ActiveX control, the client application will control the creation and
management of threads. You may still, however, specify whether your
component will allow a single thread or multiple apartment threads.

You can specify whether your component supports multiple apart-
ment threading by choosing either Apartment Threaded or Single
Threaded from the drop-down box in the Threading Model section
under the General tab of the Project, Properties dialog box, as shown
in Figure 12.6.

Note that the default setting for in-process and control components
is Apartment Threaded.

Finally, you can check the Unattended Execution box on the General
tab of the Project, Properties dialog box (refer again to Figure 12.6)
to ensure that your in-process component is thread-safe.

Managing Threading in Out-of-Process
Components
If your application is an out-of-process component (ActiveX EXE),
you have three choices for its threading model (refer to Figure 12.6):

á A Single thread. When a client makes a request to the com-
ponent before previous requests have finished processing, the
additional request is serialized. A serialized request is placed in
a queue behind other requests on the same thread.

To make your out-of-process component single-threaded,
select the Thread Pool option on the General tab of the
Project, Properties dialog box and make sure that the number
of threads is one.

F IGU R E 12 .6
Specifying the threading model for an in-
process component (ActiveX DLL) or an ActiveX
control.

N
O

T
E Single-Threaded ActiveX Controls

Cause Problems in Multithreaded
Clients If a client application is mul-
tithreaded, a single-threaded ActiveX
control can cause problems for the
multithreaded client. In fact, if a multi-
threaded client application is being
written in VB, VB will not even allow
programmers to use a single-threaded
ActiveX control in the project.

15 002-8 CH 12 3/1/99 8:09 AM Page 542

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 543

Typically, developers choose this option when compiling
projects that were created in earlier versions of VB.

á Round-robin thread assignment to a fixed number of
threads. There is an upper limit on the number of threads
that the component will support. As additional requests pile
up beyond the maximum number of threads, the system moves
to the next thread (or cycles back to the first thread if it was
already on the least thread), serializing the new request behind
other requests on the next thread.

To implement round-robin thread assignment, select the
Thread Pool option on the General tab of the Project,
Properties dialog box, setting the number of threads to a num-
ber greater than one. You must also make sure that the project
is marked for Unattended Execution.

Round-robin threading can actually manage system resources
and performance more efficiently than can unlimited threading
(discussed next), because round-robin threading limits the
amount of server overhead that will be dedicated to a COM
component’s objects.

The main disadvantage of round-robin threading is that it is
nondeterministic regarding the exact allocation of objects to
threads. In other words, you can neither predict nor discover
which objects are assigned to which threads, nor whether
threads are load balanced. Load balancing is the art of allocat-
ing roughly similar amounts of work to available threads. In
other words, it is possible with round-robin threading that one
thread might have half a dozen objects serialized, and another
thread may have only one object waiting in its queue, or in
some cases no object at all.

á Unlimited threads. A separate new thread will begin for
every new object.

To implement unlimited thread assignment, select the Thread
per Object option on the General tab of the Project, Properties
dialog box. You must also make sure that the project is marked
for Unattended Execution.

Unlimited threads will, of course, guarantee that every new
connection to the out-of-process component gets its very own
thread and therefore suffers no blockage.

15 002-8 CH 12 3/1/99 8:09 AM Page 543

544 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The performance of the system as a whole might degrade with
a lot of unlimited thread connections, however, because the
server will have to provide resources for each thread.

The section titled “Implementing Scalability Through Instancing
and Threading Models” discusses these threading options in the light
of solution scalability.

THE INSTANCING PROPERTY OF COM
COMPONENT CLASSES

. Set properties to control the instancing of a class within a
COM component.

Class modules in a COM component can be classified according to
their relationship to client applications:

á Service classes. These classes are for internal use by the
server itself and are invisible and unusable to clients.

á Dependent classes. These classes are visible to clients, but
clients can only instantiate and manipulate them indirectly
through the third type of class, externally creatable classes.
(For a further discussion of dependent classes, see the subsec-
tions under “Storing Multiple Instances of an Object in
a Collection” in this chapter).

á Externally creatable classes. These classes are visible to
clients, and clients can instantiate and manipulate their objects
directly.

When you create a class module in a COM component, you should
set its Instancing property to reflect how the class module will
behave with respect to clients.

To set the class’s Instancing property, follow these steps:

á In Project Explorer, right-click the name of the class module to
bring up the pop-up menu for this class module.

á Choose the Properties option from the pop-up menu. On the
Properties window, you can choose the drop-down list for the
Instancing property’s settings (see Figure 12.7).

15 002-8 CH 12 3/1/99 8:09 AM Page 544

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 545

Note that the Instancing property is unavailable for the class mod-
ules of nonserver projects. In such projects, the Instancing property
is always implicitly Private.

Using Private Instancing for Service
Classes
A service class is a class that is only used internally by the server. In
other words, you don’t want to make this class available in any way
to your server’s clients, either as an externally creatable class or as a
dependent class.

If you set the class’s Instancing property to Private, no applications
outside your server can see this class or instantiate objects from it.

Using PublicNotCreatable Instancing
for Dependent Classes
If you want to set up a dependent class, your class must be visible
to clients. A dependent class object is, by definition, not directly
managed by clients, however. Instead, clients can only instantiate
and manipulate dependent classes through externally created classes
(see the following sections).

F IGURE 12 .7
Choices for the Instancing property in the
Properties dialog box of a class module in an
ActiveX EXE project.

15 002-8 CH 12 3/1/99 8:09 AM Page 545

546 Par t I VISUAL BASIC 6 EXAM CONCEPTS

For dependent classes, you will set the Class Instancing property to
PublicNotCreatable. This signifies that an object of this class is visible to
a client, but that the client can’t create such an object directly.

Instancing Property Settings for
Externally Creatable Classes
As you will recall from the section titled “Overview of COM
Component Programming,” an externally creatable class provides
objects that a client application can instantiate directly.

You might guess that, because there is a single Instancing property
setting for service classes and one for dependent classes, there would
be a single setting as well for externally creatable classes.

The situation is a bit more complex than one Instancing setting can
handle, however, because external objects have several additional
features:

á External objects can be single use or multiuse. A single-use
object can’t be shared by more than one client, whereas a
multi-use object can (see the following sections for further
details).

á External objects can be global or they can require explicit
instantiation (see the following sections for further details).

The combination of these two features yields four possible
Instancing properties for externally creatable objects, as discussed
in the following four sections.

Using SingleUse Instancing for Separate
Instances of Every Object
A SingleUse class can only supply one instance of itself per copy of
its component.

Assume that your COM component has two SingleUse object
classes, ClassA and ClassB.

If two clients want to instantiate copies of ClassA from your server
at the same time, ActiveX runs a second instance of the server each
time an instance of ClassA is created.

N
O

T
E SingleUse Instancing Not Available in

DLLs The SingleUse Instancing set-
ting is not available in ActiveX DLL
projects.

15 002-8 CH 12 3/1/99 8:09 AM Page 546

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 547

If one client wants to instantiate a copy of ClassA and another client
wants to instantiate a copy of ClassB, however, ActiveX will allow
both of them to use the same copy of your server, as long as each
object instance is the first requested instance for each class.

Using GlobalSingleUse to Avoid Explicit
Object Creation
A Global class does not require a client to explicitly instantiate it
before the client tries to use it.

In other words, if a Global class exists in a server application that a
client is referencing, the client can manipulate the Global class meth-
ods and properties as if they were just Public variables and
procedures of the client.

Suppose, for example, that your server, named MyServices, has a
SingleUse server class named FileSvc, with a property named fsSize
and methods named fsFind and fsDelete. If client programmers
wanted to use the FileSvc class to manipulate a file, they might write
code that looks like Listing 12.13. This code declares and instantiates
an object from the server/class combination and then calls the object’s
methods and properties, using the object.member syntax.

LISTING 12.13

MANIPULAT ING AN OBJECT FROM A CLASS THAT’S
NOT GLOBAL

Dim filCurr As New MyServices.FileSvc
filCurr.fsFind “VB6.dep”
If filCurr.fsSize = 0 Then

filCurr.fsDelete
End If

You could save client programmers some work, however, by setting
the Instancing property of the FileSvc class to GlobalSingleUse. If
you did so, client programmers could accomplish the same thing by
writing the code in Listing 12.14. Notice that it is not necessary to
declare or instantiate an object variable, nor is it necessary to use any
sort of object reference at all when you want to manipulate the class’s
properties and methods.

N
O

T
E GlobalSingleUse Instancing Not

Available for DLLs The
GlobalSingleUse Instancing setting is
not available in ActiveX DLL projects.

N
O

T
E Note: Internal Code Must Instantiate

GlobalSingleUse Classes Explicitly
Although client projects can access
members of GlobalSingleUse classes
as if they were Public variables, code
within the same server project as the
GlobalSingleUse class cannot do so.
In other words, if you want to access
the members of a GlobalSingleUse
class from within the same server
project, you must still instantiate an
object from the GlobalSingleUse
class to do so.

15 002-8 CH 12 3/1/99 8:09 AM Page 547

548 Par t I VISUAL BASIC 6 EXAM CONCEPTS

As mentioned in the note accompanying this section, however, you
must fully declare the object variable when programming with a
GlobalSingleUse class within the component itself.

LISTING 12.14

MANIPULAT ING A GLOBAL CLASS OBJECT

fsFind “VB6.dep”
If fsSize = 0 Then

fsDelete
End If

Before you decide to make all your externally creatable classes
GlobalSingleUse or GlobalMultiUse, however, consider the
drawbacks:

á Client-side code is now more ambiguous and therefore less
maintainable.

á It’s easier to confuse multiple instances of global information.

Typically, you will only use GlobalSingleUse when the function
a class provides is very, very generic.

Using MultiUse Instancing for Object
Sharing
A MultiUse class can supply more than one instance of itself per
copy of its component.

A single instance of a COM component can create multiple instances
of a MultiUse class. The first request for a class instance starts the
COM component. All subsequent requests are serviced by the already
running server. If a client application requests several instances of a
ClassA, for example, one server creates all instances of ClassA.

Using GlobalMultiUse Instancing to Avoid
Explicit Object Creation
All that has been said about GlobalSingleUse Instancing applies to
GlobalMultiUse as well. The difference, of course, is that the latter
provides a MultiUse object rather than a SingleUse object.

15 002-8 CH 12 3/1/99 8:09 AM Page 548

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 549

Deciding Between SingleUse and
MultiUse Server Classes
If your server is out-of-process (an ActiveX EXE), you have to make
the choice between implementing each of its externally creatable
classes as a SingleUse or MultiUse object.

The main advantage of a MultiUse server is that it uses less system
resources because the ActiveX Manager needs to run fewer copies of it.

The main reason to use a SingleUse server is to reduce “blocking” of
one client’s use of a method by another client.

Blocking can happen when a server is MultiUse and more than one
client is trying to call the same code at the same time. The single
copy of the server will attempt to satisfy requests for the same service
from more than one client at a time. Because all the instances of
a MultiUse server run in a single thread, one client’s requests for a
service from the server will effectively block all other requests for
that service until the request is completed.

If you have time-intensivecode in your server and expect several
instances of the server to be active at the same time, you can avoid
end-user frustration by making the server SingleUse so that clients
don’t experience delays while they queue up for their turn to use
a MultiUse server.

HANDLING ERRORS IN THE SERVER
AND THE CLIENT

. Determine how to send error information from a COM
component to a client computer

Two applications will be running when the system invokes a COM
component: the client application and the server. When an error
happens in your server, you want to make sure the error is handled
adequately.

Because your server should run as transparently as possible to the
client, your first line of defense for error handling in the server
should be full-blown error handling within the server itself.

N
O

T
E DLLs Are Only MultiUse In-process

(ActiveX DLL) servers can only be
MultiUse.

15 002-8 CH 12 3/1/99 8:09 AM Page 549

550 Par t I VISUAL BASIC 6 EXAM CONCEPTS

At times, however, it is more appropriate to let the client handle an
error that has occurred. When you need to pass an error back to the
client, you can use one of two methods for letting your client appli-
cation know that an error has occurred:

á Let the server’s methods return a result code to the client
showing success or failure.

á Raise an error code in the server that the system can pass back
to the client.

The following sections discuss these two methods.

Passing a Result Code to the Client
This “soft” method of error handling will not generate an error con-
dition in the client. It will let the controlling application decide
whether it is worth checking for an error after calling a method of
your server. If the controlling application does check your server
method’s return value, it can determine whether an error occurred
and decide what to do next.

To implement this technique, you should write your server methods
as functions with an Integer return type. The return type will be, say,
zero or some other encouraging-sounding number if no error hap-
pens in the function. You need to write and enable an error-trapping
routine in the function that will cause the function to return a nega-
tive integer or some other equally dire value when an error does
occur. The code in Listing 12.15 illustrates both client- and server-
side code to implement this solution.

LISTING 12.15

RETURN AN ERROR STATUS CODE TO THE CLIENT

[Method in the server class]

Public Function MyMethod () as Integer
‘Initialize return value to OK
MyMethod = 0
On Error GoTo MyMethod_Error
.
. ‘do stuff that could possibly cause an error
.
Exit Function

15 002-8 CH 12 3/1/99 8:10 AM Page 550

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 551

MyMethod_Error:
‘return error code
MyMethod = Err.Number
Resume Next

End Function

[Code in the client application]

Dim iResult as Integer

iResult = MyServer.MyMethod()
‘Check method’s result code for an error
If iResult <> 0 then

‘ do something to handle the error
End If

‘Or - Following line ignores the method’s result code
MyServer.MyMethod

The client can then check the return value of the server’s method to
see whether all has gone well. If it gets an error code back from the
method, it can then decide what to do.

Raising an Error to Pass Back to the
Client
This method has a more “in-your-face” attitude toward the client. It
generates a hard error condition in the client and forces the client to
do its own error handling to deal with the server’s error.

As you can see in Listing 12.16, the method in the server does not
have to be a function, because we’re not using its return code to sig-
nal a success-or-failure status. The method still uses an error handler
as it did in the previous technique, but now instead of setting a
return value, it uses Err.Raise to cause another error to happen in
the error handler.

You append the Visual Basic predefined constant vbObjectError to
the error code you are raising. This tells the system to pass the error
through to the client. When the client receives the error, the value of
vbObjectError will be stripped off the error code it sees, and the
client will see only the error code’s original value.

Because an error now occurs in the client, the client must have its
own error-handling routine in place.

N
O

T
E Programmer-Defined Error Codes

With this type of error handler, you
might consider implementing your own
system of error codes. You must use
integer values higher than 512,
because lower values can conflict with
existing ActiveX error codes.

15 002-8 CH 12 3/1/99 8:10 AM Page 551

552 Par t I VISUAL BASIC 6 EXAM CONCEPTS

LISTING 12.16

GENERATING AN ERROR IN THE CLIENT

[Method in the server class]

Public Sub MyMethod2 ()
On Error GoTo MyMethod2_Error
.
. ‘do stuff that could possibly cause an error
.

Exit Sub
MyMethod2_Error:

‘client will see Err.Number as 1000
Err.Raise 1000 + vbObjectErrorlient

End Sub

[Code in the client application]

On Error GoTo MyCall_Error
MyServer.MyMethod2
Exit Sub

MyCall_Error:
‘ do something to handle the error

Note that Visual Basic’s default error-handling strategy at design
time is to always break in the class of the server application. To be
able to test code that uses the strategy discussed here, you must set
the general option known as Error Trapping to Break on Unhandled
Errors. See Exercise 12.4 for more details.

MANAGING COMPONENTS WITH
VISUAL COMPONENT MANAGER

. Use Visual Component Manager to manage components.

This section and the following subsections discuss how to use Visual
Component Manager (VCM). You can use VCM to make it easier
to reuse the COM components that you and others create. VCM
helps you to perform three basic tasks for component reuse:

15 002-8 CH 12 3/1/99 8:10 AM Page 552

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 553

á Publishing components. When you publish a COM
component, you make it available to others.

á Finding components. When you are developing a solution,
you investigate whether components that fit your needs already
exist.

á Reusing components. After you have found an existing
component, you incorporate it into your project.

Storing VCM Information in Repository
Databases
VCM implements the publishing, finding, and reuse of components
by maintaining information about them in one or more repository
databases.

Because VCM enables you to use more than one repository database,
you can separate groups of components into different repository
databases based on component functionality.

VCM also supports repository databases in MS Access format or in
SQL Server format. You could use MS Access for local repository
databases and SQL Server for repository databases residing on a
server. VCM therefore offers a scalable solution to component
management.

Making VCM Available in the VB IDE
If you have installed VB6 or any of Visual Studio’s other develop-
ment tools on your system, you have also automatically installed
VCM.

To make VCM available from the VB IDE, you must also add VCM
to the VB toolbar. To add VCM to the VB toolbar, open the Add-
Ins menu and make sure that the Visual Component Manager 6.0
item has its Loaded/Unloaded and Load on Startup options checked
(see Figure 12.8).

15 002-8 CH 12 3/1/99 8:10 AM Page 553

554 Par t I VISUAL BASIC 6 EXAM CONCEPTS

After VCM has been enabled, you will see the VCM icon on the VB
toolbar (see Figure 12.9).

F IGU R E 12 .8.
Using the Add-Ins dialog box to add Visual
Component Manager to the VB IDE.

F IGU R E 12 .9.
The Visual Component Manager icon on the VB
toolbar.

15 002-8 CH 12 3/1/99 8:10 AM Page 554

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 555

Publishing Components with VCM
To make a component available for reuse through VCM, you must
first publish that component in a VCM repository database.

To publish a component through VCM from within the current
project, you should take some preliminary steps to prepare the com-
ponent for publication and to invoke VCM, as discussed in
Step by Step 12.1.

S T E P B Y S T E P
12.1 Preparing to Publish a Component with Visual

Component Manager

If you intend to publish the component’s source code, make sure
that you have saved the project before publishing it. Otherwise,
VCM will give you the warning Project must be saved before
it can be published when you attempt to publish the component.

1. Click the VCM icon on the VB toolbar to invoke the
VCM window (see Figure 12.10).

F IGURE 12 .1 0
The main window for VCM.

15 002-8 CH 12 3/1/99 8:10 AM Page 555

556 Par t I VISUAL BASIC 6 EXAM CONCEPTS

2. Choose a folder within the VCM repository by double-
clicking one on the tree in the left-hand window.

3. Invoke the VCM Publish wizard through one of three
methods:

• Drag a compiled component (*.DLL, *.OCX, or *.EXE)
from Windows Explorer to a folder in the Visual
Component Manager window.

• Make sure that you have opened a folder in the reposi-
tory (double-click it in the VCM window). Then, right-
click in the folder’s contents (the upper center and right
pane of the VCM window). Click New on the resulting
Visual Component Manager shortcut menu.

• Select the component’s project window in Project
Explorer and right-click the project name to invoke the
project’s shortcut menu (see Figure 12.11). Choose
Publish on the project’s shortcut menu. When you click
Source Files, you will publish the project’s source-code
files; when you click Build Outputs, you will compile
and publish its outputs. This third technique does not
require you to have the VCM window open.

F IGU R E 12 .11
Visual Component Manager’s Publish menu. In
this figure, the developer has accessed the
menu by right-clicking the Project’s name in the
Project Explorer.

15 002-8 CH 12 3/1/99 8:10 AM Page 556

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 557

4. Publish Wizard will display an introductory screen (not
shown here). Click the Next button to proceed.

5. On the next screen (Repository/Folder), you can choose
a VCM repository database (see Figure 12.12) and then a
folder within that database (see Figure 12.13).

, F IGURE 1 2 .12
Initial view of VCM’s Repository/Folder dialog box.

6. Complete the Repository/Folder dialog box by editing, if
necessary, the name that you want to give to the compo-
nent. (This name is for informational purposes only and
will not affect project or Registry names.) The completed
dialog box should look like Figure 12.14. Click the Next
button to continue to the Title and Properties dialog box.

F IGURE 12 .1 3 ▲

VCM’s Repository/Folder dialog box, showing
available folders.

, F IGURE 1 2 .14
VCM’s Repository/Folder dialog box, showing a
selected folder and the name of a component
to add to VCM’s repository database.

7. You typically don’t change anything on the Title and
Properties dialog box, although of course you can (see
Figure 12.15). Click Next to proceed to the More
Properties screen.

15 002-8 CH 12 3/1/99 8:10 AM Page 557

558 Par t I VISUAL BASIC 6 EXAM CONCEPTS

8. From the More Properties screen (Figure 12.16), you can
add a component description and keywords. Other devel-
opers can use the description and keywords to find your
component later.

9. You can add a new keyword to the component by clicking
the large plus button (+) on the More Properties screen
and filling in the keyword text on the resulting dialog box
(see Figure 12.17).

F IGU R E 12 .15.
VCM’s Title and Properties dialog box.

F IGU R E 12 .16 ▲

A second Properties screen in VCM enables
you to add a component description and key-
words.

10. Click the Next button to proceed to the next Publish
Wizard screen. A list of files that will be published as part
of the component appears, as shown in Figure 12.18.
Depending on whether you chose to publish source code
or the compiled component (see step 3), you will either
see the source-code files for the project or the compiled
file (and any known files that the compile file depends on
to run). At this point, you can add or take away files.
After you have finished, click the Next button to proceed
to the next screen.

F IGU R E 12 .17.
Adding a new keyword to a component in VCM.

15 002-8 CH 12 3/1/99 8:10 AM Page 558

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 559

11. On the next screen, you can indicate whether any of the
files that you are publishing with the COM component
require an entry in the Windows Registry (see Figure
12.19). Usually you need to do nothing on this screen,
because VCM is pretty good at guessing which files need
registration. In fact, if you try to check a file that obvi-
ously doesn’t need registration (such as a source-code file),
VCM will warn you that the file doesn’t need registration
and will refuse to check the box next to the file’s name.

12. After you have made any adjustments to your compo-
nent’s registration information, you can click the Next
button. This brings up the Publish wizard’s final screen
(the Finish screen). Click the Finish button on this screen
to finalize your component’s entry in the VCM repository
database.

Finding and Reusing Components with
VCM
When information about components resides in VCM, developers
can find the components and reuse them in their projects.
Depending on whether you published the compiled component or
its source code, developers can get the compiled component or a
copy of the source code.

To find and reuse a component with VCM, complete the following
steps:

, F IGURE 1 2 .18
You can add or delete files from a published
component’s source code with the VCM Select
Additional File(s) dialog box.

F IGURE 12 .1 9 ▲

You can indicate the files that belong to a pub-
lished component and that must be registered
in the Windows Registry.

15 002-8 CH 12 3/1/99 8:10 AM Page 559

560 Par t I VISUAL BASIC 6 EXAM CONCEPTS

S T E P B Y S T E P
12.2 Finding and Reusing a Component with Visual

Component Manager

1. Open VCM (refer back to Figure 12.10) from the VB
toolbar by clicking on the VCM icon.

2. Click the Find (binoculars) icon on the VCM toolbar.

3. On the resulting Find dialog box (see Figure 12.20), enter
either a component name or text to locate in the compo-
nent’s keywords, description, or annotations. You can also
limit your search to just one type of component by mak-
ing a choice in the Of Type drop-down menu.

4. When the desired component appears in the Find win-
dow, double-click its name to select it.

5. The Select Folder dialog box appears. You can choose a
folder to place the component in the current project (see
Figure 12.21).

F IGU R E 12 .20 ▲

VCM’s Find dialog box.

6. After you have clicked the OK button, the component
appears in your project. If the component included source
code, the source-code files (typically for a VB project) will
appear in the indicated folder. If the component was
compiled, an ActiveX control component’s icon will now
appear in your toolbox. Other COM component types
will be added to your project’s References list.

F IGU R E 12 .21.
Selecting a project in the VCM Find dialog box.

15 002-8 CH 12 3/1/99 8:10 AM Page 560

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 561

f you can see the component in the VCM project window,
you can forego steps 2 through 6. All you need do is right-
click the component’s name in the VCM window to bring
up the component’s shortcut menu (see Figure 12.22). If
the component is an ActiveX control, choose the Add to
Toolbox option. If it’s another type of component, you
can choose the Add to Project option or the Add
to Project Group option.

F IGURE 12 .2 2
Using the VCM component shortcut menu to
add a component to a VB project.

USING INTERFACES TO IMPLEMENT
POLYMORPHISM

Polymorphism, as you may know, is a feature of object-oriented
design and programming that enables you to use a single object class
in more than one way.

You typically apply this concept to general object types, such as
Person, Animal, File, or Vehicle. Such general types could represent
very disparate objects. A Vehicle object, for example, might repre-
sent either an automobile, a spaceship, an airplane, or an ox cart, to
name just a few possibilities.

15 002-8 CH 12 3/1/99 8:10 AM Page 561

562 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Each specific object type then usually has at least two subsets of fea-
tures: features that apply to all objects instantiated from that class
(all Vehicles, for instance, have properties such as Speed and Maximum
Speed, and methods such as Travel); and, on the other hand, fea-
tures that apply only to certain types of objects in that class (such as
NumberOfWings, MaximumAltitude, MinAnimalsNeededToMove, and so
forth). An additional consideration for the common features would
be the fact that the same methods and properties might need to
behave differently for different types of objects (the Travel method
would behave differently for different types of objects).

If you want to provide general object classes along with more specific
implementations of those classes in your COM component, you
have several choices in VB:

á Add all the properties and methods to a single class. By doing
this, any object instantiated from the Vehicle class would have
a NumberOfWings property, even if the particular object in ques-
tion were a school bus. In addition, a Startup method might
have to behave very differently, depending on whether the
object in question were a spaceship or an ox cart. You would
have to put special logic in that method to determine which
Startup actions to take, based on the type of object.

á Create a completely separate class specific to each type of
object. These object classes would share a lot of members in
common, but they would be completely separate from each
other. You would have a SchoolBus class, for example, that had
the generic object members such as the Speed property and the
Travel method. Likewise, all your other Vehicle-type classes
would have these generic object members. The Schoolbus class,
however, would have a MaximumChildren property and a
DisplayStopSign method. You would write separate routines in
each class for all common properties and methods.

á Use the concept of an Interface class that will define (but will
not implement) common properties and methods for the more
specific classes. Create separate classes that then implement
each specific type of object that you will need and that use the
Interface class to specify common functionality.

15 002-8 CH 12 3/1/99 8:10 AM Page 562

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 563

The Interface class provides an abstract definition for the properties
and methods of a generic type of object. It does not, however, pro-
vide that behavior. Each specific object class that implements the
Interface class must actually provide code for each of the methods
and properties of the Interface class.

The advantage to an Interface is that it provides a common specifi-
cation for all classes that use it, while allowing each class the flexibil-
ity of implementing the details of the common specification in its
own way, as well as the flexibility of adding other functionality to
the base specification. The classes that implement the Interface
must implement all members of the Interface: In fact, the VB
Compiler will enforce this requirement, giving you error messages
if you forget to implement all the members of an Interface in an
object class that uses the Interface.

Continuing with the example of Vehicles, imagine an Interface
class called IVehicle. (The I at the beginning of the class name is a
standard naming convention for Interfaces.) IVehicle contains
properties such as Speed and MaxSpeed and methods such as Travel.
You could create other classes such as Automobile and Airplane that
implement IVehicle’s members, each in its own way. The
Automobile and Airplane classes might also implement methods and
properties of their own apart from the Interface (such as OpenTrunk
or LowerLandingGear).

Steps to Implement an Interface
Class
To use Interface classes in your programming, you must take three
basic steps:

á Create the Interface class and define its members.

á Implement the Interface in the appropriate server classes.

á Refer to the Interface class in client code when the client
needs to use features of server classes that belong to the
Interface specification.

The following sections discuss these three steps.

N
O

T
E Interface Classes as Abstract

Classes A lot of documentation
refers to a VB Interface class as an
“abstract class.” Conceptually, this is
true, because you are using an
Interface as a model for other
classes without specifying implemen-
tation details. Strictly speaking, how-
ever, it should be impossible for an
abstract class to be instantiated or
hold any code. Because it is possible
to write code in a VB Interface class
(although this isn’t often done), and
because it is possible to instantiate
an object from an Interface class in
your code, a VB Interface class is
not technically a true abstract class.

15 002-8 CH 12 3/1/99 8:10 AM Page 563

564 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Creating the Interface Class
An Interface class is just an empty class template containing proce-
dures to implement class methods and properties as discussed in the
subsections immediately following “Implementing COM
Components Through Class Modules” in this chapter.

You don’t normally put any code or Private variable declarations in
an Interface class, only the blank procedures.

Therefore, the entire contents of an IVehicle Interface class might
look like Listing 12.17.

LISTING 12.17

THIS IS ALL THE CODE REQUIRED TO SET UP THE
IVEHICLE INTERFACE CLASS

Option Explicit

Public Property Let Color(newval As Long)
End Property
Public Property Get Color() As Long
End Property

Public Property Get MaxSpeed() As Single
End Property
Public Property Let MaxSpeed(newval As Single)
End Property

Public Function Travel(xStart, yStart, xEnd, yEnd) As Single
End Function

Notice that the IVehicle Interface provides two properties (Color
and MaxSpeed) and one method (Travel).

You specify the type of each property and the number and type of
the parameters that the method receives as well as its return value.
You specify absolutely no behavior beyond this, however. The way
that these members will function depends completely on the
programmer who uses this Interface in other classes.

N
O

T
E No Events in Interface Classes

VB6 doesn’t support events in
Interface classes, only methods and
properties.

15 002-8 CH 12 3/1/99 8:10 AM Page 564

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 565

Implementing the Interface Class in Other
Classes
When you want to use the members of an Interface in another
object class, you need to take two steps:

á Use the Implements declaration to refer to the Interface in the
implementing class’s General Declarations section. VB will
then automatically create code stubs inside the implementing
class for all the methods and property procedures that the
Interface defines.

á It’s a good idea to put code in the implementing class into
every method and property procedure provided by VB for the
Interface. If you don’t put at least one line of code in each
procedure, there may be confusion about your intentions.

Listing 12.18 shows the contents of a class that implements the
IVehicle Interface set up in the preceding section.

LISTING 12.18

IMPLEMENTING AN Interface CLASS IN ANOTHER
CLASS

‘Class Automobile

Option Explicit

Private m_TireInflation As Integer

Implements IVehicle
Private m_Color As Long
Private m_MAXSpeed As Single

Private Property Let IVehicle_Color(RHS As Long)
m_Color = RHS

End Property

Private Property Get IVehicle_Color() As Long
IVehicle_Color = m_Color

End Property

Private Property Let IVehicle_MaxSpeed(RHS As Single)
m_MAXSpeed = RHS

End Property

continues

15 002-8 CH 12 3/1/99 8:10 AM Page 565

566 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Private Property Get IVehicle_MaxSpeed() As Single
IVehicle_MaxSpeed = m_MAXSpeed

End Property

Private Function IVehicle_Travel(xStart As Variant, yStart As
Variant, xEnd As Variant, yEnd As Variant) As Single

IVehicle_Travel = Sqr((xEnd - xStart) ^ 2 + (yEnd - yStart)
^ 2)
End Function

Public Property Let TireInflation(NewVal As Single)
m_TireInflation = NewVal

End Property

Public Property Get TireInflation() As Single
TireInflation = m_TireInflation

End Property

Public Sub SuddenStop()
Call ApplyBrakes
Call Skid

End Function

Notice the Implements keyword that points to the IVehicle
Interface at the beginning of the listing. After you have typed this
line into your code, VB makes IVehicle available as an object in
your code window, as Figure 12.23 illustrates. Note in the illustra-
tion that all the member procedures (that is, the methods and the
property procedures) appear in the Procedures window when you
choose the IVehicle object from the left-hand drop-down list in
the code window. You then place code in each of the procedures
(methods and Property Get/Let/Set procedures) that the Interface
provides in your class, as you see in Listing 12.18.

Because this class is the place where you actually specify how the
Interface elements will behave, you will note the use of Private
variables to hold intermediate values of properties. Note that the
name of the parameter passed to Property Let procedures is RHS. VB
automatically supplies this name, which stands for “right-hand side”
(that is, the right-hand side of an assignment statement, such as the
b in “a = b”).

Finally, note that this class, named “Automobile”, has some members
of its own: the SuddenStop method and the TireInflation property.

LISTING 12.18 continued

IMPLEMENTING AN Interface CLASS IN ANOTHER
CLASS

15 002-8 CH 12 3/1/99 8:10 AM Page 566

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 567

Notice in the listing that the members that this example implements
through the Interface are all declared as Private. This is because
you want any client application that uses your class to go through
the Interface definition to reach this class’s implementation of the
Interface members.

After you have implemented the Interface in another class and
implemented that class’s own specific methods, properties, and
events, you can use the implementing class and its accompanying
Interfaces in client code, as discussed in the following section.

Methods for Using the Interface Class in
a Client
When a client needs to refer to elements of a Class object that are
implemented through an Interface class, the client must refer to the
Interface by name to use the Interface elements.

There are two basic methods for referring to Interface elements
within a class from client code. Both these methods assume that you
have instantiated an object from a class that uses an Interface for all
or part of its functionality:

F IGURE 12 .2 3
After you have typed the Implements declara-
tion in your code, the Interface’s members
are visible in your code window.

15 002-8 CH 12 3/1/99 8:10 AM Page 567

568 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á Declare an object variable in the client whose type is the
Interface class and set that object variable to point back to
another object that you have already instantiated from the
server’s implementing class. You can then manipulate the
Interface-type variable to manipulate the Interface-provided
elements of the implementing client object.

á Write wrapper routines in the client to manipulate various ele-
ments of the Interface. Each such routine will take as its para-
meter an object whose type is the Interface class. When you
call the routines, however, you pass an instantiated object from
the server’s implementing class.

The following two sections discuss these methods.

Method A: Using an Object Variable in the Client
This method of referring to an object’s Interface in client code
relies on the fact that you can set a variable whose type is the
Interface class to point to an instantiated object from a class that
implements the Interface. After you have done this, any reference
in your code to the Interface object variable actually refers to the
instantiated implementing object.

Continuing the example from the previous sections, recall that the
Automobile class implements the IVehicle interface. If you want to
manipulate elements of the Automobile class in autFord that are pro-
vided by the IVehicle interface, you must declare a second variable
of type IVehicle and point that variable to refer back to autFord.

LISTING 12.19

USING AN OBJECT VARIABLE OF THE INTERFACE TYPE
TO GAIN ACCESS TO AN OBJECT’S INTERFACE
ELEMENTS

Option Explicit

‘STEP 1)
‘DECLARE AND INSTANTIATE OBJECTS FROM
‘THEIR BASE CLASSES
Private autFord As New Automobile

‘STEP 2)
‘Declare a variable from the
‘appropriate interface class

15 002-8 CH 12 3/1/99 8:10 AM Page 568

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 569

‘to accompany the base-class
‘object instantiated
‘above (but DON’T instantiate
‘with As New)

Private vhlFord As IVehicle

Private Sub Form_Load()

‘STEP 3)
‘set a reference
‘to the variable derived from the
‘Interface class
Set vhlFord = autFord

‘STEP 3A)
‘Following line displays name of
‘Base Class,
‘which is “Automobile” in this case —
‘and NOT “IVehicle”
Debug.Print TypeName(vhlFord)

End Sub

‘STEP 4)
‘Write code that manipulates
‘the interface by manipulating
‘the appropriate
‘interface object variables.

Private Sub Command1_Click()
MsgBox “Traveled “ & _

vhlFord.Travel(0, 0, –1, 1)
End Sub

Listing 12.19 shows the steps you need to take to use this method to
gain access to the Interface-provided elements of a class object. The
steps are as given in Step by Step 12.4 (step numbers are keyed to
the numbers in the example of the listing).

S T E P B Y S T E P
12.4 Using an Object Variable of the Interface Class

1. Declare and instantiate an object from the Client class. In
the example, you use the Automobile class as described in
previous sections, and give the resulting object instance
the name autFord. Note that the example uses the As New
keyword to instantiate the object at the same time that
you declare it.

15 002-8 CH 12 3/1/99 8:10 AM Page 569

570 Par t I VISUAL BASIC 6 EXAM CONCEPTS

2. Declare an uninstantiated object that uses the Interface
class as its type. In the example, you declare a second vari-
able (named vhlFord in the example) of type IVehicle
(recall that the Automobile class implements IVehicle).
Make sure that it’s uninstantiated. In other words, be sure
that you don’t use the New keyword when you declare it.
This is because you will later set this variable to point to
the autFord variable.

3. Use the Set = syntax to set the uninstantiated variable that
you derived from the Interface class (vhlFord in the
example) to point to the object that you instantiated from
the Client class (autFord). This means that any reference
to the Interface-type variable (vhlFord) will actually be a
reference to the implementation of the Interface in the
instantiated variable (autFord). To illustrate this point, the
example code (see 3A) checks the TypeName of the variable
vhlFord. Although you might expect TypeName to be
“IVehicle”, it actually turns out to be “Automobile”.

4. Programmatically manipulate the members of the object
declared from the Interface class (vhlFord’s members in
the example). When you manipulate these members, you
are actually manipulating the previously instantiated
object (autFord in the example).

In your client code, you use the As New declaration to instantiate an
object reference to the Automobile class named autFord. Then, you
declare (but don’t instantiate with New!) a second variable from the
IVehicle interface named vhlFord. In your code, use the Set state-
ment to cause vhlFord to point to autFord. After that, any
reference to vhlFord actually refers to autFord.

Method B: Using Wrapper Routines in the Client
This method enables you to pass an object that has been instantiated
from the Client class to a “wrapper” routine. The wrapper routine
accepts a parameter whose type is of the Interface class. Even
though its type is of the Interface class, this parameter provides a
reference inside the wrapper routine to the original object, but only
in regard to its features that are implemented in the Interface class.

15 002-8 CH 12 3/1/99 8:10 AM Page 570

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 571

LISTING 12.20

USING WRAPPER FUNCTIONS TO GAIN ACCESS TO
AN OBJECT’S INTERFACE ELEMENTS

Option Explicit

‘STEP 1)
‘DECLARE AND INSTANTIATE OBJECTS FROM
‘THEIR BASE CLASSES
Private autFord As New Automobile

‘STEP 2)
‘Create procedures that
‘take parameters whose
‘type is that of the
‘Interface class and manipulate
‘that parameter as desired.

Private Function VehicleTravel _
(vhl As IVehicle, x1, y1, x2, y2) As Double

VehicleTravel = vhl.Travel(x1, y1, x2, y2)

‘STEP 2A)
‘Following line displays name
‘of Base Class,
‘which is “Automobile,”
‘instead of the interface class
‘name, “IVehicle”
Debug.Print TypeName(vhl)

End Function

‘STEP 3)
‘Call the wrapper
‘procedures when you need to
‘manipulate the base class
‘object through its interface.
‘This calling code should pass the
‘base class object variable
‘to the procedures, and NOT
‘the variables based on the
‘interface class.

Private Sub Command2_Click()
MsgBox “Traveled “ & VehicleTravel(vhl747, 0, 0, 3, 4)

End Sub

Listing 12.20 shows the steps you need to take to use this second
method to gain access to the Interface-provided elements of a Class
object. The steps are as given in Step by Step 12.5 (step numbers are
keyed to the numbers in the example of the listing).

15 002-8 CH 12 3/1/99 8:10 AM Page 571

572 Par t I VISUAL BASIC 6 EXAM CONCEPTS

S T E P B Y S T E P
12.5 Using Client Wrapper Routines to Refer to an

Interface Class Object

1. Declare and instantiate an object from the Client class.
This is the same operation as performed in step 1 of the
preceding method, and the same comments apply. You
also use the same Client class as in the example,
Automobile, to instantiate the variable autFord.

2. Create one or more procedures that take an object para-
meter whose type is the Interface class. Such a procedure
can then manipulate the Interface-derived elements of
this object. In the example, the procedure takes a parame-
ter whose type is IVehicle (recall that IVehicle is imple-
mented by the Automobile class). Notice that section 2A in
the example checks the actual TypeName of the object para-
meter. If you run this code, you will discover that the
object’s type is not the type of the Interface class
(IVehicle), but rather the type of the object that was
passed from the calling routine (Automobile), as described
in the next step.

3. Call the procedures created in step 2 by passing the
instantiated object (autFord in the example) of the Client
class as a parameter. When you pass this object to the pro-
cedure, the Interface manipulation code in the procedure
can then access the Interface-implemented elements of
the object.

The use of a wrapper routine typically makes your code cleaner and
easier to maintain.

PROVIDING ASYNCHRONOUS
CALLBACKS

. Create callback procedures to enable asynchronous processing
between COM components and Visual Basic client applications.

15 002-8 CH 12 3/1/99 8:10 AM Page 572

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 573

This chapter has already discussed how to use events to provide
a callback mechanism between a class object and its clients (see the
section titled “Raising the Event and Implementing Callbacks in
a Class Object”).

This section and the following sections discuss a somewhat more
complicated way to allow an ActiveX client to receive asynchronous
callback notifications from objects. This second method requires the
client and the server object to share a callback object. A callback
object is an object that client and server share so that they can
communicate with each other.

Because client and server share the callback object, they must agree
on the structure of the object (that is, its properties and methods).
A callback object is therefore a perfect candidate for an Interface as
discussed in the previous sections. Both client and server programs
(and therefore programmers!) must cooperate for the callback object
to work. The server will define the callback object’s Interface, but
the client will actually implement the Interface in another class of
its own, instantiate an object from that implementation, and pass
the instantiated object to the server. The server can then manipulate
the callback object to provide notifications to the client.

A client-server callback object’s lifetime goes through the following
steps:

1. The server provides an abstract Interface that gives an abstract
definition of the callback object (that is, its methods and prop-
erties). The server, however, does not typically implement the
callback object. The Interface defines at least one callback
method.

2. The client implements the callback object from the abstract
definition given by the Interface. The client defines how the
callback method that it derived from the Interface will func-
tion.

3. The client instantiates the callback object from its implemen-
tation of the Interface.

4. The client calls a Server method, passing the callback object
as an argument.

5. The server receives the callback object and sets a classwide vari-
able to point to the object. This makes the callback object
available throughout the Server class’s code.

15 002-8 CH 12 3/1/99 8:10 AM Page 573

574 Par t I VISUAL BASIC 6 EXAM CONCEPTS

6. When the server needs to notify the client, it invokes the call-
back method of the callback object.

7. The callback method then behaves in whatever manner that
the client has specified in its implementation—typically
providing some sort of notification that the client can use.

To make these seven steps work, the server programmer and the
client programmer must perform three major tasks:

á The server programmer provides the Interface that defines the
callback object class’s properties and methods. One method is
typically considered the callback method.

á The client programmer implements the callback class from its
Interface definition and then passes an instance of the result-
ing object to the Server object by calling the appropriate
method or methods of the server.

á The server programmer provides a method that receives an
instance of the callback object and then assigns a classwide
object variable to point to this instance. The server will call the
object variable’s callback method whenever it needs to notify
the client.

The following sections discuss each of these tasks.

Providing an Interface for the
Callback Object
If you want to give your server’s clients the capability to use callback
objects, you must define an Interface for the callback object in a
Server class.

To define the callback object’s Interface, you must take the follow-
ing steps:

1. Create a class in your server project and name it appropriately
(remember the convention of using the letter I as a prefix to
Interface class names).

2. Set the class Instancing property to Global MultiUse.

3. Define the Interface class’s members (the properties and
methods).

15 002-8 CH 12 3/1/99 8:10 AM Page 574

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 575

As you will recall, an Interface is a blank class template, so it’s not a
difficult proposition to define its properties and methods. Moreover,
a callback class really only requires a single method to implement the
callback. An Interface definition of a callback class could therefore
be as simple as the code in Listing 12.21.

LISTING 12.21

A CALLBACK INTERFACE CLASS

‘The Class name = INotification
Option Explicit

Public Sub Notify(msg As String)
End Sub

Notice that the code in the listing specifies a String parameter. This
would allow the server to send a message back to the client as part of
the notification. It is up to you whether you want to provide such
features in your notification method.

The next section discusses how a client programmer could use this
Interface to implement a callback object and pass it to the server.

Implementing the Callback Object in
the Client
When you are programming a client application and want to use the
callback functionality that an Interface provides, you must take the
following steps outlined in Step by Step 12.6 to use a callback object
in your application.

S T E P B Y S T E P
12.6 Implementing a Callback Object in the Client

1. Add a class to the client application and name it
appropriately.

2. Make sure that the Instancing property of the new class is
Private. (If the client project is not an ActiveX EXE or
ActiveX DLL, the Class Instancing property will not be
available to you, and Instancing will be Private by default.)

15 002-8 CH 12 3/1/99 8:10 AM Page 575

576 Par t I VISUAL BASIC 6 EXAM CONCEPTS

3. Implement the server’s callback Interface in this class (see
Listing 12.22). Put appropriate notification code in the
callback’s notification method.

4. Instantiate copies of the callback object (should be Public
variables) and call the appropriate methods of the server
class objects that will receive instances of the callback
object as parameters (see Listing 12.22).

Listing 12.22 gives the code in the class module that you would add
to the client. As mentioned in step 3, this Client class implements
the server’s Interface class, INotification, which was discussed in
the section titled “Providing an Interface for the Callback Object.”
Because INotification has only one member, the Notify method,
you need only to write code to implement that method.

The Notify method will be called from inside the server to send a
notification back to this client. Because this client implements the
Notify method, it can therefore specify the exact way in which it will
be notified.

Recall from the preceding section that the Interface for
INotification specifies that the Notify method will accept one String
parameter, so you must implement the String parameter here.

LISTING 12.22

IMPLEMENTING THE INTERFACE FOR A CALLBACK IN A

Client CLASS

‘Class Name = CallBack
Option Explicit

Implements INotification

Private Sub Inotificatiion_Notify(msg As String)
MsgBox msg
‘or do something else with msg

End Sub

In Listing 12.23, the client code instantiates a server class object,
instantiates an object from the callback class that you defined in
Listing 12.22, and then passes the resulting callback object to the
server object’s LongProcess method.

15 002-8 CH 12 3/1/99 8:10 AM Page 576

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 577

LISTING 12.23

PASSING A Callback OBJECT TO A SERVER OBJECT

Public objServer As New MyServer.MyClass
Public cbCurrent As CallBack
.
.
Set cbCurrent = New CallBack
objServer.LongProces cbCurrent

The server’s LongProcess method is specifically designed to accept an
object that’s been instantiated from a class that implements the
INotification Interface (see the section titled “Manipulating the
Callback Object in the Server”). After the server has received the
object, it may at some point call the object’s Notify method—
which you have implemented in the client to provide a client-side
notification.

Manipulating the Callback Object in
the Server
To use a callback object in your server, you must take steps outlined
in Step by Step 12.7.

S T E P B Y S T E P
12.7 Using a Callback Object in the Server

1. Declare a Public variable in the Server class where you
will be receiving the Callback object. The variable will be
of the same type as the Interface class and will not be
instantiated (see Listing 12.24). You will use this variable
as a classwide pointer to Callback objects that client
applications pass to this server (see the following step).

2. Write a method that receives a ByVal parameter whose
type is the type of the Interface class. This parameter holds
the callback object that the client is passing to the server.
Within this method, set the Public variable declared in the

15 002-8 CH 12 3/1/99 8:10 AM Page 577

578 Par t I VISUAL BASIC 6 EXAM CONCEPTS

preceding step to point to the callback object parameter.
Pointing the Public variable to the parameter will make
the object in the parameter available throughout the entire
class (see Listing 12.24).

3. Use the Public variable (which now points to the callback
object) to call the object’s notification method when your
server needs to send a notification to the client. This will cause
the method to run on the client side (see Listing 12.25).

Listing 12.24 shows code in the Server class that will receive a
Callback object, as described in steps 1 and 2. In the General
Declarations section, you declare (but don’t instantiate with New) a
Public object variable named cbObject whose type is INotification,
the same as the Interface definition that client and server are using
for the Callback object class.

A method of the server (named LongProcess in the example) receives
a parameter whose type is INotification (the Interface type). Using
the Set statement, make the Public variable cbObject point to the
parameter. Because cbObject is a Public variable, it’s visible in the
entire class, and thus effectively makes the Callback object parameter
available throughout the class.

LISTING 12.24

DECLARING AND RECEIV ING THE Callback OBJECT
IN THE SERVER

‘General Declarations of a server class
Public cbObject As INotification
.
.
Public Sub LongProcess(ByVal cbCurr As _

INotification)
Set cbObject = cbCurr
.
.
.

End Sub

Listing 12.25 shows a line of code elsewhere in the Server class (per-
haps just farther down in the LongProcess method’s code). This code
calls the Notify method of the Public object class, cbObject.

N
O

T
E Callback Object Should Be Public

Note the importance of using a
Public variable to hold the callback
object both in the server and in the
client (see preceding section). If the
callback object is not Public, you will
receive a compiler error, because it’s
illegal to pass a Private object to a
class method and also illegal to set
a method’s object parameter to a
Private object.

In addition, you must always remem-
ber to mark the callback object para-
meter as ByVal.

15 002-8 CH 12 3/1/99 8:10 AM Page 578

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 579

LISTING 12.25

USING THE Callback OBJECT’S METHOD TO NOTIFY
THE CLIENT

.

.

.
‘somewhere in your server class code:
obObject.Notify “The sky is falling!”
.
.
.

Recall from Listing 12.24 and from steps 1 and 2 in the preceding
Step by Step that cbObject really points to the callback object para-
meter that the client passed to this server when it called the
LongProcess method. Calling this method will therefore run the
code that the client implemented for the callback object, as
described in “Implementing the Callback Object in the Client.”

REGISTERING AND UNREGISTERING A
COM COMPONENT

When your COM component is ready for distribution, you will
want it to be permanently listed in the Windows Registry on your
development workstation. You will also want the component to be
registered on the workstations belonging to users to whom you will
distribute the component.

Normally, the setup applications created by Setup and Deployment
Wizard will take care of the details of registration automatically. The
following sections provide “under-the-hood” information for situations
when you want more control over the registration of your component.

Registering/Unregistering an
Out-of-Process Component
You can register an ActiveX executable in several ways (some of them
inadvertent!):

15 002-8 CH 12 3/1/99 8:10 AM Page 579

580 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á Compile it (obviously works only on the developer’s worksta-
tion).

á Run it standalone—keeps on running after registering itself.

á Run it standalone with the /REGSERVER argument—terminates
as soon as it registers itself.

á Install it with a setup routine created by Setup and
Deployment Wizard.

The Setup and Deployment Wizard is, of course, the recommended
way to install components.

You can remove your ActiveX executable from the Registry by

á Running it standalone with the /UNREGSERVER argument.

á Editing the Windows Registry (not recommended!).

á Running the Uninstall procedure from Windows (use the
Add/Remove applications icon in Control Panel). This option
works if you’ve installed the component using a setup routine
that was created with Setup and Deployment Wizard.

Running the Windows Uninstall procedure is preferable, when avail-
able.

Registering/Unregistering an
In-Process Component
You can permanently register an in-process component on the devel-
oper’s workstation by compiling it.

Once again, you may also let Setup and Deployment Wizard create a
setup routine for your component that will automatically register the
component when users run the setup routine on their systems.

To register an in-process component from outside the development
environment without a setup routine, you can run a utility called
REGSVR32.EXE against the DLL file. REGSVR32.EXE is
distributed on Visual Studio 6.0’s installation CDs.

To use REGSVR32 to register an in-process component called, say,
SPORT.DLL, you would run it from a command line as follows:

Regsvr32 sport.dll

15 002-8 CH 12 3/1/99 8:10 AM Page 580

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 581

To unregister your in-process component, you can run
REGSVR32.EXE against it with the /u option in the command
line, as in the following example:

Regsvr32 /u sport.dll

If you’ve installed your component using Setup and Deployment
Wizard, you can uninstall it using the normal Windows application
removal procedures.

SENDING MESSAGES TO THE USER
FROM A COM COMPONENT

. Implement messages from a server component to a user inter-
face.

Depending on its function, your COM component might or might
not have any user interface. If it does require user interface, that
interface will have to be based on one or more forms included in the
server component project. You must be aware of the way each form
affects the lifetime of the server component application. When the
server component is an in-process server component, you must also
be aware of the effect your form has on the client application.

It is important to keep in mind that the forms and other elements of
the user interface, such as message boxes, belong to your COM
component, and not to the client application. Although this is an
obvious fact, its consequences might not be so obvious. When an
out-of-process server component displays its interface, for example,
that interface might not be on top of other windows that the client
is displaying.

Managing Forms in an Out-Of-Process
Server Component
In an out-of-process server component, a form may be the startup
form for the server component application’s project. You must
unload this form and any other forms before the server component
can be unloaded.

15 002-8 CH 12 3/1/99 8:10 AM Page 581

582 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Because of this, you shouldn’t use formname.Hide in your out-of-process
server component’s code when it is completely done with a form.
Instead, the out-of-process server component application should load
the form when it needs it, and unload it whenever it does not need to
be visible. If you have copies of the form in memory, an out-of-process
server component will continue to run even after it is not needed.

Managing Forms in an In-Process
Server Component
A form is never the entry point into an in-process server component,
because the server component runs in the same process space as the
client, and the client itself initiates and terminates the server
component.

Although you can generally display modal forms as needed in an in-
process server component, modeless forms present more problems.
The only client applications that will support modeless forms in
an in-process server component as of this writing are as follows:

á Clients that are written in VB5 or VB6.

á Clients that use Visual Basic for Applications 5.0 or later. This
includes the Microsoft Office 97 suite and later versions, as
well as any third-party applications that carry the Visual Basic
Technology logo.

á Internet Explorer 4.0 and above.

When you program a server component, you can’t foresee which
clients will attempt to use it, so you can’t tell whether your server
component’s client supports modeless server component forms. If
you want to be very cautious, you can just avoid ever displaying a
modeless form in an in-process server component.

For more flexibility, however, you can verify the App object’s
NonModalAllowed property in the server component’s code. If the
property is True, the current client supports modeless forms in the
server component. You might write code similar to Listing 12.26 so
that your server component could display a form either modelessly
or modally, depending on what the client allows.

15 002-8 CH 12 3/1/99 8:10 AM Page 582

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 583

LISTING 12.26

DETERMINING WHETHER YOUR IN-PROCESS
SERVER COMPONENT CAN SAFELY DISPLAY A
MODELESS FORM

If App.NonModalAllowed Then
frmMsg.Show vbModeLess

Else
frmMsg.Show vbModal

End If

Even if an in-process server component still has forms loaded, it may
be able to unload anyway, providing all forms are invisible and cer-
tain other conditions are fulfilled.

Note that an out-of-process server component can’t terminate with
any forms loaded, even though they are invisible.

CHOOSING THE RIGHT COM
COMPONENT TYPE

You may encounter several questions on the certification exam that
expect you to know the appropriate type of COM component for
a particular solution. Here is a list of the major types of COM
components and the things that they do best:

á In-process components (ActiveX DLLS). Best for performance.

á Out-of-process components (ActiveX EXEs). Best for
background, asynchronous processing. Best for exposing
an application’s object model to clients.

á ActiveX controls. Best for objects that have mainly to do
with standardizing parts of the user interface.

á Active documents. Best for objects that need to run across
the Internet or an intranet.

Some less-than-positive considerations for various COM component
types:

á In-process components (ActiveX DLLS). Problems if you give
them a user interface. Crashes clients more readily than EXEs.

N
O

T
E App.NonModalAllowed Gives Incorrect

Results in the VB Debugging
Environment Typically, you can test
your component against another appli-
cation by running your app from the
VB environment and specifying the
test client from the Debug dialog box.
The VB environment will always return
App.NonModalAllowed as True, how-
ever, regardless of whether the exter-
nal application really does support
nonmodal forms in a component.

The only way to really find out whether
a potential client supports nonmodal
forms is to compile your application
and test the client against the com-
piled version—or against a small com-
piled test application that checks the
value of App.NonModalAllowed.

15 002-8 CH 12 3/1/99 8:10 AM Page 583

584 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á Out-of-process components (ActiveX EXEs). Slower than
DLLs or controls.

á ActiveX controls. Perform worse than DLLs, but better than
EXEs.

á Active documents. Performance not good. Not particularly
helpful in exposing an object model.

IMPLEMENTING SCALABILITY
THROUGH INSTANCING AND
THREADING MODELS

Although the exam objectives for COM components do not men-
tion scalability directly, you can expect one or more questions on the
exam that require you to know something about the impact of cer-
tain COM component choices for the scalability of a VB solution.

Recall that scalability refers to the ease with which a solution can be
transferred to a more demanding environment than the environment
for which you originally intended it. Scalability issues typically have
to do with transferring the application from desktop to enterprise, or
adding more users or other clients to the application’s environment.

Following are several considerations for COM component scalability
that may appear in the certification exam:

á Classes in out-of-process components may have their
Instancing property set to SingleUse.

SingleUse will guarantee that each object instantiated from the
class will run in its own address space. As the number of con-
nections to a particular COM component on a system rises,
this will eliminate contention between different clients for a
component, because there will only be one object per client.

Of course, the trade-off for SingleUse instancing is that more
server resources will be required to instantiate each new copy
of the object every time that a client requests a copy of the
object.

15 002-8 CH 12 3/1/99 8:10 AM Page 584

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 585

á The different threading choices discussed in “Managing
Threading in Out-of-Process Components” can have an
impact on scalability for out-of-process servers.

Multithreading shows the best advantage when there are either
multiple physical processors on the server, or when the
processes that clients are likely to request from a component
will be of uneven length and will be blocked most of the time
(that is, they will wait on file I/O or communications port
activity).

In general, there is less advantage to a multithreaded COM
component solution when there is only one physical processor
on the system and the component’s object processes are all of
relatively equal length and do not block system resources for
very long with activities such as file access or communications.
This is because such a scenario will cause about the same
amount of work for the single processor either way (multi- or
single-threaded), with the added disadvantage for multithreading
that the server must add more overhead for each thread.

As a rule of thumb, you will get the best performance out of a COM
component if you choose options that will guarantee close to one
active thread per physical processor. This does not mean only one thread
running for the entire component, but rather one active thread. If
three threads are running at the moment, for example, but two of
them are blocked waiting on file I/O, there is only one active thread.

On single-CPU systems, therefore, you will see that you will need to
do some investigation and testing to determine whether multithread-
ing is desirable. For best scalability, choose round-robin threading
with a low number of threads. Single-use instancing can also be a
good choice for scalability, as long as you know that you have a pow-
erful server.

UNDER-THE-HOOD INFORMATION
ABOUT COM COMPONENTS

Although there are no explicit VB exam objectives that discuss
COM internals, you may encounter several questions that assume
a knowledge of some of COM’s inner workings.

15 002-8 CH 12 3/1/99 8:10 AM Page 585

586 Par t I VISUAL BASIC 6 EXAM CONCEPTS

In particular, you may need to know about the IUnknown and
IDispatch interfaces, and about vtable binding.

IUnknown and IDispatch are object model interfaces, such as those
discussed earlier in the section titled “Using Interfaces to Implement
Polymorphism.” As a VB programmer, however, you typically never
need to know about IUnknown or IDispatch, which are provided
automatically with every COM component. These interfaces are
implemented internally and automatically by VB for every class
object that you create in VB.

The purpose of IUnknown is to keep track of open references to an object
and to provide the caller with the functionality that the object supports.

IUnknown has three methods. The details of their function are beyond
the scope of the certification exam, but their names are not:

á AddRef This method increments an internal reference counter
every time a client creates a new reference to an object.

á Release This method decrements the internal reference
counter every time a client releases a reference to an object.
When the counter reaches zero, the object can be destroyed.

á QueryInterface This method finds out whether an object
supports a particular interface and, if it does, makes that inter-
face’s functions available to the calling application.

The purpose of IDispatch is to provide a standard way to access the
members of a given interface for a particular object.

IDispatch has four methods. Once again, their names are the impor-
tant thing to know for the certification exam:

á GetTypeInfoCount Returns a non-zero value if type
information is available for this interface.

á GetTypeInfo Returns type information for the interface.

á GetIDsOfNames Finds the internal ID (known as the dispatch
ID) of a particular property of method.

á Invoke Executes a method or accesses a property.

Vtable binding is a particular type of early binding that VB typically
uses when you declare objects in client applications using the name
of a registered object type. For purposes of the certification exam,
you should just remember that questions about vtable binding will
be the same as the same question asked about early binding.

15 002-8 CH 12 3/1/99 8:10 AM Page 586

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 587

This chapter has covered the following topics:

á Overview and definition of COM components, including
ActiveX DLLs, ActiveX EXEs, ActiveX controls, and Active
documents

á Choosing the right COM component for the job

á Choosing the appropriate threading model for a COM
component

á Choosing the appropriate instancing property for COM
component classes

á Using a COM component to implement business rules and
logic

á Programming with VB class modules

á Implementing an object model within a COM component

á Sending error information from a COM component to
a client computer

á Using Visual Component Manager to manage components

á Using callback procedures for asynchronous processing
between COM components and VB client applications

á Registering and unregistering a COM component in the
Windows Registry

á Implementing messages from a server component to a user
interface

CHAPTER SUMMARY

KEY TERMS
• ActiveX

• ActiveX control

• ActiveX document

• Apartment-model threading

• Callback

• Class

• CLS file (.CLS)

• COM

• COM component

• Early binding

• IDispatch

• Instance

• Instantiate

• Interface class

• Iunknown

• Marshaling

• Member

• Modal

• Modeless

• Object variable

• Object

• vtable binding

• Windows Registry

15 002-8 CH 12 3/1/99 8:10 AM Page 587

588 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Exercises

12.1 Using Class Modules to Create a COM
Component That Implements an Object
Model for Business Logic

Estimated Time: 45 minutes

In this exercise, you create an example of an in-process
component that could implement some simple business
rules. You also create a second project to test the
component.

1. Begin a new ActiveX DLL project in VB.

2. Name the default class Credit (right-click the
Class object in Project Explorer to access its
properties, including the name).

3. Give the Credit class two read/write properties,
CustID and TransactionAmount. Create property
procedures for each property and declare Private
variables to hold the property values:

Option Explicit
Private m_CustID As String
Private m_TransactionAmount As Double

Public Property Get CustID() As String
CustID = m_CustID

End Property
Public Property Let CustID(strNewCustID As
➥String)

m_CustID = strNewCustID
End Property

Public Property Let
TransactionAmount(dNewAmount As Double)

m_TransactionAmount = dNewAmount
End Property
Public Property Get TransactionAmount() As
➥Double

TransactionAmount = m_TransactionAmount
End Property

4. Create a read-only property,
MaxAmtPerTransaction (just omit the Property
Let procedure to make it read-only), and declare
a Private variable to hold its value. Initialize the
Private variable in the class’s Initialize event
procedure:

‘In General Declaration section
Private m_MaxAmtPerTransaction As Double

Public Property Get MaxAmtPerTransaction()
MaxAmtPerTransaction =

➥m_MaxAmtPerTransaction
End Property

Private Sub Class_Initialize()
m_MaxAmtPerTransaction = 100000

End Sub

5. Create an event for the class, CustBalChange.
It will take two parameters:

Public Event CustBalChanged(CustID As String,
➥ChangeAmt As Double)

6. Create a method, ValidateTransaction. This
method will act as a function and will return an
Integer value, 1 if the transaction is acceptable,
and 0 if it’s unacceptable. The internal code for
ValidateTransaction will compare the value
stored for the TransactionAmount property with
the value stored for the MaxTransactionAmount
property. If the transaction amount doesn’t
exceed the maximum allowed, the transaction is
accepted. A successful transaction will also cause
the CustBalChange event to fire:

Public Function ValidateTransaction() As
➥Integer

If (m_TransactionAmount <=
MaxAmtPerTransaction) Then

RaiseEvent CustBalChanged(m_CustID,
m_TransactionAmount)

ValidateTransaction = 1
Else

ValidateTransaction = 0
End If

End Function

15 002-8 CH 12 3/1/99 8:10 AM Page 588

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 589

A P P LY YO U R K N O W L E D G E

7. Make sure the project is named BusRules (set its
name on the General tab of the Project,
Properties menu option). Save the project as
BusRules.VBP. The project name will be the
component’s name in the Windows Registry.

8. Now you will create a test client project and run
it against the component that you have just cre-
ated. Add a new standard EXE project to the
current group (use the File, Add Project option
on the VB menu). Make it the group’s startup
project by right-clicking the new project in
Project Explorer and choosing Set As Startup
from the resulting shortcut menu.

9. On the test project’s default form, add two text
boxes, two labels, and a command button, as
shown in Figure 12.24. Name the text boxes
txtCustomerID and txtTransactionAmt, respec-
tively, and name the command button
cmdValidateTransaction. Clear out the text
properties of the text boxes.

11. Declare a Private instance of the
BusRules.Credit object (call it objCredit) in the
test project’s form using the WithEvents keyword
and instantiate the object in the Form_Load event
procedure:

Option Explicit
Private WithEvents objCredit As
BusRules.Credit
Private Sub Form_Load()

Set objCredit = New BusRules.Credit
End Sub

12. In the code window for the test project, find the
object variable’s name in the left-hand drop-down
list of objects. Selecting this object will automati-
cally position the cursor in the event procedure
for CustBalChanged (it’s the only event exposed by
the Credit class). Write code to react to the event:

Private Sub objcredit_CustBalChanged _
(CustID As String, _
ChangeAmt As Double)

MsgBox “Balance of customer “ & _
CustID & “ changed by “ &

➥ChangeAmt
End Sub

13. In the Click event of the command button, place
code to exercise the object model of
BusRules.Credit:

Private Sub cmdValidateTransaction_Click()
objcredit.CustID = Trim$(txtCustomerID)
objcredit.TransactionAmount = CDbl(

➥txtTransactionAmt)
Me.Cls
If objcredit.ValidateTransaction Then

Beep
Me.Print “Approved”

Else
Beep
Me.Print “Not approved”

End If
End Sub

14. Run the application, attempting amounts both
over and under the amount permitted by the
MaxTransactionAmount property of the Class object.

F IGUR E 12 .24
The form for the test project in Exercise 12.1.

10. Set a reference in the test EXE project to the
BusRules component (Use the Project, References
dialog box, find the BusRules component in the
list of components, and check it on).

15 002-8 CH 12 3/1/99 8:10 AM Page 589

590 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Because you didn’t take time to validate data
properly, make sure that you have a numeric
amount in the text box for Transaction Amount.

12.2 Setting the Threading Model for a COM
Component

Estimated Time: 5 minutes

In this exercise, you view the threading options for
in-process and out-of-process servers.

1. In VB, start a new ActiveX DLL project, choose
Project, Properties from the VB menu, and view
the threading options on the General tab.

2. Start a new ActiveX EXE project and view its
threading options in the same way.

12.3 Controlling the Instancing of a Class
Within a COM Component

Estimated Time: 5 minutes

In this exercise, you examine the instancing options
available to classes in ActiveX DLL (in-process) and
ActiveX EXE (out-of-process) components.

1. In VB, start a new ActiveX DLL project. Right-
click its default class to bring up the shortcut
menu, and choose Properties from the menu.
Click the drop-down arrow next to the
Instancing property in the Properties window,
and note the options.

2. Start a new ActiveX EXE project. Right-click its
default class to bring up the shortcut menu, and
choose Properties from the menu. Click the drop-
down arrow next to the Instancing property in
the Properties window, and note the options.
Which instancing options have been added over
the instancing options for the ActiveX DLL?

12.4 Returning Error Information from a
COM Component

Estimated Time: 45 minutes

In this exercise, you use the project/test project pair
that you created in Exercise 12.1 to demonstrate the
two techniques of reporting errors from a component
to a client: raising errors directly in the component, or
returning an error code from a method.

1. Use the same project group that you created in
Exercise 12.1.

2. In the Credit class of the BusRules component,
modify the ValidateTransaction method’s code
so that it looks like the following:

Public Function ValidateTransaction() As
Integer

If m_TransactionAmount = 0 Then Err.Raise
Number:=600, _
Source:=”ValidateTransaction”, _
Description:=”Zero Transaction Amounts

➥not allowed.”
If m_CustID = “” Then

ValidateTransaction = –1
Exit Function

End If
If (m_TransactionAmount <= MaxAmtPer-

➥Transaction) Then
RaiseEvent CustBalChanged(m_CustID,

➥m_TransactionAmount)
ValidateTransaction = 1

Else
ValidateTransaction = 0

End If
End Function

Notice that you are mixing error-handling styles
here (not recommended for real applications, but
good for the example). You are both raising an
error to the client and also manipulating the
return value of the method to reflect different
problems that might occur: a blank customer ID
or a zero transaction amount, respectively.

15 002-8 CH 12 3/1/99 8:10 AM Page 590

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 591

A P P LY YO U R K N O W L E D G E

3. In the test project, modify the Click event of the
command button as follows:

Private Sub cmdValidateTransaction_Click()
objcredit.CustID = Trim$(txtCustomerID)
On Error Resume Next
objcredit.TransactionAmount = CDbl(

➥txtTransactionAmt)
Me.Cls
Dim iResult As Integer

On Error GoTo ValidateTransaction_Error
iResult = objcredit.ValidateTransaction
If iResult = 1 Then

Beep
Me.Print “Approved”

ElseIf iResult = 0 Then
Beep
Me.Print “Not approved”

ElseIf iResult = –1 Then
Beep
Me.Print “Error in

ValidateTransaction method”
End If

Exit_Validate_Click:
Exit Sub

ValidateTransaction_Error:
MsgBox “Error in “ & Err.Source & “.

➥Error #” & Err.Number & “: “ &
Err.Description

Resume Exit_Validate_Click
End Sub

Notice that the code both checks the return
value of the function for an error condition (–1)
and uses an error trap to see whether the
component has raised an error.

4. Set Break option to Break on Unhandled Errors
using the General tab of the Tools, Options dia-
log box.

5. Run and test the application with various combi-
nations of blank customer IDs and transaction
amounts of zero.

12.5 Using Visual Component Manager

Estimated Time: 45 minutes

In this exercise, you publish a project in VCM, and then
you find and use that project in another VB application.

N
O

T
E Refer to Figures in Text This exer-

cise includes no figures. For illustra-
tions of the tasks discussed here,
refer to the figures under the section
in this chapter on Visual Component
Manager.

1. Use the same project group that you created for
Exercise 12.4 or Exercise 12.1.

2. In the test project, remove the reference to the
DLL project.

3. Make sure that the Visual Component Manager
icon appears on your toolbar. If not, choose Add-
ins, Add-in Manager, find VCM in the list of
add-ins, and mark it as Loaded. Also mark Load
on Startup if you want it to be loaded every time.

4. Right-click the DLL project name in Project
Explorer and choose Publish. Under the sub-
menu, choose Build Outputs.

5. Skip the first screen of the VCM Publish Wizard.
On the second screen (Select Repository/Folders),
choose the appropriate folder in the Local data-
base repository and adjust the name of the com-
ponent if necessary. Click the Next button.

6. Read the Title and Properties screen. Make no
changes. Click the Next button.

15 002-8 CH 12 3/1/99 8:10 AM Page 591

592 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

7. On the More Properties screen, type an appropri-
ate description (such as Business rules) for the
component. Add two keywords, Business and
Credit, by clicking the plus button (+) and typ-
ing the keywords. After you have added the key-
words, click the Next button.

8. Read the Select Additional Files screen, but make
no changes. Click the Next button.

9. Read the COM Registration screen, but make no
changes. Click the Next button.

10. On the Finished screen, click the Finished but-
ton.

11. Now your component is ready to use in VB
projects. Start a new EXE project.

12. Click the VCM icon on the VB toolbar, and
make sure that the highest node in the Folders
tree of VCM is selected.

13. Click the Search (binoculars) icon on the VCM
screen.

14. In the resulting Search dialog box, enter Credit
in the box labeled Containing Text. And check
the box labeled Containing text in a keyword.
Then click the Find Now button.

15. Your component should show up at the bottom
of the Search dialog box. Right-click your com-
ponent’s icon and choose Add to Project from the
resulting drop-down menu, responding with
default answers to any message boxes that appear.

16. You should see a message that your component
was successfully added to the project. Because
you chose the Build Outputs option in step 4,
your project now contains a reference to the com-
ponent, which you can view in the Project,
References dialog box.

12.6 Implementing a Callback Procedure for
Asynchronous Processing

Estimated Time: 35 minutes

In this exercise, you implement a callback between
client and component using an Interface class to pro-
vide a template for a callback notification object.

1. Create an ActiveX DLL project. Name the pro-
ject MyAsynch.

Use the default class as the Interface to imple-
ment the callback object. Name the class
INotification. Its entire contents will just be the
empty template for a Notify method:

Option Explicit

Public Sub Notify(strMsg As String)
End Sub

2. Add a class and name it MainApp.

3. Within MainApp, declare a Public object variable
of the INotification Interface type:

Option Explicit
Public pobjNotification As INotification

4. Also in MainApp, create a method, DoSomething,
that receives an object parameter of the
INotification Interface type and sets the Public
object variable to point to the object parameter.
Let the method invoke a time-consuming rou-
tine:

Public Sub DoSomething(objNotification As
➥INotification)

Set pobjNotification = objNotification
LongTimeProcess 5 ‘number of seconds

➥to run
End Sub

5. Write the time-consuming routine invoked by the
method. When the routine finishes, let it call the
Notify method of the Private object variable.

15 002-8 CH 12 3/1/99 8:10 AM Page 592

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 593

A P P LY YO U R K N O W L E D G E

Private Sub LongTimeProcess(iSeconds As
➥Integer)

Dim dtStart As Date
Dim dtEnd As Date
Dim dSecondsInADay As Double
dSecondsInADay = CDbl(24) * CDbl(60) *

➥CDbl(60)
dtStart = Now
dtEnd = dtStart + CDbl(iSeconds) /

➥dSecondsInADay
Do While dtEnd > Now

DoEvents
Loop
pobjNotification.Notify “Done after “ &

➥iSeconds & “ seconds.”
End Sub

Because a client will implement the specific
behavior of the Notify method, the Notify
method will do whatever the client’s implemen-
tation has specified.

6. Add a new standard EXE project to the group.
On the surface of its default form, place a com-
mand button and a text box, as shown in Figure
12.25.

class modules declared in a standard EXE have no
Instancing property. Name the class
NewNotification. Have it implement
MyAsynch.INotification.

Make the Notify method of NewNotification do
something that can be perceived, such as beep or
display a message. The entire implementation of
NewNotification should look something like this:

‘In the NewNotification Class module
Option Explicit
Implements MyAsynch.INotification

Private Sub Notification_Notify(strMsg As
➥String)

Beep
Form1.BackColor = RGB(Rnd * 256, Rnd *

➥256, Rnd * 256)
Form1.Print strMsg
DoEvents

End Sub

9. In the command button’s Click event, declare
and instantiate instances of the NewNotification
class and of the MySynch.MainApp component
class. Then call the DoSomething method, passing
to it as an argument the instance of the
NewNotification class that you just created:

‘In Form1
Private Sub cmdDoLongProcess_Click()

Dim objMainApp As New MyAsynch.MainApp
Dim objnotification As New NewNotification
objMainApp.dosomething objnotification

End Sub

10. Make sure that the test project is the group’s
startup project, and make sure that the error-han-
dling option is Break in Class Module. Then run.
Invoke the method by clicking the command
button. Type something into the text box while
waiting for the notification. This will prove that
the client and component are truly asynchronous
to each other.

F IGURE 12 . 25
The form for the test project in Exercise 12.6.

7. Add a reference to the MyAsynch component (see
Exercise 12.1 for details on how to do this).

8. Add a class to the current EXE project that
implements the notification interface. Notice that

15 002-8 CH 12 3/1/99 8:10 AM Page 593

594 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

‘Class NewNotification
Option Explicit
Implements MyAsynch.Notification
Private Sub Notification_Notify(strMsg As
➥String)

Beep
Form1.BackColor = RGB(Rnd * 256, Rnd *

➥256, Rnd * 256)
Form1.Print strMsg
DoEvents

End Sub
‘Form1
Private Sub cmdDoLongProcess_Click()

Dim objMainApp As New MyAsynch.MainApp
Dim objnotification As New NewNotification
objMainApp.DoSomething objnotification

End Sub
‘ MyAsynch.MainApp
Option Explicit
Public probjNotification As Notification

Public Sub DoSomething(objNotification As
➥Notification)

Set probjNotification = objNotification
LongTimeProcess 5 ‘number of seconds

➥to run
End Sub

Private Sub LongTimeProcess(iSeconds As
➥Integer)

Dim dtStart As Date
Dim dtEnd As Date
Dim dSecondsInADay As Double
dSecondsInADay = 24 * 60
dSecondsInADay = dSecondsInADay * 60
Dim dSecondAsFractionOfDay As Double
dSecondAsFractionOfDay = 1 /

➥dSecondsInADay
dtStart = Now
dtEnd = dtStart + iSeconds * 1 /

➥(CDbl(24) * CDbl(60) * CDbl(60))
Do While dtEnd > Now

DoEvents
Loop
probjNotification.Notify “Done after “ &

➥iSeconds & “ seconds.”
End Sub
Option Explicit
‘Class MyAsynch.Notification
Public Sub Notify(strMsg As String)
End Sub

12.7 Registering and Unregistering a COM
Component

Estimated Time: 25 minutes

In this exercise, you experiment with registering and
unregistering COM components in the Windows
Registry.

1. Make sure that REGSVR32.EXE is on your sys-
tem. It should be in the System directory under
your Windows Install. If you don’t see it, search
for it on the installation media for VB6 or Visual
Studio 6. After you find it, copy it to the System
directory.

2. Open the ActiveX DLL project from Exercise
12.1. Compile the project by choosing File, Make
*.DLL from the VB menu.

3. Fully exit VB and then re-enter. Start a new stan-
dard EXE project. In the Project, References dia-
log box, you should now note a reference to your
project, because it has been entered in the
Registry through the act of compiling it.

4. Close VB again. Unregister your component by
running the following line from Windows’ Start,
Run menu option:

Regsvr32 -u PathToComponent\ComponentName.dll

where PathToComponent is the fully qualified
drive and path to the folder where your compiled
component resides, and ComponentName.dll is the
name of the compiled file.

5. Return to VB and note that your component can
no longer be found in the Project, References dia-
log box.

15 002-8 CH 12 3/1/99 8:10 AM Page 594

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 595

A P P LY YO U R K N O W L E D G E

6. Exit VB and reregister your component. This
time, use REGSVR32 by running the following
line from Windows’ Start, Run menu option:

Regsvr32 PathToComponent\ComponentName.dll

where, of course, PathToComponent is the fully
qualified drive and path to the folder where your
compiled component resides, and
ComponentName.dll is the name of the compiled
file. Run VB again and note that the component
has returned to the Project, References list.

7. Now for the same steps with an ActiveX EXE:
first, open the ActiveX EXE project from
Exercise 12.x and compile it. This will register
the component, just as compiling the out-of-
process component did in step 2.

8. Unregister the ActiveX EXE component by run-
ning the following line from the Windows Start,
Run menu:

exepath\exename /UNREGSERVER

where exepath\exename is the path and name
of the compiled file.

9. Reregister your ActiveX EXE component by run-
ning it again from the Windows Start, Run
menu, this time with the line:

exepath\exename /REGSERVER

10. Unregister the ActiveX EXE component, and
then reregister it by just running it from the
command line without the /REGSERVER switch.
When you run it without the switch, the EXE
continues running. When you run it with the
switch, the EXE runs only to register itself, and
then unloads.

12.8 Implementing Messages from a Server
Component to a User Interface

Estimated Time: 15 minutes

In this exercise, you display forms and message dialog
boxes to the user of a component.

1. Use the project group that you created for
Exercise 12.4.

2. To the ActiveX DLL, add a form and name it
frmMsg. Add a label to the form, and change the
label’s font size to 24. Change the label’s caption
to Error.

3. In the Credit class of BusRules, add the following
code to the top of the ValidateTransaction
method:

If App.NonModalAllowed Then
frmMsg.Show

Else
frmMsg.Show vbModal

End If

4. When you run the test application, note that the
other messages from the method and the calling
routine in the client continue to show while the
form is onscreen, meaning that the form was
called modelessly.

Review Questions
1. You want to create a read-only property. How

would you define the Property procedure?

2. Why would you create a property using a
Property procedure pair rather than a Public
variable?

3. How would you create a new method in a class?

15 002-8 CH 12 3/1/99 8:10 AM Page 595

596 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

4. You have an ActiveX EXE program with a class
declared as SingleUse. What effect could this
have on the memory of the computer when mul-
tiple clients access this object?

5. You are writing the code that takes advantage of
an event (Done) fired by another class named
SomeTask. What line should you add to the
General Declarations section of the module that
will respond to the event?

6. What must you do to a class to make it into an
interface?

7. When implementing automation components,
which types of VB6 application can be used?

8. Your programmers are complaining that it takes
too long to execute methods of Automation
Server. You have already determined that the
application is already tuned. What can be done
to the Automation Server to speed up the calls
between client and server?

9. What is the purpose of the WithEvents keyword?
Write a declaration with this keyword.

10. What is the threading model for Visual Basic
applications?

11. What is the difference between GlobalMultiUse
and MultiUse instancing?

12. In what two different formats can you publish
a component in Visual Component Manager?

13. What are the two basic techniques for sending
error information from a COM component to
a client?

14. What is the name of the utility that you can use
to register COM components?

15. How can you tell whether it is safe for an ActiveX
DLL to use nonmodal forms?

16. What is the difference between in-process and
out-of-process COM servers?

Exam Questions
1. You are defining a new property. The property is

meant to hold an employee’s ID number, which
is made up of two characters and four numbers.
Which of the following property procedures
would you have to define? (Select all that apply.)

A. Property Set

B. Property Get

C. Property Let

D. Property EmployeeID

E. Property New

2. The following line of code is in the General
Declarations section of a class module:

Public Age as Integer

Which of the following is true?

A. The class defined by the class module will
have a new property called Age.

B. All modules in the same project as the class
module will be able to access the variable.

C. An error will occur because this is not a valid
declaration.

D. The value of Age can be accessed from any
other project that knows about this class.

15 002-8 CH 12 3/1/99 8:10 AM Page 596

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 597

A P P LY YO U R K N O W L E D G E

3. You are designing a class module that will be
used as a standalone EXE server. Which of the
following is true about the Instancing property
for the class?

A. The class must be defined Private.

B. A PublicNotCreatable class must have
another class that provides access to it.

C. A program using a class defined as
GlobalMultiUse needs to explicitly mention
the class name to use its properties and
methods.

D. The class can be defined as SingleUse.

4. You have created a new property procedure in a
class module. You have not specified its scope.
What scope is it?

A. Private

B. Friend

C. Public

D. Global

E. None. You must specify the scope for all
properties.

5. Which of the following are valid settings for the
Instancing property of a class in an in-process
server? (Select all that apply.)

A. GlobalMultiUse

B. MultiUse

C. PublicCreatable

D. SingleUse

E. Private

6. You have declared a new object variable of type
CAccount, with the following line:

Dim theAccount as CAccount

What must you do before using this variable?

A. Nothing. The variable is ready to use.

B. Set theAccount = New CAccount

C. theAccount = New CAccount

D. Set theAccount = CAccount

7. What action should you not do in a class’s
Initialize event?

A. Set default values

B. Create dependent objects

C. Set an object variable to a new copy of the
class

D. Open files or other resources to be used by
the class

8. What is the syntax to assign the return value for a
Property Get procedure named LastName, where
LastName is a String?

A. Set LastName = ReturnValue

B. Return ReturnValue

C. Exit ReturnValue

D. LastName = ReturnValue

9. You are using a program that accesses a SingleUse
ActiveX EXE program. After creating a second
copy of an object defined by the program, what
should you expect to happen?

A. More memory is used.

B. Memory is freed.

15 002-8 CH 12 3/1/99 8:10 AM Page 597

598 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

C. An error occurs. You can only run one copy
of a SingleUse program.

D. Nothing.

10. What happens if you don’t write code to react to
all the events an object generates?

A. A runtime error occurs.

B. A compile-time error occurs.

C. No error occurs, but the events you do add
code to will not run until you complete all
event handlers.

D. No error occurs, and the events you react to
will execute.

11. What happens if you don’t write code for all the
methods and properties of an interface?

A. A runtime error occurs.

B. A compile-time error occurs.

C. No error occurs, but the methods and proper-
ties you do add code to will not run until you
complete all Interface procedures.

D. No error occurs, and the methods and prop-
erties you have added code for will execute.

12. You have an ActiveX Automation Server that dis-
plays forms. What must be done to have the
application run unattended and support multiple
threads?

A. You cannot have unattended Automation
Servers.

B. There is nothing that must be done.

C. Remove the forms and code that refers to
forms. Then select the Unattended Execution
option.

D. Select the Unattended Execution option.

13. What does the Thread per Object option provide
for an application?

A. This option is not available in the current
release of Visual Basic.

B. Each SingleUse class will get its own thread.

C. Each MultiUse class will get its own thread.

D. Multiple objects will be in a thread as defined
by the object count.

14. You have an Application class and a Workspace
class. The users of your Automation Server must
be able to create the Application but not the
Workspace class. The only way the user should be
able to use the Workspace class is through the use
of a function of the Application class. How do
you achieve this goal?

A. Define the Application class as MultiUse and
the Workspace class as Private and return the
object via a function of the Application class.

B. Define the Application class as MultiUse and
the Workspace class as GlobalMultiUse.

C. Define the Application class as SingleUse and
the Workspace class as GlobalSingleUse.

D. Define the Application class as MultiUse and
the Workspace class as PublicNotCreatable.

E. Define the Application class as

15 002-8 CH 12 3/1/99 8:10 AM Page 598

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 599

A P P LY YO U R K N O W L E D G E

PublicNotCreatable and the Workspace class
as MultiUse.

F. This cannot be done in Visual Basic.

15. Which of the following statements will create a
read-only property?

A. Public FirstName as String

B. Property Get FirstName() as string
End Property

Property Let FirstName(strLast as string)

End Property

C. Property Get FirstName() as string
End Property

Property Set FirstName(strLast as string)

End Property

D. Property Get FirstName() as object
End Property

Property Let FirstName(strLast as object)

End Property

E. Property Get FirstName() as string
End Property

F. Public ReadOnly FirstName as string

G. Friend FirstName as String

16. Which of the following statements is true about
automation components?

A. They can only be implemented as DLLs.

B. They can only be implemented as executables.

C. They are neither executables nor DLLs.

D. They can be either executables or DLLs.

17. Your programmers are complaining that it takes
too long to execute methods of Automation
Server. You have already determined that the
application is already tuned. What can be done
to the Automation Server to speed up the calls
between client and server?

A. Nothing can be done.

B. Implement the Automation Server as a DLL
and run it locally.

C. Implement the Automation Server as an
executable and run it locally.

D. Implement the Automation Server as a DLL
and run it on a different machine.

18. Which of the following variable definition using
the WithEvents keyword is correct?

A. Private WithEvents m_obj as object

B. Private WithEvents m_obj as TextBox

C. Private WithEvents m_obj as Variant

D. Private WithEvents m_obj as New TextBox

19. Which of the following statements is true about
the Implements keyword?

A. It is used to provide a class interface to the
Windows API.

B. It is used to define a C++ interface.

C. It denotes that the module will provide code
to support the interface.

D. It is used to support implementation
inheritance.

15 002-8 CH 12 3/1/99 8:10 AM Page 599

600 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

20. When implementing custom properties with
Get/Let/Set procedures, you store the value of
the property where?

A. In a Public variable of the class

B. In a Private variable of the class

C. In a Static variable of the Let procedure

D. In a Static variable of the Get procedure

21. How do you implement a collection’s built-in fea-
tures (such as Count, Add, Remove, and Item)?

A. By writing wrapper procedures in the depen-
dent class

B. By writing wrapper procedures in the
collection class

C. By writing wrapper procedures in the parent
class

D. By invoking them directly from calling code

22. When implementing a collection in an applica-
tion, where would you put the following state-
ment?

Private colStars as Collection

A. In the parent class

B. In the dependent class

C. In the dependent collection class

D. Elsewhere in the application

23. A class’s Terminate event will always run

A. When the class’s object variable goes out of
scope.

B. An END statement executes in the server’s code.

C. After all forms have been unloaded.

D. After all forms have become invisible.

24. A collection’s built-in Item method

A. Has an integer parameter that indexes the
item’s position in the collection.

B. Has a String parameter that looks up
the item’s key in the collection.

C. Has a Variant parameter.

D. Has no parameter.

25. To cause a custom class event to fire,

A. You declare the event at the point in the class
module code where you want the event to
fire.

B. You use the RaiseEvent method on the Object
variable you create from the class.

C. You perform some action in the class module’s
code that will cause the event to fire, followed
by the DoEvents statement.

D. You use the RaiseEvent statement in the class
module’s code.

26. How do you implement callback functionality
from a class to its calling code in a standard
executable?

A. Provide a custom class event with at least one
Boolean By Val parameter.

B. Provide a custom class event as a function
with a Boolean return value.

C. Provide a custom class event with at least one
By Reference parameter.

D. There is no way to provide callback function-
ality from a class in a standard executable.

15 002-8 CH 12 3/1/99 8:10 AM Page 600

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 601

A P P LY YO U R K N O W L E D G E

27. When does an event procedure for a class’s cus-
tom event appear in the code window of
a VB application?

A. You must manually declare the event
procedure.

B. After you write a declaration of the event in
the class.

C. After you use WithEvents to declare an object
variable of the class.

D. After you write code in the class to raise the
event.

28. A COM component

A. Can be either in-process or out-of-process if
it is an EXE.

B. Can be either in-process or out-of-process
if it is a DLL.

C. Can have its class Instancing property be
SingleUse if it is a DLL.

D. Can have its class Instancing property be
MultiUse if it is an EXE.

29. A COM component project’s Name option as
found on the Project tab of the Options dialog box

A. Must be the same as the project’s filename.

B. Will be the objecttype component when a
controller instantiates servername.objecttype
in the server.

C. Will be the servername component when a
controller instantiates servername.objecttype
in the server.

D. Must be the same as the main class name in
the server.

30. The PublicNotCreatable Instancing property set-
ting

A. Makes the class SingleUse by default

B. Makes the class MultiUse by default.

C. Makes the class invisible to clients, but visible
throughout the server application.

D. Means that clients can see the class, but must
use other classes in the component to access it.

31. It is true that

A. You can’t specify Unattended execution for
an out-of-process server.

B. You can’t specify Unattended execution for an
in-process server.

C. You can’t specify number of threads for
an out-of-process server.

D. You can’t specify number of threads for an
in-process server.

32. An Interface

A. Usually contains code in its procedures, which
implementing classes can override.

B. Must reside in a separate project from client
and server.

C. Must be defined within the class that will
implement it.

D. May be referenced in other classes with the
Implements keyword.

33. A callback object (Pick two)

A. Is implemented in the server.

B. Is manipulated in the server.

15 002-8 CH 12 3/1/99 8:10 AM Page 601

602 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

C. Is defined in the server.

D. Is instantiated in the client.

34. A callback object

A. Is used by the server to raise an event in the
client.

B. Is used by the client to raise an event in
the server.

C. Is passed from the client to the server.

D. Is passed from the server to the client.

35. To register an out-of-process COM server, you
can (Pick two)

A. Run the REGSVR32 utility against it.

B. Run it standalone.

C. Compile it with File Make OLE DLL.

D. Run it with the /REGSERVER option.

36. A GlobalSingleUse or GlobalMultiUse class

A. Will be available throughout a server
application, but not to clients.

B. Will be available to clients using the
Implements keyword.

C. Will be available to clients without the need
for object syntax.

D. Will be available throughout a server applica-
tion, as well as to clients, as long as you use
object syntax.

37. The Friend keyword

A. Makes a class available throughout
a component project, but not in clients.

B. Makes a class available as a Global class in
clients, but not in the component project.

C. Makes a member available throughout
a component project, but not in clients.

D. Makes a member available globally in clients,
but not in the component project.

38. You need to implement rules that your business
uses to format, display, and enter currency
amounts.

Your application currently runs with a SQL
Server database on a network server with individ-
ual users connected through PC workstations.

What is the best way to implement these rules?

A. A component of a larger executable running
on each user’s workstation

B. Triggers and stored procedures in the database

C. An ActiveX control

D. An Active document downloaded from the
corporate intranet

E. An ActiveX DLL component residing on
a network server

39. You need to implement several business rules in
your enterprise system, such as maximum credit
limits for customers and employee vacation time
policies.

Your application currently runs with a SQL
Server database on a network server with individ-
ual users connected through PC workstations.

What is the best way to implement these business
rules?

A. A component of a larger executable running
on each user’s workstation

B. Triggers and stored procedures in the database

C. An ActiveX control

15 002-8 CH 12 3/1/99 8:10 AM Page 602

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 603

A P P LY YO U R K N O W L E D G E

D. An Active document downloaded from the
corporate intranet

E. An ActiveX component residing on a net-
work server

40. The IDispatch interface supports the following
members (Pick all that apply)?

A. AddRef.

B. GetTypeInfoCount.

C. Invoke

D. QueryInterface.

41. The following code will cause vtable binding
(Pick two)

A. Dim strObj As Object
Set strObj = CreateObject

➥(“MyServer.MyClass”)

B. Dim strObj As New MyServer.MyClass

C. Dim strObj As MyServer.MyClass
Set strObj = New MyServer.MyClass

D. Dim strObj As New Object
Set strObj = New MyServer.MyClass

Answers to Review Questions
1. Only define a Property Get procedure. This is

useful when the property is not supposed to be
set by the object’s client. See “Implementing
Properties with Property Procedures.”

2. Creating a property by using a Property proce-
dure pair (Property Get/Let or Get/Set) allows
for error checking, and ensures that the value
passed is valid. It also gives you more control

because you can run other procedures or fire
events. See “Implementing Properties with
Property Procedures.”

3. Create a new Public subroutine or function in
a class module. See “Implementing Custom
Methods in Class Modules.”

4. Each client gets its own copy of the ActiveX EXE
program. Each copy of the ActiveX EXE program
uses up memory as the EXE is loaded. See “The
Instancing Property of COM Component
Classes.”

5. Declare a new variable by using the WithEvents
keyword. For example, Private WithEvents
theTask as SomeTask. See “Implementing
Custom Events in Class Modules.”

6. Nothing. Every class is already usable as an inter-
face. See “Using Interfaces to Implement
Polymorphism.”

7. Automation components can be implemented
as either executables or dynamic link libraries
(DLLs). See “Overview of COM Component
Programming.”

8. One of the easiest methods of the increasing
speed is to implement the component as a
dynamic link library (DLL). In addition, you can
use early binding on the client side to signifi-
cantly improve function invocation performance.
See “Overview of COM Component
Programming.”

9. The WithEvents keyword is used to define an
object variable that supports events. An example
of defining a variable that supports events is
shown as follows:

Private WithEvents m_obj as TextBox

See “Declaring WithEvents.”

15 002-8 CH 12 3/1/99 8:10 AM Page 603

604 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

10. Apartment-model threading is the threading
model for Visual Basic applications. See
“Managing Threads in a COM Component.”

11. When you create a class whose Instancing prop-
erty is set to MultiUse, client applications must
declare instances of that class with the syntax:

Dim InstanceName As Servername.Classname

When you create a class whose Instancing prop-
erty is GlobalMultiUse, client applications can
declare instances of the class with the syntax:

Dim InstanceName As ClassName

See “Using GlobalSingleUse to Avoid Explicit
Object Creation” and “Using GlobalMultiUse
Instancing to Avoid Explicit Object Creation.”

12. You can publish either a component’s source code
or the compiled component itself in Visual
Component Manager. See “Managing
Components with Visual Component Manager.”

13. You can implement error codes from a COM
component either by setting a method’s return
value or by raising an error to the client. See
“Handling Errors in the Server and the Client.”

14. REGSVR32.EXE is the name of the utility used
to register COM components on a machine’s sys-
tem Registry. See “Registering/Unregistering an
In-Process Component.”

15. You can check App.NonModalAllowed in an
ActiveX DLL component’s code to see whether
the client supports nonmodal forms. See
“Managing Forms in an In-Process Server
Component.”

16. “In-process” refers to ActiveX DLLs, and “out-of-
process” refers to ActiveX EXEs. See “Comparing
In-Process and Out-of-Process Server Components.”

Answers to Exam Questions
1. B, C. Both a Property Get and a Property Let

procedure should be written. This will allow the
property to be written to and read. A Property
Set procedure is not necessary because the vari-
able is not an object variable. For more informa-
tion, see the section titled “Implementing
Properties with Property Procedures.”

2. A, B, D. Using a Public variable in the General
Declarations section of a class module will define
a new property for that class that is accessible
from other code within the class and from all
other applications that instantiate the class object.
For more information, see the section titled
“Implementing Properties as Public Variables.”

3. D. An ActiveX EXE project may be defined as
SingleUse, MultiUse, GlobalSingleUse, or
GlobalMultiUse. For more information, see the
section titled “The Instancing Property of COM
Component Classes.”

4. C. The default scope for a property is Public. For
more information, see the section titled “Using
Public, Private, and Friend.”

5. A, B, E. The Instancing property of an in-
process server class may be set to GlobalMultiUse,
MultiUse, PublicNotCreatable, or Private.
SingleUse and GlobalSingleUse can only be set
for out-of-process servers. For more information,
see the section titled “The Instancing Property of
COM Component Classes.”

6. B. Although the variable has been declared, it has
not been initialized. This can be done by setting
the variable to a new instance of the class. For
more information, see the section titled
“Overview of COM Component Programming.”

15 002-8 CH 12 3/1/99 8:10 AM Page 604

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 605

A P P LY YO U R K N O W L E D G E

7. C. Creating a new copy of the class before the
class is initialized would lead to an infinite loop
because each new class attempts to create a new
copy until the computer runs out of memory or
resources. For more information, see the section
titled “Built-In Events of Class Modules.”

8. D. Returning a value from a Property Get pro-
cedure is the same as returning a value from a
function. Set the name of the procedure to the
return value in the body of the procedure. For
more information, see the section titled
“Implementing Properties with Property
Procedures.”

9. A. Each copy of a SingleUse ActiveX EXE pro-
gram can provide one object. Creating a second
object would cause another copy of the EXE to
be loaded in memory. For more information, see
the section titled “Using SingleUse Instancing
for Separate Instances of Every Object.”

10. D. You need only to write code to react to the
events you want to deal with. For more informa-
tion, see the section titled “Implementing
Custom Events in Class Modules.”

11. B. You must write code for all the methods and
properties of an interface. Not doing so will lead
to a compile-time error. For more information,
see the section titled “Using Interfaces to
Implement Polymorphism.”

12. D. You must set the Unattended Execution
option. Any existing user interface messages will
be logged according to the application’s logging
options and the operating system. In VB5,
answer C would have been correct, because a
server could not have any forms and be marked
for Unattended Execution. In VB6, however, this
is possible. For more information, see the section

titled “Managing Threads in a COM
Component.”

13. B. The Thread per Object option initiates a
thread for each new SingleUse class that a client
instantiates. Note that Thread per Object is not
available for in-process servers (ActiveX DLLs).
For more information, see the section titled
“Managing Threads in COM Components.”

14. D. The Workspace class must be defined as
PublicNotCreatable and is passed to the client via
a function provided in the application. For more
information, see the section titled “Using
PublicNotCreatable Instancing for Dependent
Classes.”

15. E. To create a read-only property, the Property
Get procedure must be defined and the Property
Let and Property Set procedures must be omit-
ted so that the client has no way of assigning a
property value. For more information, see the
section titled “Implementing Properties with
Property Procedures.”

16. D. Automation Servers can be implemented as
executables or DLLs. For more information, see
the section titled “Comparing In-Process and
Out-of-Process Server Components.”

17. B. When a client uses an Automation Server
implemented as a DLL, the server runs in the
same address space as the client. The invocation
overhead is much smaller than calling an exe-
cutable. For more information, see the section
titled “Comparing In-Process and Out-of-Process
Server Components.”

18. B. The WithEvents keyword is used to define a
variable that supports events. For more informa-
tion, see the section titled “Implementing
Custom Events in Class Modules.”

15 002-8 CH 12 3/1/99 8:10 AM Page 605

606 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

19. C. The Implements keyword is used to specify
that a specific module will provide an implemen-
tation of a specific interface. For more informa-
tion, see the section titled “Creating the Interface
Class.”

20. B. When implementing custom properties with
Get/Let/Set procedures, you store the value of
the property in a Private variable of the class.
For more information, see the section titled
“Implementing Properties with Property
Procedures.”

21. B. You implement a collection’s built-in features
by writing wrapper procedures in the Collection
class. For more information, see the section titled
“Implementing Built-In Collection Features in
the Dependent Collection Class.”

22. C. When implementing a collection in an appli-
cation, you would put the statement to declare
the collection in the dependent collection class.
For more information, see the section titled
“Setting Up the Dependent Collection Class.”

23. A. A class’s Terminate event will always run when
all object variables referring to the class go out of
scope. The END statement ends the component
abruptly without any opportunity to run events.
The other scenarios cannot always guarantee that
the class will terminate. For more information,
see the section titled “Built-In Events of Class
Modules.”

24. C. A collection’s built-in Item method has a single
Variant parameter. This parameter can be used
either as a traditional Integer-type index number
or as a String-type unique key value to identify
the specific item. For more information, see the
section titled “The Collection’s Item Method and
Class Wrapper Method.”

25. D. To cause a custom class event to fire, you use
the RaiseEvent statement in the class module’s
code. For more information, see the section titled
“Raising the Event and Implementing Callbacks
in a Class Object.”

26. C. To implement callback functionality from a
class to its calling code in a standard executable,
provide a custom class event with at least one By
Reference parameter. For more information, see
the section titled “Raising the Event and
Implementing Callbacks in a Class Object.”

27. C. An event procedure for a class’s custom event
appears in a VB application’s code window after
you use WithEvents to declare an object variable
of the class. For more information, see the section
titled “Handling a Class Event.”

28. D. A COM component can have its Instancing
property set to MultiUse if it is an EXE. ActiveX
EXEs cannot be in-process. ActiveX DLLs cannot
be out-of-process. ActiveX DLLs cannot be
SingleUse. For more information, see the sections
titled “Comparing In-Process and Out-of-Process
Server Components” and “The Instancing
Property of COM Component Classes.”

29. C. An ActiveX component project’s Name option
as found on the Project tab of the Options dialog
box will be the servername component when a
controller instantiates servername.objecttype in
the server. For more information, see the section
titled “Steps to Create a COM Component.”

30. D. The PublicNotCreatable instancing property
setting means that clients can see the class, but
that those clients must use other classes in the
component to access it. For more information,
see the section titled “The Instancing Property
of COM Component Classes.”

15 002-8 CH 12 3/1/99 8:10 AM Page 606

Chapter 12 CREATING A COM COMPONENT THAT IMPLEMENTS BUSINESS RULES OR LOGIC 607

A P P LY YO U R K N O W L E D G E

31. D. You can’t specify the number of threads for an
in-process server. For more information, see the
section titled “Managing Threads in COM
Components.”

32. D. An Interface may be referenced in other
classes with the Implements keyword. For more
information, see the section titled “Using
Interfaces to Implement Polymorphism.”

33. B, D. A callback object is manipulated in the
server (by calling a Notify method), but is
instantiated in the client before being passed to
the server. For more information, see the section
titled “Providing Asynchronous Callbacks.”

34. C. A callback object is passed from the client to
the server. For more information, see the section
titled “Providing Asynchronous Callbacks.”

35. B, D. To register an out-of-process COM server
(an ActiveX EXE), you can run it standalone or
run it with the /REGSERVER option. For more
information, see the section titled “Registering
and Unregistering a COM Component.”

36. C. A GlobalSingleUse or GlobalMultiUse class
will be available to clients without the need for
object syntax. For more information, see the sec-
tion titled “The Instancing Property of COM
Component Classes.”

37. C. The Friend keyword makes a member avail-
able throughout a component project, but not in
clients. For more information, see the section
titled “Using Public, Private, and Friend.”

38. C. An ActiveX control would be the best way to
implement rules for data entry, because it natu-
rally provides a user interface. For more informa-
tion, see the section titled “Choosing the Right
COM Component Type.”

39. E. An ActiveX component residing on a network
server would be the best implementation for busi-
ness rules in general. For more information, see
the section titled “Implementing Business Rules
with COM Components.”

40. C, D. The IDispatch interface supports the
Invoke and QueryInterface methods. The other
methods listed belong to IUnknown. For more
information, see the section titled “Under-the-
Hood Information About COM Components.”

41. B, C. You will cause vtable binding by correctly
using the New keyword in code. Answers A and D
are incorrect because A does not use the New key-
word and uses a generic Object variable type, and
D uses the New keyword incorrectly with the
Object variable type. For more information, see
the section titled “Under-the-Hood Information
About COM Components.”

15 002-8 CH 12 3/1/99 8:10 AM Page 607

15 002-8 CH 12 3/1/99 8:10 AM Page 608

OBJECT IVE

13C H A P T E R

Creating ActiveX
Controls

This chapter helps you prepare for the exam by cover-
ing the following objective and its subobjectives:

Create ActiveX controls (70-175 and 70-176).

• Create an ActiveX control that exposes
properties.

• Use control events to save and load persis-
tent properties.

• Test and debug an ActiveX control.

• Create and enable property pages for an
ActiveX control.

• Enable the data-binding capabilities of an
ActiveX control.

• Create an ActiveX control that is a data
source.

. Just as you can distribute standalone compiled
ActiveX components in the form of DLL or EXE
files (see Chapter 12, “Creating a COM Component
that Implements Business Rules or Logic”), you can
also distribute compiled ActiveX controls in separate
OCX files to other programmers and end users.

. You and other programmers can then use the com-
piled ActiveX control in new programming projects
just as you would use any custom 32-bit ActiveX
control from Microsoft or third-party vendors.

. To create an OCX file implementing one or more
custom controls, you create a special ActiveX con-
trol project in its own file (extension .CTL). This
file will contain the ActiveX components you wish
to distribute.

. In the rest of this chapter, we discuss what you
must know to create an ActiveX control, as speci-
fied in the exam objective.

16 002-8 CH 13 3/1/99 8:22 AM Page 609

OUTL INE

. As you’ll notice from the list of subobjectives, there
is quite a bit of preoccupation with the manage-
ment of an ActiveX control’s properties. This is
because you must program for different phases in
the control’s life cycle: design time (when another
programmer is using your control as a component)
and runtime (when the user runs an application
with your control in it).

. It is up to you, the creator of the control, to pro-
vide appropriate property persistence so that prop-
erties of your control “remember” their assigned
values between the various phases of the control’s
life cycle.

. As you’ll recall from Chapter 8, many standard VB
controls can be bound to data by using their
DataSource and DataField properties. We’ll see how
to implement this same behavior in your own
ActiveX control. We’ll also see how you can create
an ActiveX control that acts as a DataSource just
like Microsoft’s ADO Data Control.

. Finally, as the objective states, we’ll also discuss how
to create your own property page for an ActiveX
control or for a property on the control.

Overview of ActiveX Control Concepts 612

ActiveX Controls as ActiveX
Components 612

Creating ActiveX Controls from
Constituent Controls 613

Creating User-drawn ActiveX Controls 614

The Lifetime of an ActiveX Control 614

Control Authors and Developers 615

Special Considerations for ActiveX
Control Development 615

Steps to Creating an ActiveX Control
that Exposes Properties 616

The UserControl Object 616

Implementing User-Drawn Graphic
Features 623

Implementing Custom Methods 624

Implementing Custom Events 625

Implementing Custom Properties 627

Implementing Property Persistence 631

Creating Data-aware ActiveX controls 645

Enabling the Data-Binding Capabilities
of an ActiveX Control 645

Creating an ActiveX Control that is a
Data Source 647

OBJECT IVE

16 002-8 CH 13 3/1/99 8:22 AM Page 610

STUDY STRATEGIES

Create and Enable Property Pages for
ActiveX Controls 652

Creating the PropertyPage Object’s
Visual Interface 653

Determining which Controls are Selected
for Editing with the SelectedControls
Collection 654

Using the SelectionChanged Event to
Detect When the Developer Begins
to Edit Properties 655

Flagging Property Changes with the
Changed Property 656

Saving Property Changes with the
ApplyChanges Event 657

Connecting a Custom Control to a
Property Page 658

Connecting a Single Complex Property
to a Property Page 658

Detecting which Complex Property is
being Edited with the EditProperty Event 660

Connecting a Property to a Standard
VB Property Page 661

Testing and Debugging your ActiveX
Control 661

Testing Your ActiveX Control with Existing
Container Applications 662

Testing and Debugging your ActiveX
Control in a Test Project 663

What to Look for When Testing Your
Activex Control 666

Chapter Summary 669

. Create a simple ActiveX control with properties,
methods, and events.

. Focus on implementing several properties in
the control because the exam will emphasize
properties more than methods and events.

. Understand the function and concept of the
PropertyBag object.

. Learn how to persist custom properties by pro-
gramming and experimenting with the
UserControl’s Initialize, InitProperties,
ReadProperties, and WriteProperties events, tak-
ing care to use the ReadProperty and
WriteProperty methods of the PropertyBag.

. Know the implications of initializing properties
in the Initialize event versus initializing them
in the InitProperties event.

. Make sure you are comfortable with running
and testing an ActiveX control project in the VB
IDE. If you are familiar with ActiveX controls
from VB5, you should note that there are new
ways to test an ActiveX control from the IDE.

. Create a Property Page and connect it to the
properties of an ActiveX control.

. Implement properties in the ActiveX control that
allow you to bind the control to a data source.

. Create an ActiveX control that acts as a data
source. Besides the simple example of Exercise
13.6, you can look at a more sophisticated
example in the sample files that install with VB6.
The VB project is named MyDataControl.vbp, and
you can find it in the folder for a project group
named AXData under the directory where your
VB6 examples files were installed.

OUTL INE

16 002-8 CH 13 3/1/99 8:22 AM Page 611

612 Par t I VISUAL BASIC 6 EXAM CONCEPTS

INTRODUCTION
This chapter discusses a very important part of Microsoft’s strategy
for VB development—the ability to create ActiveX controls. Since
Version 5 of VB, the VB programmer is not limited to using stan-
dard VB controls provided by Microsoft or custom controls provided
by Microsoft and third parties.

Now VB developers can create their own ActiveX controls, either as
an integral part of a larger VB project or as a standalone reusable
component in an .OCX file. The information in this chapter provides
a basic acquaintance of VB6 ActiveX control programming while cov-
ering the ActiveX control objectives of the VB6 certification exams.

OVERVIEW OF ACTIVEX CONTROL
CONCEPTS

In this section, we discuss concepts behind ActiveX control program-
ming. In the rest of the chapter, we discuss what you need to do to
create and distribute an ActiveX control.

ActiveX Controls as ActiveX
Components
ActiveX controls are a special type of ActiveX component. Therefore,
most of the ActiveX concepts discussed in Chapter 14, “Creating an
Active Document,” apply directly to the subject of ActiveX controls.
In particular, an ActiveX control has the following notable features
of any ActiveX component class:

á Programmer-definable properties

á Programmer-definable methods

á Programmer-definable events

Moreover, you can implement these custom-definable members of
the ActiveX control class in the same way that you implement cus-
tomized members of other ActiveX components. Of course there are
special considerations for ActiveX control members (especially prop-
erties), and we discuss the specifics of ActiveX control members in
the rest of this chapter.

16 002-8 CH 13 3/1/99 8:22 AM Page 612

Chapter 13 CREATING ACTIVEX CONTROLS 613

Standalone (OCX) ActiveX Controls
Just as you can distribute stand-alone compiled ActiveX components
in the form of DLL or EXE files, you can also distribute compiled
ActiveX controls in separate OCX files to other programmers and end
users. An OCX is another type of DLL that lives in a host application.

To create an OCX file implementing one or more custom controls,
you create a special ActiveX control project containing the ActiveX
components you wish to distribute. Each ActiveX component will be
implemented with source code in its own file (extension .CTL). When
you follow the steps to create an ActiveX control as described in the
rest of this chapter, you then can compile the project into an OCX.

ActiveX Controls in Other Projects
An ActiveX control can also form part of another VB project. In that
case, you would include the control’s CTL file as part of a Standard
EXE or ActiveX EXE or DLL project.

You might choose to implement an ActiveX control as part of
another project when the control’s function is so specialized that it
would never be used outside its host application.

You might also keep an ActiveX control inside other projects to pre-
vent other programmers from accessing it independently. You can
also accomplish the goal of keeping your control proprietary, how-
ever, by using a licensing scheme described in “Licensing and
Distributing Your ActiveX Control.”

Creating ActiveX Controls from
Constituent Controls
The end-user interface for an ActiveX control often consists of an
assemblage of one or more constituent controls. Such an ActiveX
control is sometimes called a composite control.

Constituent controls are controls that already exist in the program-
ming environment, and they can be intrinsic Windows controls or
custom controls from Microsoft or other vendors. You can then piece
together a new custom control by taking parts of the features of the
constituent controls and adding your own custom functionality
as well.

N
O

T
E Licensing Considerations for ActiveX

Control Distribution If you plan to
distribute your OCX file commercially
to end users or other programmers or
if you plan to distribute the file to the
public at large over the Internet, you
must also take into account the spe-
cial licensing and distribution consid-
erations for ActiveX controls.

16 002-8 CH 13 3/1/99 8:22 AM Page 613

614 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A special case of the composite control would be the control which
contains only one constituent and whose purpose is to enhance the
functionality of the constituent by implementing different methods,
properties, and events.

Creating User-Drawn ActiveX Controls
Besides building an ActiveX control out of constituent controls, you
can also create a custom control whose appearance is completely
determined by you. You, the control author, are responsible for pro-
viding and maintaining the control’s appearance through graphics
methods or by other means.

You can refresh your control’s appearance in the UserControl object’s
Paint event procedure discussed in the section “Implementing User-
Drawn Graphic Features.”

Of course, you can combine the techniques of user-drawn and com-
posite controls to create a custom control. It can use constituent
controls, but also has part or all of its appearance controlled by the
control author.

THE LIFETIME OF AN ACTIVEX
CONTROL

Managing a custom ActiveX control’s events and behavior is a bit
more complex than for most other objects, such as standard controls
and Forms or other types of ActiveX components.

This complexity is due to the fact that you must keep two levels of
behavior in mind for your control rather than just knowing the
usual runtime behavior. In other words, you must also manage the
behavior and features of an ActiveX control when another program-
mer uses it at design time in an application.

Most of the increased complexity in a custom ActiveX control has to
do with the management of the contents of its properties as the con-
trol moves from abstract definition to being an instantiated object in
a VB project and from there to life in a running VB application.

N
O

T
E Licensing Considerations for

Composite Controls You must make
sure that you have proper licensing
rights before distributing a constituent
control as part of your own ActiveX
control.

16 002-8 CH 13 3/1/99 8:22 AM Page 614

Chapter 13 CREATING ACTIVEX CONTROLS 615

Control Authors and Developers
In order for your ActiveX control to provide its services to end users,
some intermediate programmer must put the control into his or her
application. As the author of an ActiveX control, therefore, you must
specify design-time features of your control as well as runtime features.

The ultimate user of the runtime features is that archetypal, shadowy
being we programmers have come to know, love, and fear as the
end user.

The user of the design-time features will be another programmer. In
this chapter we will call you, the programmer creating the ActiveX
control, the ActiveX control author. In this chapter, we will refer to
the programmer using the ActiveX control in an application as the
developer.

SPECIAL CONSIDERATIONS FOR
ACTIVEX CONTROL DEVELOPMENT

Your custom control will be used by other developers who will in
turn employ it in their own programs for their own end users. This
fact complicates custom control creation in several major areas:

á You must manage property values so that they persist from the
developer’s design-time changes to the runtime environment.

á You must allow for the interaction between the members of
your control, its constituent controls, and both the design-time
and runtime environment in which the developer has placed
your control.

á You must ensure that your control cannot be used maliciously
by developers.

á You must decide whether your control can be used only by
licensed developers and, if so, you must implement a licensing
scheme.

We discuss the first two points in the section that follows titled
“Steps to Creating an ActiveX Control that Expose Properties.” We
discuss control security, distribution, and licensing in the sections at
the end of this chapter.

Who Is the “User” of an ActiveX
Control? Much of the documenta-
tion on ActiveX custom controls
employs the word “user” loosely,
sometimes meaning the end user
of the application where your con-
trol is sited and, at other times,
meaning the developer who is pro-
gramming with your control.

W
A

R
N

IN
G

16 002-8 CH 13 3/1/99 8:22 AM Page 615

616 Par t I VISUAL BASIC 6 EXAM CONCEPTS

STEPS TO CREATING AN ACTIVEX
CONTROL THAT EXPOSE PROPERTIES

To implement your own ActiveX control, you must take the
following basic steps:

á Put a UserControl container into your application. This object
is implemented in its own separate file similar to a Form. The
UserControl provides the basis for the control.

á If you decide to implement user-drawn features in your con-
trol, you must plan and implement those graphic features,
putting code in the appropriate event procedures.

á Create custom methods and events in the UserControl as you
would in a Class Module.

á Create custom properties in the UserControl as you would in a
Class Module, remembering to make extra provision for prop-
erty persistence.

á If you decide to implement constituent controls, then you
must place any constituent controls that you will be using on
the UserControl’s surface and implement their delegated meth-
ods, delegated events, and delegated properties as well.

á Put additional code in UserControl event procedures so that
you initialize your control’s properties appropriately and cause
them to persist.

The UserControl Object
The UserControl object is the basis for any custom ActiveX control. It
provides the container that holds all the rest of the control’s features.

You may initiate your project’s UserControl in one of two ways:

á Begin your project as an ActiveX Control project (see
Figure 13.1).

á Add a UserControl object to your existing project (see
Figure 13.2).

16 002-8 CH 13 3/1/99 8:22 AM Page 616

Chapter 13 CREATING ACTIVEX CONTROLS 617

If you chose to add a UserControl to your project, then the project
is probably not an ActiveX project to begin with. This may be
exactly the situation you desire if you’ve chosen to implement your
ActiveX control as part of another project (see “ActiveX Controls in
Other Projects”). If, however, you wish to convert your project to an
ActiveX control project, all you need to do is change the Project
Type option on the General tab of the Project Property dialog box
(see Figure 13.3).

,F IGURE 13 .1
Beginning your project as an ActiveX Control
project.

,F IGURE 13 .2
Adding a UserControl object to your project.

16 002-8 CH 13 3/1/99 8:22 AM Page 617

618 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Programming with a UserControl is a lot like programming with a
form. The UserControl object has its own Designer Window in the
VB design-time environment, just like a form does, and a
UserControl appears as one of your project’s elements in the Project
Explorer. It appears under a special node labeled “User Controls.”
You place constituent controls on the surface of the User Control
from the toolbox, just as you do when programming with a form.

The UserControl has its own properties, which we discuss in some of
the following sections. You can access these properties at design-time
just like you’d access the design-time properties of a form:

Make sure that you’ve selected the UserControl object itself (and not
one of its constituent controls), and then go to the Properties
Window by pressing F4 or right-clicking the mouse.

To access a UserControl’s event procedures, make sure that you’ve
selected the UserControl itself (and not one of its constituent con-
trols), then double-click the mouse to view UserControl code.

Giving Your Control a Custom Bitmap
Since your custom control will eventually end up on a developer’s
toolbox, it needs a bitmap to display in the developer’s VB toolbox.
You can let the default ActiveX control bitmap show up in the tool-
box, or you can set the UserControl’s ToolBoxBitMap property to
determine the custom control’s appearance in a developer’s toolbox.

F IGU R E 13 .3
Adjusting the project type.

Conflict Between UserControl
Name and Project Name You
can’t give a UserControl the same
name as its Project. VB will raise
an error as soon as you try to doW

A
R

N
IN

G

Referring to the UserControl in
Code When you refer to the
UserControl in its own code,
always use the term “UserControl”
rather than the actual name you’ve
chosen. For example:

UserControl.BackColor = vbRed

W
A

R
N

IN
G

N
O

T
E Referring to the UserControl’s

Members in Code When you write
code in the UserControl, you can
refer to the UserControl’s own built-in
members (properties and methods) by
referring to the members alone with-
out reference to the UserControl
object. For example:

BackColor = vbRed

This is similar to the way that you can
program within a Form. Note, however,
that the Me keyword does not work in
a UserControl (you will receive a com-
pile-time error if you use Me).

16 002-8 CH 13 3/1/99 8:22 AM Page 618

Chapter 13 CREATING ACTIVEX CONTROLS 619

ToolBoxBitMap is like the Icon or Picture property of other controls:
You set it by double-clicking the ToolBoxBitMap property or clicking
the Add button to the right of the property in the Property Window
of the UserControl. Note, though, that unlike the Picture and Icon
properties, the ToolBoxBitMap’s File dialog box doesn’t allow you to
choose icon (.ico) files (see Figure 13.4). Instead the ToolBoxBitMap
can be a .bmp (bitmap), .gif, .dib, .pal or .jpg file. The image size
should be 16×15 pixels, or else it will be scaled by the system with
unpredictable (and sometimes unsightly) results.

F IGURE 1 3 .4
Choosing a picture file for the UserControl’s
ToolBoxBitMap. Note that the file types
allowed are different from most Picture and
Icon properties’ file types.

N
O

T
E Example Here Doesn’t Persist the

Property Don’t expect the small
example in this section to allow the
property value to persist when you
attempt to run an .exe project that
tests this control. In order to see the
Label’s caption carried over into an
instance of your control at runtime,
you would also need to implement a
Caption or other property for your
control and persist it with calls to
ReadProperty and WriteProperty
in the ReadProperties and
WriteProperties event procedures
respectively. See the following
sections for more detail on how to
implement property persistence.

Accessing Ready-Made Control Features
with the UserControl’s Extender Object
The ActiveX standard allows all container objects, such as Forms and
PictureBox controls, to provide certain members (properties, events,
and methods) to all controls (including custom ActiveX controls) that
are placed on their surfaces. Some of these members might include,
for instance, Top, Left, Width, and Height properties, an Enabled
property, a Move method, and GotFocus and LostFocus events.

These ready-made members provided by your control’s container
object are all contained in an object known as the Extender that
belongs to your custom control.

Your custom ActiveX control will therefore already have certain
methods, properties, and events provided for it automatically
through its Extender object. If you had just created an ActiveX con-
trol by putting a new UserControl object into your project and had
not yet implemented any of your own custom members, you would
still see quite a few default properties in the control’s Properties
Window when you tested it (see Figure 13.5). These properties
would be the properties provided in the Extender object.

16 002-8 CH 13 3/1/99 8:22 AM Page 619

620 Par t I VISUAL BASIC 6 EXAM CONCEPTS

As control author, you should not be very concerned about the
Extender object’s members since they are intended for the
developer’s use.

However, you may check the values of Extender properties in order
to find out what the developer or the design-time environment has
done with your control.

For instance your control may have a Label whose Caption repre-
sents the Caption of your custom control. As you know it’s custom-
ary for a VB control with a Caption property to begin life with its
caption equal to the control’s name. You can emulate this behavior
by checking the Name property of the Extender object in your con-
trol’s InitProperties event procedure and setting your control’s
Caption to the value of the Name, as in the following line of code:

lblCaption.Caption = Extender.Name

F IGU R E 13 .5
The custom control instance whose properties
we are viewing in this test project doesn’t have
any custom properties, yet we see many proper-
ties provided through the Extender object in its
Properties Window.

Naming Conflicts Between
Extender and Custom Members
If you implement a member with
the same name as an Extender
member, the Extender member will
always override your custom mem-
ber because the developer will
always see the Extender member
and not your custom member.

W
A

R
N

IN
G

N
O

T
E Standard (More or Less) Extender

Properties The ActiveX standard rec-
ommends (but does not require) that
all containers implement the following
Extender properties: Name, Visible,
Parent, Cancel, Default. You may,
however, confidently reference all
these properties in code without fear-
ing an error, since VB returns default
values for any of the above properties
not implemented by a container.

16 002-8 CH 13 3/1/99 8:22 AM Page 620

Chapter 13 CREATING ACTIVEX CONTROLS 621

Getting Information About Your Control’s
Environment with the Ambient Object and
the AmbientChanged Event
The Ambient object gives you information about selected properties
(such as ForeColor, BackColor, and Font) of your custom control’s
container. The AmbientChanged event fires whenever one of these
selected properties changes, thus giving your control the chance to
react to changes in its container.

A common use of the Ambient object would be to synchronize
the custom control’s background color with its container’s in the
AmbientChanged event, as in Listing 13.1. Notice that the
AmbientChanged event receives a single parameter indicating which
container property has just changed. We check the parameter to see if
a property we are interested in has changed and, if so, we synchronize
our control with the value of the same property of the Ambient object.

LISTING 13.1

CHECKING TO SEE WHICH CONTAINER PROPERTY HAS

CHANGED IN THE AMBIENTCHANGED EVENT PROCEDURE

Private Sub UserControl_AmbientChanged _
(PropertyName As String)

If UCase$(PropertyName) = “BACKCOLOR” Then
BackColor = Ambient.BackColor

End If
End Sub

The LocaleID Ambient property is a number representing the country
or language of the developer. For example, 1033 represents U.S.
English (these numbers are often referred to in hex notation in docu-
mentation).

Don’t Change Extender Properties
in Code You should never try to
change the values of Extender prop-
erties. You will cause runtime errors
or get unpredictable results.

In particular, you may be tempted
to use the Visible property of the
Extender object to make your control
invisible. Instead of this Extender
property, you should use the
UserControl’s InvisibleAtRunTime
property.

W
A

R
N

IN
G

16 002-8 CH 13 3/1/99 8:22 AM Page 621

622 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The UserMode property (a Boolean property) is an important Ambient
object property for the control author. It tells you whether the current
control instance is in design or run mode. When UserMode is True, the
control instance is in a running application. When it’s False, the con-
trol instance is in a design-time instance of its container.

You can check UserMode in the UserControl’s Paint and Resize
events or in a custom property’s Property procedures, for example, to
vary the behavior of your control. You can give your control one
behavior if it’s in a running application (Ambient.UserMode = True) and
another when it’s in the VB design environment (Ambient.UserMode =
False). In the example of Listing 13.2, we implement a property that
is writeable at design time but not at runtime by checking
Ambient.UserMode in the Property Let procedure.

LISTING 13.2

THIS PROPERTY IS ONLY WRITEABLE AT DESIGN TIME

Property Let MyProp (sValue as String)
If Not Ambient.UserMode Then

m_MyProp = sValue
End If

End Property

Some Ambient properties don’t represent states of the container per se
but rather states of your control relative to the container. For
instance, the DisplayName Ambient property represents the name by
which your control is known to the container (you should use
Ambient.Displayname in error messages that you display in your con-
trol’s code). Likewise the DisplayAsDefault Ambient property is True
if the developer has set your control to be the Default control on its
container (Default = True).

Comparison of the Ambient and Extender
Objects
Since it’s easy to confuse purpose and function of the Ambient
and Extender objects and their respective properties, here is a
head-to-head comparison of the two objects:

N
O

T
E Ambient Property Names Aren’t

Always the Same as Underlying
Property Names The names of
Ambient properties aren’t always the
same as the names of the underlying
container properties they reflect. For
instance when the container’s
ScaleMode property changes, you’ll see
a change in the Ambient.ScaleUnits
property.

16 002-8 CH 13 3/1/99 8:22 AM Page 622

Chapter 13 CREATING ACTIVEX CONTROLS 623

á The Ambient object gives information about your UserControl’s
container object (such as a Form or a Frame or PictureBox con-
trol) at runtime and, in some cases, about the relation between
your UserControl and its container.

á The Extender object implements properties that come “for
free” with your ActiveX control: That is, properties that are part
of the default arsenal of any control and that you, therefore,
didn’t have to implement as custom properties of the control.
Such properties would include Font, Top, Height, and others.

Implementing User-Drawn Graphic
Features
If you are implementing a control with user-drawn features instead
of a control made up of constituent controls, you’ll use the
UserControl’s Paint event to manage your control’s appearance.

The Paint event occurs at design time and at runtime whenever the
operating system determines that your control needs to redisplay
graphics. This would include such events as control siting and resizing
or a control being uncovered after another window had obscured it.

You will put in the Paint event’s procedure whatever graphics com-
mands and methods you need to display the control’s graphics. You
will probably need to recompute the sizes and shapes of graphics
objects to allow for resizing of the control.

In the example in Listing 13.3, we use the Paint event procedure to
draw an ellipse with a particular color and shading style on the sur-
face of the control after first re-computing its size and coordinates.

You could also output text with the Print method, call other
graphics methods, and adjust persistent graphics objects such as
Images, PictureBoxes, Shapes, and Lines.

16 002-8 CH 13 3/1/99 8:22 AM Page 623

624 Par t I VISUAL BASIC 6 EXAM CONCEPTS

LISTING 13.3

REDRAWING A UserControl’S GRAPHICS IN ITS Paint
EVENT PROCEDURE

Private Sub UserControl_Paint()
‘Compute radius of ellipse (longest side)
Dim lRadius As Long
If UserControl.ScaleHeight < _

UserControl.ScaleWidth Then
lRadius = UserControl.ScaleWidth / 2

Else
lRadius = UserControl.ScaleHeight / 2

End If

‘Save UserControl’s existing fill style
Dim lOldFillStyle As Long
lOldFillStyle = FillStyle
‘and set it to be diagonal lines
FillStyle = vbUpwardDiagonal

‘save UserControl’s existing FillColor
Dim lOldFillColor As Long

‘and set it to red
lOldFillColor = FillColor
FillColor = vbRed

‘draw an ellipse whose shape is
‘proportional to the UserControl’s shape
Circle (ScaleWidth / 2, ScaleHeight / 2), _

lRadius, vbRed, , , _
UserControl.ScaleHeight / _
UserControl.ScaleWidth

‘restore previous FillStyle and Color
‘settings of the UserControl
FillStyle = lOldFillStyle
FillColor = lOldFillColor

End Sub

Implementing Custom Methods
You implement a method for your ActiveX control in pretty much
the same way that you implement methods for other ActiveX com-
ponents and for classes in general. As mentioned above, custom
methods for an ActiveX control are implemented as Public
Procedures in the UserControl object.

16 002-8 CH 13 3/1/99 8:22 AM Page 624

Chapter 13 CREATING ACTIVEX CONTROLS 625

If, for example, you wanted to give your developers an Alarm method
for the control you are developing, you would put code similar to
the code of Listing 13.4 into your UserControl’s code.

LISTING 13.4

CODE FOR A CUSTOM CONTROL METHOD

Public Sub Alarm(Optional Severity)
‘If the alarm is more severe,
‘then beep more times
If IsMissing(Severity) then Severity = 1
Dim iCount As Integer
For iCount = 1 To Severity

Beep
Next iCount

End Sub

Assuming that your developer has created an instance of your con-
trol named “MyControl” in a project, then the developer could write
a line of code such as

MyControl.Alarm 7

Implementing Custom Events
The story for custom control events is much the same as for custom
control methods: You implement an event for your ActiveX control
in pretty much the same way that you implement events for other
ActiveX components and for classes in general. Besides the custom
events that you create, you can also implement delegated events or
custom events that provide wrappers for the events of an ActiveX
control’s constituent controls.

N
O

T
E Using an Optional Variant

Parameter Notice that our example
method takes an Optional parameter.
We’ve let the parameter’s type default
to Variant so that we can check for
its existence with the IsMissing func-
tion (recall that IsMissing only works
properly on Optional parameters of
Variant type).

16 002-8 CH 13 3/1/99 8:22 AM Page 625

626 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Declaring and Raising Events
You declare an event for a custom control just as you would declare
an event in any Class module:

In the UserControl object’s General Declarations section you put a
declaration beginning with the words “Public Event” followed by the
event name you wish to use and then parentheses enclosing a list of
the names and types of any parameters that the event will use. For
example, let’s say you declared a UserControl event called FoundOne
that passes a single string parameter describing the object it has
found. It would look like the following:

Public Event FoundOne(FoundName As String)

You must then put code somewhere else in the UserControl’s code to
actually fire the event with the RaiseEvent statement:

RaiseEvent FoundOne(“Morsel”)

Developers who use your control in their applications will see event
procedures in their code windows for the Found event.

Implementing a Default User Interface Event
with the Procedure Attributes Dialog Box
Imagine that you’ve just placed a new form in a standard VB project.
Now imagine that you double-click the form before doing anything
else—quick! What do you see? Of course, anyone who’s programmed
for more than a few days with VB will answer, “The Form/Load event
procedure.”

The Load event procedure is the Form event that the VB editor will
show you by default, all other things being equal (that is if there’s
been no code placed in any other event procedures). The Load event
is the default user interface event—the event whose procedure will
show up by default in the Code Window if no other event proce-
dures contain code. You can probably think of the default user inter-
face events for many other controls: Click for a CommandButton,
Change for a TextBox, and so on.

You can give your custom control its own default user interface event
by following these steps:

N
O

T
E Programming Your Own Custom

Class Events For a more detailed
discussion of programming custom
events, see Chapter 12, “Creating a
COM Component that Implements
Business Rules or Logic.”

16 002-8 CH 13 3/1/99 8:22 AM Page 626

Chapter 13 CREATING ACTIVEX CONTROLS 627

S T E P B Y S T E P
13.1 Giving Your Custom Control Its Own Default

User Interface Event

1. Make sure you’re in a Code Window for the UserControl
object.

2. Bring up the Tools, Procedure Attributes option on the
VB menu.

3. In the resulting dialog box Name field, choose the name
of the custom event you wish to designate as the default
user interface event.

4. Click the Advanced button to bring up more choices.

5. In the Attributes section, check the box labeled User
Interface Default.

6. Click OK to save your choice and exit the dialog box.

Implementing Custom Properties
Up to this point, we’ve seen that you can implement custom control
methods and events in more or less the same way as you implement
methods and events for other ActiveX object classes.

The situation for custom control properties is more complex how-
ever. This is because, as the author of a custom control, you must
manage the persistence of property values as instances of a control
are created and destroyed at design time.

You must do a little more work than for events and methods in
order to get custom control properties to behave properly.

As we’ve already mentioned several times, this is because instances of
your control are created and destroyed numerous times during the
development life cycle. For more detail on the actual activities that
cause such carnage, see the accompanying sidebar.

16 002-8 CH 13 3/1/99 8:22 AM Page 627

628 Par t I VISUAL BASIC 6 EXAM CONCEPTS

EVENTS IN A CONTROL’S LIFETIME THAT
AFFECT PROPERTIES

During the developer’s design, test, compile, and redesign cycle,
instances of your control will be created, then placed or sited on
their container object (a Form, PictureBox, or other object capable
of holding controls), and destroyed—not just once, but many times.

The reason for all this activity is that an instance of your control
must be destroyed and created whenever the control and its con-
tainer move between the various possible degrees of being and
non-being during the phases of development. Here is a list of the
occasions when instances of a control would be created and
destroyed:

• Created. The developer creates an instance of the control
from the toolbox and sites it on its container.

• Destroyed. The developer closes the Design window with
the control’s container.

• Created. The developer reopens the Design window with the
control’s container.

• Destroyed. The developer begins to run the application in
the VB environment, which temporarily destroys design-time
instances of objects (including your control).

• Created. The control’s container loads into memory and
sites the control as the application runs.

• Destroyed. The control’s container is destroyed as the appli-
cation runs.

• Destroyed. The control’s container is destroyed because the
application stops running.

• Created. The application has stopped running and VB
returns to the design environment thus resiting your control
(provided the design-time environment currently includes a
sited instance of the control).

• Destroyed. The developer closes the project or closes VB.

• Created. The developer opens the project provided that the
current view of the project includes an instance of the con-
trol’s container.

You may wonder why it’s important for you to know about the timing
of the creation and destruction of ActiveX controls. After all, we can
manipulate standard controls and other objects without having to
know such details.

16 002-8 CH 13 3/1/99 8:22 AM Page 628

Chapter 13 CREATING ACTIVEX CONTROLS 629

As control author, you must be able to react to control creation,
destruction, and change. It’s up to the control’s author to determine
when and how long changes to control properties will persist. As you
probably know, control properties get stored with a form’s other infor-
mation in the form’s .frm file. While a developer works on an applica-
tion in the VB design environment, the copy of the form (and all its
associated information) that resides in memory gets destroyed and
re-created as described in the above list. It is the responsibility of
each control to save and retrieve information about its own state
(including any changes to property values) during these times.

You can implement this management of your custom ActiveX control’s
properties by programming the event procedures of various events of
the UserControl object and by taking certain measures whenever a
property might change, as discussed in the following subsections.

In the following sections, we discuss the bare minimum you need to
do in order to get custom control properties to function adequately.

We first discuss how to create a new custom property (this is the
same as for other object classes in VB) then we discuss how to ini-
tialize properties in the InitProperties event procedure. Finally, we
cover the particulars of how to make properties persistent by pro-
gramming the UserControl’s Property Bag object in several key
UserControl events.

Defining Properties with Get/Let/Set
Procedures or Public Variables
Just as you do with other object classes in VB, you define custom
properties for ActiveX controls either with Public variables or with
Property procedures (Property Let/Set and Property Get).

Because it’s very likely that a developer will use more than one
instance of your control in an application, the use of Public variables
is strongly discouraged. Values for the same property in different
instances of the control could become confused if a Public variable
were used to implement a property that the system accessed in more
than one instance of a control.

Instead, you will always want to use Property procedures to imple-
ment control properties. As you’ll recall from other discussions of
class properties, you’ll need to set up the following elements for each
custom property:

16 002-8 CH 13 3/1/99 8:22 AM Page 629

630 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á A variable that is Private to the UserControl and that will serve as
a storage place for the property’s actual value. Property Get and
Property Let/Set will respectively retrieve and store this value.

á A Property Let or Property Set procedure that acts like a Sub
procedure and accepts a parameter whose value is the new
value to be assigned to the property. You will store this para-
meter’s value in the Private storage variable just mentioned in
the previous point.

á A Property Get procedure that acts like a Function procedure
and returns the value kept in the Private storage variable.

The code in Listing 13.5 illustrates how you would implement your
own property for a custom control. Notice that we use Property pro-
cedures and the Private variable in almost exactly the same way as
we do for custom properties in standard Class modules.

The only difference in Listing 13.5 from standard class modules’
Property procedures is the extra line in the Property Let procedure
that calls the PropertyChanged method. This call notifies VB that a
property has been changed and ensures that the WriteProperties
event will fire at the appropriate moment. For more detail, see the
following section, “Calling the PropertyChanged Method to Trigger
WriteProperties”.

You must take into account a number of extra considerations to
make your custom control properties work properly. In the following
sections, we discuss what you need to know in order to create fully
functioning custom properties for your controls.

LISTING 13.5

IMPLEMENTING A PROPERTY FOR A CUSTOM CONTROL

[in the general declarations section
of the UserControl]
Option Explicit
Private mOverallColor As Long
Property Get OverallColor() As Long

OverallColor = mOverallColor
End Property
Property Let OverallColor(lColor As Long)

mOverallColor = lColor
‘informs the system that a
‘property has changed:
PropertyChanged

End Property

N
O

T
E Automatically Implementing Color

Dialog Boxes for Properties of Type
OLE_COLOR

If you create a custom property and
declare its type to be OLE_COLOR, then
VB will automatically show the Color
property dialog box to the developer in
the Properties Page of an instance of
your control. Remember that you must
then consistently refer to its type as
OLE_COLOR throughout the control’s
code (in its Private variable and
Property procedure declarations).

N
O

T
E Property Procedures See the sub-

section of Chapter 12, “Creating a
COM Component that Implements
Business Rules or Logic” under the
main section “Compiling a Project
with Class Modules into a COM
Component,” to review how to use
Property procedures including the
concept of how to implement a read-
only property by not supplying a
Property Let procedure.

N
O

T
E Storing Property Values in Delegated

Properties Instead of storing the
custom property’s value in a Private
variable, you might choose to store its
value in a property of one of the
UserControl object’s constituent con-
trols. You would then be implementing
a delegated property, as discussed in
“Implementing Delegated Properties.”

16 002-8 CH 13 3/1/99 8:22 AM Page 630

Chapter 13 CREATING ACTIVEX CONTROLS 631

Implementing Property Persistence
You can keep information about properties whose values you want to
make persistent in the Property Bag object of the UserControl. The
Property Bag object has two methods you will call: ReadProperty (to
retrieve a property’s value from the Property Bag) and WriteProperty
(to store a property’s value in the Property Bag).

In addition, you can maintain properties as you would in any ActiveX
Class module: by writing and reading the Private variables that are
used to store the property values between calls to Property procedures.

On the other hand, if you’ve chosen to implement properties with
Public variables, you can also manipulate and monitor these proper-
ties by reading and writing the Public variables.

You can use these techniques to initialize and maintain persistent
property values in your UserControl.

Here is a list of the events you need to know about to maintain prop-
erties. For each event listed, we tell when the event occurs and give a
brief note about how you would use the event’s procedure to main-
tain persistent property values. We provide more detailed information
on the Property Bag and on these events in the following sections.

á The InitProperties event happens only once in the lifetime of
a custom control’s instance: when the developer actually creates
a new instance of the control by clicking on the control’s tool-
box icon and placing the new instance in a container. Use the
InitProperties event to set default initial values for your cus-
tom properties and for properties provided by the Extender
object.

á The Initialize event is essentially the same as the Initialize
event of any Class module. It happens as the instance of the
UserControl is about to be created.

á The ReadProperties event happens whenever an instance of the
control is created. If this is the first time the control has been
created (i.e. the developer has used the toolbox to place a copy
of the control on the form), then ReadProperties happens after
InitProperties. You can put code in the ReadProperties event
procedure to retrieve saved persistent property values.

N
O

T
E Using Consituent Control Properties

to Store UserControl Property Values
If you’re implementing delegated prop-
erties, you may map properties of
constituent controls instead of
Private variables to store the values
of properties.

16 002-8 CH 13 3/1/99 8:22 AM Page 631

632 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á The WriteProperties event happens whenever an instance of
the control is destroyed and at least one property has been
changed (you can notify the system that a property has been
changed by calling the PropertyChange method of the
UserControl). You can put code in the WriteProperties event
procedure to save property values that you would like to persist.

á The Terminate event is essentially the same as the Terminate
event of any Class module. It happens as the instance of the
UserControl is about to be destroyed.

Using the InitProperties Event to Set
Default Starting Property Values
The InitProperties event fires just once in the lifetime of a control:
When the developer first sites it on its container from the toolbox.

The InitProperties event procedure is therefore the perfect place to
set initial default values for your control’s properties since you’ll want
these default values to show up when the developer first sites the con-
trol on its container. However, you won’t want the default values to
override any later changes the developer makes after siting the control.

You will mainly use InitProperties to initiate default values for
your custom control’s properties. If you’ve implemented a property
as a Public variable, you can simply set the variable name to the
desired default value. On the other hand, if you’re using Property
procedures to implement a property, you can set its default value by
writing to the Private memory variable or other holder (such as a
constituent control property) that maintains the property’s value.

You can set these default properties in a number of ways, depending
on the type of property you want to set and on how you’ve chosen
to implement the property:

á Assign a literal value to the Private storage variable
implementing the custom property.

á Assign a default constant value (as discussed in the previous
section) to the Private storage variable.

á Derive a property’s initial value from some Extender property.

á Derive a property’s initial value from some Ambient property.

16 002-8 CH 13 3/1/99 8:22 AM Page 632

Chapter 13 CREATING ACTIVEX CONTROLS 633

The InitProperties event procedure shown in Listing 13.6 gives
examples of the techniques listed above.

The code in the following listing assumes that Slider and TextBox
controls exist in the project with respective names Slider1 and
txtDate. It also pre-supposes Private variables and constants that
implement property values and their defaults, as shown in the
General Declarations section of the listing.

LISTING 13.6

VARIOUS TECHNIQUES FOR INITIALIZING PROPERTIES TO

DEFAULT VALUES IN THE INITPROPERTIES EVENT PROCEDURE

Option Explicit
Private Const defCelsius = 30
Private m_TemperatureDate As Date
Private m_Celsius As Single
Private m_Caption as String

Private Sub UserControl_InitProperties()
‘Set temperaturedate to a value
‘determined right here
m_TemperatureDate = DateSerial(1997, 1, 1)
‘Set Celsius to a default
‘constant value
m_Celsius = defCELSIUS
‘Compute Fahrenheit from that
RecalcFahrenheitFromCelsius m_Celsius
‘Set the Background color to
‘match the container’s background
BackColor = Ambient.BackColor
‘Set the caption to be the
‘same as the object’s initial name
‘m_Caption = Extender.Name
‘and set Slider to reflect temperature
Slider1.Value = m_Celsius
‘and textbox to match date
txtDate.Text = m_TemperatureDate

End Sub

Note in the listing that variable names storing property values do not
follow the usual Hungarian notation naming convention (a two-four
letter lowercase prefix indicating variable type). Instead, variable names
that refer to the intermediate storage of the values of properties imple-
mented with Property Get/Let/Set are prefixed with “m_”—a
Microsoft documentation standard for Class modules. Microsoft’s
Control Wizard generates such variable names, automatically deriving
them from the names of properties that you specify in the wizard.

16 002-8 CH 13 3/1/99 8:22 AM Page 633

634 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The InitProperties Event Versus the
Initialize Event
You may wonder why we need the InitProperties event since the
UserControl property already has an Initialize event in common
with Class modules and other objects, such as forms.

The reason that we need InitProperties to initialize default values is
that the Initialize event happens too often, that is, every time an
instance or your control “wakes up.” You only want the default
property values to be assigned when the developer first sites a new
copy of your control on a container. After that, you want the devel-
oper to be able to define persistent property values.

Using the Property Bag to Store Property
Values
The Property Bag is a persistent UserControl object containing the
values of your control’s custom, extender, and delegated properties.

In fact, the Property Bag is so persistent that it doesn’t get destroyed
with the instances of the UserControl. This means you can store
property values in the Property Bag just before an instance of the
UserControl is destroyed and then retrieve the stored values when a
new instance of the UserControl “wakes up” in another part of the
development life cycle.

The Property Bag has two methods to store and retrieve values
respectively:

á The WriteProperty method

á The ReadProperty method

You must know how to manipulate the Property Bag in the following
situations that we discuss in the sections immediately following this one:

á You store property values into the PropertyBag by calling its
WriteProperty method in the WriteProperties event procedure.

á You retrieve property values from the PropertyBag by calling its
ReadProperty method in the ReadProperties event procedure.

á You ensure that the WriteProperties event will fire by calling the
PropertyChanged method. You’ll usually do this in the Property
Let procedures of your custom properties or at other appropriate
places in your code where the storage value of a property changes.

Don’t Use the Initialize Event to
Set an ActiveX Control’s Default
Property Values If you put code to
initialize properties to their default
values in your custom ActiveX con-
trol’s Initialize event instead of
in the InitProperties event, then
you will have some very frustrated
developers on your hands. Your
default values will override the val-
ues the developer has assigned at
design time every time the devel-
oper runs an application using your
control.

W
A

R
N

IN
G

16 002-8 CH 13 3/1/99 8:22 AM Page 634

Chapter 13 CREATING ACTIVEX CONTROLS 635

Using ReadProperties and WriteProperties
Events and Corresponding Methods to
Maintain Persistent Properties
The operating environment fires a UserControl’s ReadProperties and
WriteProperties events whenever it thinks that the instantiated
object’s properties need to be re-initialized (ReadProperties event
fires) or stored for safekeeping (WriteProperties event fires).

This arrangement makes it much easier for you, the control author,
to manage these properties since you don’t have to think about all
the possible occasions when property values might need reading or
writing. You simply need to put code for reading and writing prop-
erty values in two centralized places: the ReadProperties and
WriteProperties event procedures.

Both the ReadProperties and WriteProperties event procedures
receive a single parameter named PropBag. This PropBag parameter
obviously represents the Property Bag object that holds the
UserControl’s property values.

The PropertyBag object represented by the PropBag parameter has
one method for reading properties (ReadProperty) and another for
writing properties (WriteProperty).

Usually, the only code you need to write in the ReadProperties event
procedure will be a series of calls to the ReadProperty method so you
can retrieve persistent values for individual properties.

Conversely, the only code you usually need to write in the
WriteProperties event procedure will be a series of calls to
the WriteProperty method so you can store persistent values of
individual properties.

Storing Persistent Property Values with
the WriteProperties Event and the
WriteProperty Method
Visual Basic fires the UserControl’s WriteProperties event just before
it fires the UserControl’s Terminate event provided that at least one
property value has changed. In other words, the WriteProperties
event fires whenever the current instance of the control is about to
be destroyed and any property values that you want to persist have
changed and, therefore, need to be saved.

16 002-8 CH 13 3/1/99 8:22 AM Page 635

636 Par t I VISUAL BASIC 6 EXAM CONCEPTS

As its name implies, you use the WriteProperties event procedure to
save persistent property values. The specific mechanism you use to
save property values is to call the WriteProperty method of the
Property Bag for each property whose value you wish to save. The
Property Bag is available in the event procedure of the
WriteProperties event as a parameter named PropBag. The example
code in Listing 13.7 shows how you would call the Property Bag’s
WriteProperty method to save individual property values. Notice
that we use whatever repository has been storing the property value
as the source for the current value: at times this might be a private
memory variable, and at other times it might be a property of a con-
stituent control (as in the final line before the End Sub).

LISTING 13.7

USING THE WRITEPROPERTIES EVENT PROCEDURE TO SAVE

PROPERTY VALUES TO THE PROPERTY BAG

Private Sub UserControl_WriteProperties _
(PropBag As PropertyBag)
‘Store the values of the custom properties
‘to the Property Bag
PropBag.WriteProperty _
“BackColor”, BackColor

PropBag.WriteProperty _
“Celsius”, m_Celsius

PropBag.WriteProperty _
“Fahrenheit”, m_Fahrenheit

PropBag.WriteProperty _
“TemperatureDate”, m_TemperatureDate

PropBag.WriteProperty _
“Caption”, lblCaption.Caption

End Sub

Calling the PropertyChanged Method to
Trigger WriteProperties
The system automatically fires the WriteProperties and
ReadProperties events whenever it thinks you may need their services.
To ensure that the system knows a property has changed, you have to
call the PropertyChanged method. An example of this would be when
you change the value of a Private variable that implements the value
of a property. The system will have no way of knowing that this vari-
able is connected with a property, and therefore it will not fire the
WriteProperties event based solely on the change you have made.

16 002-8 CH 13 3/1/99 8:22 AM Page 636

Chapter 13 CREATING ACTIVEX CONTROLS 637

In such cases, you can call the PropertyChanged method. This
method informs the system that a particular property has changed
and so ensures that the WriteProperties event will fire before the
current instance of the control is destroyed. If you’ve written the
appropriate code in the WriteProperties event, then your property
values will be stored in the Property Bag.

You should call the UserControl’s PropertyChanged method whenever
you do something in code that will cause a change to a property
whose value you wish to persist. The most typical place for you to
call the PropertyChanged method would be in a Property Let or
Property Set procedure (see Listing 13.8). Note that we check
the CanPropertyChange method that we discuss in “Calling the
CanPropertyChange Method Before Allowing a Property Value to
Change.”

LISTING 13.8

CALL ING THE PropertyChanged METHOD TO ENSURE

THAT WRITEPROPERTIES WILL FIRE

Property Let Celsius(sValue As Single)
If CanPropertyChange(“Celsius”) Then

‘assign incoming value to be stored
‘in Private variable
m_Celsius = sValue

‘invoke UserControl’s PropertyChanged method
‘so it knows to trigger WriteProperties and
‘store new value
PropertyChanged (“Celsius”)

‘perform other housekeeping specific to this
application

Slider1.Value = m_Celsius
RecalcFahrenheitFromCelsius sValue
DisplayTempsFromSlider

End If
End Property

16 002-8 CH 13 3/1/99 8:22 AM Page 637

638 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Retrieving Persistent Property Values with
the ReadProperties Event and the
ReadProperty Method
The ReadProperties event fires when a custom control is re-
instantiated at some point in the development cycle (the Project where
it resides has been retrieved and its container has been instantiated, the
developer has just entered run mode from the design mode, or the
developer has just returned to design mode from run mode).

Notice that we said that ReadProperties fires when the custom con-
trol is re-instantiated. We used this phrasing to purposely exclude the
case when the developer places an instance of the control on its con-
tainer for the first time from the Toolbox. For such first-time instan-
tiation, the ReadProperties event doesn’t fire. Instead, the
InitProperties event fires (see “Using the InitProperties Event to
Set Default Starting Property Values”). The ReadProperties event, as
its name implies, is the event that you will use to restore the values
of properties that have been kept in the Property Bag. The Property
Bag appears in the ReadProperties event procedure as a parameter
named PropBag. You call PropBag’s ReadProperty method for each
property whose value you wish to restore, as in Listing 13.9.

Notice that the ReadProperty method takes two arguments: the name
of the property as a string and then a default value for the property (in
case the property’s value has not been initialized in the Property Bag).

We store the results of each call to ReadProperties in the appropriate
variable or control property that implements the property within this
control.

LISTING 13.9

USING THE READPROPERTIES EVENT PROCEDURE TO

RESTORE PERSISTENT PROPERTY VALUES FROM THE

PROPERTY BAG

Private Sub UserControl_ReadProperties _
(PropBag As PropertyBag)

m_Celsius = PropBag.ReadProperty(“Celsius”, 30)
m_TemperatureDate = _

PropBag.ReadProperty _
(“TemperatureDate”, DateSerial(1997, 1, 1))

m_caption = PropBag.ReadProperty _
(“Caption”, Extender.Name)

16 002-8 CH 13 3/1/99 8:22 AM Page 638

Chapter 13 CREATING ACTIVEX CONTROLS 639

BackColor = PropBag.ReadProperty _
(“BackColor”, Ambient.BackColor)

‘make housekeeping adjustments
‘to bring constituent controls
‘into line with these property values
lblCaption.Caption = m_caption

End Sub

Implementing Constituent Controls
Recall that one of the ways you can implement an ActiveX control is
through constituent controls—other controls you use as building
blocks for the functionality and appearance of your custom control.

You can build your custom control from constituents by simply
placing instances of controls from the toolbox on the UserControl’s
designer surface at design time, just as you would place controls on
the surface of a Form in a standard EXE project (see Figure 13.6).

F IGURE 13 .6
Placing constituent controls on a
UserControl’s surface.

Managing Constituent Controls in the
Resize Event
Constituent controls do not respond automatically as UserControls
are resized. Instead, you must programmatically make provisions for
constituent controls to respond to changes in the UserControl’s size
and shape.

16 002-8 CH 13 3/1/99 8:22 AM Page 639

640 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The UserControl’s Resize event will fire when a developer resizes a
design-time instance of your control and also when the control’s
shape or size change at runtime.

You can, therefore, employ the UserControl’s Resize event procedure
to manage the appearance of the constituent controls within the
ActiveX control and also perhaps to restrict the way in which the
control can be resized.

In the example of Listing 13.10, we use the Resize event procedure
to make sure that our custom control never shrinks below a certain
minimum size. We also make sure that the constituent controls are
always centered on the surface of the UserControl and bear the same
relative positions.

LISTING 13.10

USING THE RESIZE EVENT PROCEDURE TO ENFORCE A

CUSTOM CONTROL’S SIZE, SHAPE, AND THE VISUAL

CONFIGURATION OF ITS CONSTITUENT CONTROLS

Private Sub UserControl_Resize()
‘minimum amount of space for borders
Const MIN_BORDER_SIZE = 100
Dim lMinHeight As Long
Dim lMinWidth As Long
‘minimum allowable height & width
‘are determined from min border size
‘& sizes of constituent controls
lMinHeight = 2 * MIN_BORDER_SIZE + _

cmdApply.Height
lMinWidth = 3 * MIN_BORDER_SIZE + _

cmdApply.Width + _
txtEnter.Width

‘if this UserControl has been
‘re-sized to below minimum
‘sizes, then re-size it to
‘minimum allowable size
If (ScaleHeight < lMinHeight) Then

Height = lMinHeight + _
(Height - ScaleHeight)

End If
If (ScaleWidth < lMinWidth) Then

Width = lMinWidth + _
(Width - ScaleWidth)

End If

‘now figure out how big the
‘horizontal border can be

16 002-8 CH 13 3/1/99 8:22 AM Page 640

Chapter 13 CREATING ACTIVEX CONTROLS 641

‘given the constituent control
‘sizes and the size of the UserControl
Dim lhorizBorderSize As Long
lhorizBorderSize = _
(ScaleWidth - _
txtEnter.Width - cmdApply.Width) / 3

‘set the horizontal alignment of
‘controls based on computed
‘horizontal border size
txtEnter.Left = lhorizBorderSize
cmdApply.Left = txtEnter.Left + _

txtEnter.Width + _
lhorizBorderSize

‘figure out vertical border
Dim lVertBorderSize As Long
lVertBorderSize = _

(ScaleHeight - cmdApply.Height) / 2

‘set vertical alignment of controls
cmdApply.Top = lVertBorderSize
txtEnter.Top = lVertBorderSize

End Sub

Implementing Delegated Methods
If you wish to expose some of the methods of your control’s con-
stituent controls to the developer, then you will need to implement
delegated methods. A delegated method is a custom control method
that acts as a wrapper for the method of an underlying constituent
control usually with a single line of code calling the constituent con-
trol’s method.

A delegated method is the only way you can let the developer access a
method of a constituent control since constituent controls are Private
to the UserControl object and so are unavailable to the developer.

You may give the delegated method the same name as the con-
stituent control method it implements, or you might give it a
different name to show that it’s a slightly different animal.

As an example of a delegated method, you might have a ListBox
constituent control on your UserControl and wish to allow the
developer to call the ListBox Clear method to clear out the items in
the ListBox. You could provide a custom method, ListClear, to
delegate the Clear method of the ListBox, as in Listing 13.11.

16 002-8 CH 13 3/1/99 8:22 AM Page 641

642 Par t I VISUAL BASIC 6 EXAM CONCEPTS

LISTING 13.11

DELEGAT ING THE CLEAR METHOD OF THE ListBox

Public Sub ListClear()
lstMyList.Clear

End Sub

Implementing Delegated Events
If you wish to expose some of the events of your control’s con-
stituent controls to the developer, then you will need to implement
delegated events. A delegated event is a custom control event that pro-
vides a wrapper for the event of an underlying constituent control,
usually by placing a single line of code in the constituent control’s
event procedure to raise the custom event.

A delegated event is the only way you can let the developer see the
events of a constituent control since constituent controls are private
to the UserControl object, and so they’re unavailable to the developer.

You may give the delegated event the same name as the constituent
control event it implements, or you might give it a different name to
distinguish it from the actual constituent control’s event.

Let’s say that you have a constituent TextBox control named
txtEntry on your UserControl object and you wish its Change event
to be visible in the client application. You would declare an event
called, say, “EntryChange” in the UserControl’s General Declarations
section that you see at the top of the example in Listing 13.12. Then
in the Change event of the constituent TextBox control, you would
simply raise the custom event, as shown in Listing 13.12.

LISTING 13.12

DELEGAT ING A CONSTITUENT TEXTBOX CONTROL’S CHANGE
EVENT

[General Declarations of UserControl]
Public Event EntryChange()
[in the Constituent control’s code]
Public Sub txtEntry_Change()

RaiseEvent EntryChange()
End Sub

16 002-8 CH 13 3/1/99 8:22 AM Page 642

Chapter 13 CREATING ACTIVEX CONTROLS 643

A developer would then see the EntryChange event procedure in code
windows of projects that used this control, and the EntryChange
event would fire whenever the constituent TextBox control’s Change
event fired.

Implementing Delegated Properties
If you wish to expose properties of your control’s constituent controls
to the developer, then you will need to implement delegated properties.
A delegated property is a custom control property that provides a
wrapper for the property of an underlying constituent control usually
by placing code in the delegated property’s Property procedures and
modifying the lines in the InitProperties, ReadProperties, and
WriteProperties event procedures that manage the property’s value.

A delegated property is the only way you can give the developer
access to the properties of a constituent control since constituent con-
trols are private to the UserControl object and so their very existence,
let alone their individual members, are unknown to the developer.

You may give the delegated property the same name as the constituent
control property it implements, or you might give it a different name
to distinguish it from the actual constituent control’s property.

As an example of a delegated property, let’s say that you have a con-
stituent control, txtEntry, and you wish to expose its Text property
to the developer using your control. You could create a custom prop-
erty EntryText to delegate the txtEntry.Text property. To accom-
plish the property delegation, you’d follow these steps:

S T E P B Y S T E P
13.2 Property Delegation

1. Create Property Get and Property Let procedures for the
EntryText property (see Listing 13.13). Note that we don’t
use a Private variable in this example to store the prop-
erty’s value: Rather, we use the Text property of the con-
stituent control txtEntry.

2. Put a line of code in the InitProperties event to imple-
ment the default value for this property. Note again in
Listing 13.14 the use of the Text property of the con-
stituent control rather than a Private variable as our
repository for the property’s value.

16 002-8 CH 13 3/1/99 8:22 AM Page 643

644 Par t I VISUAL BASIC 6 EXAM CONCEPTS

3. Put the appropriate code to manage the property’s value
into the ReadProperties and WriteProperties event proce-
dures. Note once again in Listing 13.15 that we use the
constituent control’s Text property (and not a variable) to
store and retrieve the property’s value.

LISTING 13.13

PROPERTY LET AND PROPERTY GET PROCEDURES FOR A

DELEGATED PROPERTY

Property Let EntryText(strValue as String)
txtEntry.Text = strValue
PropertyChanged “EntryText”

End Property
Property Get EntryText() as String

EntryText = txtEntry.Text
End Property

LISTING 13.14

INIT IAL IZ ING A DELEGATED PROPERTY IN THE

INITPROPERTIES EVENT PROCEDURE

Private Sub InitProperties()
‘Do some other initialization activies....

txtEntry.Text = “”
End Sub

LISTING 13.15

MANAGING A PERSISTENT DELEGATED PROPERTY IN THE

READPROPERTIES AND WRITEPROPERTIES EVENT PROCEDURES

Private Sub WriteProperties(PropBag As PropertyBag)
‘Write some other properties...

PropBag.WriteProperty _
“EntryText”, txtEntry.Text

End Sub

Private Sub ReadProperties(PropBag As PropertyBag)
‘Read some other properties...

txtEntry.Text = PropBag.ReadProperty _
(“EntryText”, “”)

End Sub

16 002-8 CH 13 3/1/99 8:22 AM Page 644

Chapter 13 CREATING ACTIVEX CONTROLS 645

CREATING DATA-AWARE ACTIVEX
CONTROLS

Controls in the VB development environment can be aware of data
in two ways:

á A control can be bindable to data fields in the Recordset of a
DataSource control. Examples of some controls that can be
bound to data in VB are TextBox controls, Labels, ListBoxes,
and ComboBoxes.

á A control can be a DataSource, exposing a Recordset’s data
fields to which other controls can bind. The ADO Data
Control discussed in Chapter 8 is an example of such a control.

In the following sections, we discuss how you can create your own
ActiveX controls that are either data-bound controls like the TextBox
or DataSource controls like the ADO Data Control.

Enabling the Data-Binding Capabilities
of an ActiveX Control
As you may recall from Chapter 8, many controls provide DataField
and DataSource properties, so you can bind them to a particular field
provided in the Recordset of a Data Control.

You can implement these fields and other data-bound fields as well
with ActiveX custom controls. The following sections discuss how
you can do this.

Providing DataSource and DataField
Properties with the Procedure Attributes
Dialog Box
A bound control must have a DataSource property to indicate the
Data Control to bind to and a DataField property to indicate which
field to bind from the DataSource’s Recordset.

In addition, a moment’s thought will tell you there is also a third
property involved in this arrangement: a property that actually
reflects the contents of the bound field. For a TextBox, this is the
Text property, and for a Label, on the other hand, it’s the Caption.

16 002-8 CH 13 3/1/99 8:22 AM Page 645

646 Par t I VISUAL BASIC 6 EXAM CONCEPTS

You can give your control DataField and DataSource properties and
indicate a third property that will reflect the bound data by follow-
ing these steps:

S T E P B Y S T E P
13.3 Giving Your Control DataField and DataSource

Properties

1. Change the UserControl’s DataBindingBehavior property’s
value to 1-vbSimpleBound.

2. Make sure your text cursor is in the code window for your
UserControl, preferably in one of the Property procedures
of the property you wish to reflect the bound data.

2. Choose the Tools, Procedure Attributes option from the
VB menu (see Figure 13.7).

3. On the resulting dialog box, make sure the property that
will reflect the bound data is chosen in the Names field.

4. Click the Advanced button.

5. In the Data Binding section at the bottom of the dialog,
check that the box labeled Property is data bound, and
then check that the box labeled This property binds to

DataField.

If you follow these steps, then developers using your control will see
the DataField and DataSource properties in the properties window of
each instance of your control. If the developer points the DataSource
and DataField properties to a valid Data Control and a valid field in
the Data Control’s Recordset, then the custom property you speci-
fied in step 3 above will reflect the contents of the underlying data
field in the designated property.

The custom property’s Property Let procedure will fire every time
the underlying data in the specified field changes. To be completely
safe in the Property Let procedure, you should call the
CanPropertyChange method, as described in the following section.

F IGU R E 13 .7
Specifying a property to bind to the DataField.

16 002-8 CH 13 3/1/99 8:22 AM Page 646

Chapter 13 CREATING ACTIVEX CONTROLS 647

Calling the CanPropertyChange Method
Before Allowing a Property Value to Change
You may wonder what will happen if you implement a data-bound
property as described in the previous section only to have a developer
bind your property to a field in a read-only data source. Obviously,
there will be a problem when there is an attempt to update the con-
tents of the property and, therefore, the underlying data.

You therefore need to take precautions to ensure that an attempt to
update your property won’t cause some sort of runtime error if the
underlying data it’s bound to can’t be updated.

The CanPropertyChange method is supposed to return a Boolean
value indicating whether it’s safe to attempt to update a property’s
value. If CanPropertyChange returns False, then it’s not safe to
update the data underlying the property. You can use
CanPropertyChange in the Property Let procedure. Only if it returns
True will you perform the actions needed to update the property’s
value, as illustrated in Listing 13.16.

LISTING 13.16

CALL ING THE CANPROPERTYCHANGE METHOD IN A PROPERTY
LET PROCEDURE

Public Property Let LastName(ctrVal As String)
If CanPropertyChange(“LastName”) Then

m_LastName = ctrVal
PropertyChanged “LastName”

End If
End Property

Creating an ActiveX Control that Is a
Data Source
Starting with VB6, you can create an ActiveX control that functions as
a data source. A data source control furnishes fields from a Recordset to
which other controls can bind. Examples of data source controls that
come out-of-the-box with VB would be the traditional Data Control
and the ActiveX Data Control (discussed in Chapter 8).

N
O

T
E CanPropertyChange Doesn’t Do

Anything in Current Versions—Use
Only for Future Compatability Note
that we said that CanPropertyChange
is supposed to return a result indicat-
ing whether it’s safe to update a prop-
erty. As of Version 6 of VB, VB’s
CanPropertyChange method always
returns True. Microsoft still recom-
mends that you use it, however, as
you may want it in place for future
compatibility.

So how does VB currently handle an
attempt to update a read-only data
field if the CanPropertyChange method
always says it’s OK to update? VB
raises no runtime errors and simply
ignores the request to update the field.

16 002-8 CH 13 3/1/99 8:22 AM Page 647

648 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The minimum that you’ll need to do to implement a control as a
data source is

1. Set the UserControl’s DataSourceBehavior property.

2. Program the UserControl’s GetDataMember event to return a ref-
erence to a Recordset object. This event fires whenever a data
consumer (usually a bound control) has its DataSource prop-
erty set to point to the data source control.

These two steps are enough if your data control’s behavior will be
very tightly constrained; that is, programmers who use the data
source cannot determine the type of data connection nor the data
that the data source exposes. In this restricted scenario, the
GetDataMember event procedure will connect to a hard-coded set of
records in a hard-coded database using a hard-coded data driver.

However, you may want to give programmers of your data source
more choice about how the control connects to data. In that case
you’ll want to give programmers more of the features that standard
Microsoft data source controls furnish, namely:

á Properties that allow the programmer to specify connect
strings and the text of queries that retrieve data to create spe-
cific recordsets. The GetDataMember event procedure would
then dynamically read these properties to initialize and return
the Recordset.

á A Recordset property so that programmers can directly manip-
ulate your data source control’s Recordset in their own code.

The GetDataMember Event
The GetDataMember event occurs when the DataSource property of a
data consumer that depends on the current control is set.

The purpose of this event is to return a reference to a valid Recordset
object via its second parameter. This Recordset then becomes
available to the data consumer that caused the event to fire in the
first place. In Listing 13.17, the code in a GetDataMember event pro-
cedure always returns a reference to the Recordset of the Employees
table in the Nwind Access database.

16 002-8 CH 13 3/1/99 8:22 AM Page 648

Chapter 13 CREATING ACTIVEX CONTROLS 649

LISTING 13.17

THE GETDATAMEMBER EVENT PROCEDURE

Private Sub UserControl_GetDataMember(DataMember As String,
➥Data As Object)

On Error GoTo GetDataMemberError

‘ rs and cn are Private variables of the UserControl
‘ if this is the first time through, then they haven’t been

➥set yet
If rs Is Nothing Or cn Is Nothing Then

‘ Create a Connection object and establish
‘ a connection.
Set cn = New ADODB.Connection
cn.ConnectionString = _

“Provider=Microsoft.Jet.OLEDB.3.51;Data
➥Source=c:\northwind.mdb”

cn.Open
‘ Create a RecordSet object.
Set rs = New ADODB.RecordSet
rs.Open “employees”, cn, adOpenKeyset,

➥adLockPessimistic
rs.MoveFirst

End If

Set Data = rs

Exit Sub

GetDataMemberError:

MsgBox “Error: “ & CStr(Err.Number) & vbCrLf & vbCrLf &
➥Err.Description

Exit Sub
End Sub

Note in the listing that you manipulate two Private UserControl vari-
ables: A variable representing the ADO Connection and another rep-
resenting the ADO Recordset. The event procedure code only has to
set them up on the first pass through the procedure. Once the connec-
tion and the Recordset are initialized, you skip the initialization code.

At the end of the routine (just before the Exit Sub to detour around
the error handler), the code assigns the Recordset to the second para-
meter, Data. This in effect returns the Recordset to whatever data con-
sumer has just requested it (typically another control that has just had
its DataSource property set to point to an instance of this control).

16 002-8 CH 13 3/1/99 8:22 AM Page 649

650 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Steps to Create a Data Source Control
The following steps will implement a fully functioning data source
control:

S T E P B Y S T E P
13.4 Creating a Data Source Control

1. Create a new ActiveX control project.

2. Set a reference in the project to the appropriate data
library through the Project, References menu dialog box.

3. Set the UserControl’s DataSourceBehavior property to
1-vbDataSource.

4. Create property procedures for custom properties that
programmers will use to manipulate the data source con-
trol’s connection to data. Typically, you’ll implement
String properties such as ConnectString (connection
string to initialize a Connection object) and RecordSource
(string to hold the query to initialize the data in the
recordset). Create private variables to hold the values of
each of the properties. Create private constants to hold
their initial default values. Program the InitProperties,
ReadProperties, and WriteProperties event procedures to
persist these properties.

5. If you want to expose the control’s Recordset for other
programmers to manipulate, then you should create a cus-
tom property name, RecordSet. Its type will be the appro-
priate Recordset type that you plan to program for your
control. You may choose to make it read-only, in which
case you only need to give it a Property Get procedure.
Declare a private object variable to hold its value using
WithEvents (this exposes the event procedures to other
programmers).

16 002-8 CH 13 3/1/99 8:22 AM Page 650

Chapter 13 CREATING ACTIVEX CONTROLS 651

6. Declare a Private variable of the appropriate connection
type that you plan to program for your control. It will not
correspond to a custom property, but it’s necessary in
order to host the Recordset.

7. Code the InitProperties, ReadProperties, and
WriteProperties events to properly manage and persist the
values of the properties created in the previous steps.

8. Program the UserControl’s GetDataMember event procedure
to initialize a recordset and return it in the second para-
meter. You will derive the Recordset either from informa-
tion contained in custom Private variables (see Exercise
13.6 for an example) or from hard-coded information in
the GetDataMember event procedure itself (see the previous
section for an example). You should perform some error-
trapping to ensure that you do indeed have a valid
connection.

9. Put code in the UserControl’s Terminate event that will
gracefully close the data connection.

10. If you want to allow users to navigate data by directly
manipulating your UserControl, then put the appropriate
user interface on your UserControl along with the code to
navigate the Recordset variable.

11. Your new ActiveX control should now be ready to test as a
DataSource:Add a standard EXE project to the Project
Group. Now, making sure you’ve closed the designer for
the UserControl, add an instance of your new control to
the standard EXE’s form.

12. Manipulate any necessary custom properties (such as
ConnectString or RecordSource) that you may have put in
your custom control.

13. Put one or more bindable controls in the test project and
set their DataSource property to point to the instance of
your Data Source Control. Set their DataField properties
to point to fields from the exposed Recordset.

16 002-8 CH 13 3/1/99 8:22 AM Page 651

652 Par t I VISUAL BASIC 6 EXAM CONCEPTS

CREATE AND ENABLE PROPERTY
PAGES FOR ACTIVEX CONTROLS

Property Pages provide an alternative to the Properties Window for a
developer who wants to edit property values at design time. As a
developer you’re already familiar with the property pages of standard
and custom VB controls.

You should consider using Property Pages with your ActiveX control
when

á your control has numerous custom properties that can be eas-
ily organized into categories.

á your control uses complex custom properties that don’t repre-
sent just a single value.

á many of your custom properties are more easily edited with
non-text controls, such as drop-down lists, option buttons, or
check boxes.

You implement Property Pages as special modules of your ActiveX
control project (.pag files).

A control can have many Property Pages (as do the DBGrid, ToolBar,
and StatusBar controls for example) depending on the complexity
and logical groupings of its properties.

To program Property Pages, you need to know how to program with:

á The PropertyPage designer. This is a Form-like interface sim-
ilar to the UserControl designer or the designer for regular VB
Forms. You place intrinsic VB controls on its surface to provide
the developer with an interface for editing property values.

á SelectedControls collection. This collection holds the con-
trols that the developer has currently selected.

á SelectionChanged event. When a developer displays the
Property Page or changes selected control(s), you use the prop-
erty values of the first selected control to initialize controls on
the Property Page.

16 002-8 CH 13 3/1/99 8:22 AM Page 652

Chapter 13 CREATING ACTIVEX CONTROLS 653

á EditProperties event. Use its PropertyName argument to
determine which complex control a user is trying to edit.

á Changed property. This property flags whether changes have
been made to properties with the Property Page.

á ApplyChanges event. This event fires when developers save
changes they have made to properties.

After you’ve programmed the behavior of your Property Pages, you’ll
need to take one or more of the following actions to cause your con-
trol to display Property Pages correctly:

á Connect custom controls to your Property Page.

á Connect individual complex properties to your Property Page.

á Connect some properties to standard VB Property Pages.

We discuss the features of the above two lists in the following sections.

Creating the PropertyPage Object’s
Visual Interface
Once you’ve decided which properties you are going to implement
with a Property Page, you can:

á Add a Property Page module to your control project with the
Project, Add Property Page option on your VB menu.

á Place appropriate controls for editing the properties on the
PropertyPage object’s designer surface.

The Property Page under development in Figure 13.8 allows the
developer to edit the values of a property in two different ways.

16 002-8 CH 13 3/1/99 8:22 AM Page 653

654 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Determining which Controls Are
Selected for Editing with the
SelectedControls Collection
You’ll recall that you can select multiple controls when designing a
VB application by holding the Ctrl key and clicking the mouse on
successive controls in the same container. You can also select multi-
ple controls in the same physical area of the container by using the
“lasso” method: holding down the mouse button outside any control
on the container and keeping it down while you “lasso” or mark an
area holding several controls (a rectangle of dotted lines appears
around the lassoed area).

It’s therefore possible that the developer could have selected more
than one control when your Property Page is active. In order for you
to detect which controls the developer has currently selected, the
SelectedControls collection is available in the code of a Property
Page. It contains all controls currently selected by the developer.

The SelectedControls collection is zero-based. That is you would
denote the first element of SelectedControls in your code by:

SelectedControls(0)

F IGU R E 13 .8
Editing the visual interface for a custom
Property Page.

16 002-8 CH 13 3/1/99 8:22 AM Page 654

Chapter 13 CREATING ACTIVEX CONTROLS 655

The SelectedControls collection has a Count property to tell you
how many controls are in the collection. Since SelectedControls is
zero-based, you would denote the last control in the collection by:

SelectedControls(SelectedControls.Count - 1)

You can refer to the property settings of one of the controls in
SelectedControls with the normal object.property syntax, as in this
example:

SelectedControls(0).Backcolor

Normally you’ll use the SelectedControls collection at the following
places in your Property Page’s code:

á In the SelectionChanged event procedure, in order to set
Property Page values to those of the first selected control, or
SelectedControls(0), see the following section titled “Using
the SelectionChanged Event to Detect When the Developer
Begins to Edit Properties.”

á In the ApplyChanges event procedure, in order to determine
which controls should receive property changes (some property
values might not be appropriate for all controls), see “Saving
Property Changes with the ApplyChanges Event.”

Using the SelectionChanged Event to
Detect When the Developer Begins to
Edit Properties
The SelectionChanged event of a Property Page happens when

á The Property Page displays.

á There is a change in the selected controls (the SelectedControls
collection) while the Property Page is displayed.

You therefore use the SelectionChanged event procedure to set the
values of Property Page elements that reflect property values.

Typical code in the SelectionChanged event procedure will check the
values of properties in the first control of the SelectedControls col-
lection (SelectedControls(0)) and adjust Property Page elements
accordingly, as we do in the example of Listing 13.18.

16 002-8 CH 13 3/1/99 8:22 AM Page 655

656 Par t I VISUAL BASIC 6 EXAM CONCEPTS

It’s not appropriate to allow some properties to change to a single value
for multiple controls. For instance, the Caption properties of most con-
trols should be unique to each control. Therefore, you might want to
use the SelectionChanged event procedure to control which properties
can change when the developer has selected multiple controls.

Notice that in Listing 13.18, we check the value of
SelectedControls.Count to see whether the developer has selected
multiple controls. If so, we disable the Property Page elements that
correspond to property values that we don’t want to set for multiple
controls. If, on the other hand, only one control has been selected,
we enable its corresponding Property Page element and assign to that
element the value of the property from the selected control.

LISTING 13.18

ADJUST ING PROPERTY PAGE ELEMENTS IN THE

SELECTIONCHANGED EVENT PROCEDURE

Private Sub PropertyPage_SelectionChanged()
chkIsFahrenheit.Value = _

SelectedControls(0).IsFahrenheit
If SelectedControls.Count > 1 Then

txtTempDate.Enabled = False
Else

txtTempDate.Text = _
SelectedControls(0).TempDate

End If
End Sub

Flagging Property Changes with the
Changed Property
You must set the Property Page’s Changed property to True in order
to enable the Apply button on the Property Page.

The most appropriate place to set the Changed property is in the
corresponding event procedures of the controls you’ve placed on the
Property Page for editing the values of properties.

For example, if a TextBox control on your Property Page represents
the value of a property, you would set the Changed property in the
TextBox control’s Changed event procedure. Again, if an OptionButton
control represents a property value, then you’d set the Changed prop-
erty to True in its Click event procedure.

16 002-8 CH 13 3/1/99 8:22 AM Page 656

Chapter 13 CREATING ACTIVEX CONTROLS 657

Saving Property Changes with the
ApplyChanges Event
You can use the ApplyChanges event to write the information from
the Property Page back to the actual property values of the selected
controls.

ApplyChanges fires when the user Clicks the Apply button or the OK
button on your Property Page or switches to another Property Page
of your control.

As you can see in Listing 13.19, we use the SelectedControls collec-
tion to determine the controls that the developer has selected for
modification. Notice that just as we did in the SelectionChanged
event procedure, we distinguish between properties that should be
changed for just one control and properties that can be changed for
all controls.

LISTING 13.19

SAVING PROPERTY CHANGES BACK TO CONTROLS IN

THE APPLYCHANGES EVENT PROCEDURE

Private Sub ApplyChanges()
‘This change only applies if
‘just one control is selected
If SelectedControls.Count = 1 Then

SelectedControls(0).MyName = _
txtMyName.Text

End If
‘This change only applies to
‘the first control in the selection
SelectedControls(0).Climate = _

txtClimate.Text
‘This change applies to all
‘controls in the selection
Dim ctrl As Control
For Each ctrl In SelectedControls

ctrl.TempDate = txtTempDate.Text
Next ctrl

End Sub

16 002-8 CH 13 3/1/99 8:22 AM Page 657

658 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Connecting a Custom Control to a
Property Page
After you’ve programmed your Property Page, you must then associ-
ate it with a custom control. To connect a Property Page to a custom
control, take the following steps:

S T E P B Y S T E P
13.5 Connecting a Property Page to a Custom Control

1. Select the Custom Control’s UserDocument in your VB
project.

2. Bring up the Custom Control’s Properties Window (F4 key).

3. Select the PropertyPages property and click the ellipsis
(…) to its right.

4. In the resulting Connect Property Pages dialog box (see
Figure 13.9), check all the Property Pages that you want
to associate with this control.

F IGU R E 13 .9
Use the Connect Property Pages dialog box to
associate one or more Property Pages with a
custom ActiveX control.

N
O

T
E Using the Same Property Page for

Multiple Controls If your VB project
has more than one ActiveX custom
control, you may connect the same
Property Page to more than one type
of ActiveX control.

Connecting a Single Complex Property
to a Property Page
It’s possible to connect one or more complex properties directly to a
Property Page rather than an entire control. When you connect a
property directly to a Property Page in this way, the entry for the
property in the Properties Window displays an ellipsis (…) to the
right of the property value (see Figure 13.10). The developer can
click on the ellipsis to bring up a Property Page for that property.

16 002-8 CH 13 3/1/99 8:22 AM Page 658

Chapter 13 CREATING ACTIVEX CONTROLS 659

To associate a single property with a Property Page, take the follow-
ing steps:

S T E P B Y S T E P
13.6 Associating a Single Property with a Property

Page

1. From a Code Window in your UserControl’s code, choose
Tools, Procedure Attributes from the VB menu to bring
up the Procedure Attributes dialog box.

2. Make sure the name of the property you want to work with
appears at the top of the dialog box in the Name field.

3. Click the Advanced button and pull down the choices in
the list titled “Use this Page in Property Browser” (see
Figure 13.11).

4. Choose the Property Page that you want to connect with
this property.

5. Click the OK button to confirm your choice and finish.

, F IGURE 1 3 .10
Complex properties that require a Property Page
show an ellipsis (…) beside their entry in the
Properties Window.

F IGURE 13 .1 1▲
Associating a single property with a Property
Page.

16 002-8 CH 13 3/1/99 8:22 AM Page 659

660 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Detecting which Complex Property is
being Edited with the EditProperty
Event
The EditProperty event fires when the developer starts to edit a
property that you have directly connected to a Property Page.

As we discussed in the previous section, it’s possible to connect one
or more complex properties directly to a Property Page rather than
an entire control. When you connect a property directly to a
Property Page in this way, the entry for the property in the
Properties Window displays an ellipsis (…) to the right of the prop-
erty value. The developer can click on the ellipsis to bring up your
Property Page for that property.

Because it’s possible to connect more than one complex property
directly to a Property Page, there may be elements on the Property Page
that aren’t appropriate for every property that you’ve connected to it.

That is where the EditProperty event comes in handy. You can use
the EditProperty event’s string property parameter, PropertyName, to
check on which property the developer is trying to edit, as we do in
Listing 13.20. Depending on which property the developer is edit-
ing, you can enable, disable, hide, reveal, or set focus to elements on
the Property Page.

LISTING 13.20

USING THE EDITPROPERTY EVENT PROCEDURE TO

DETERMINE THE CONFIGURATION OF THE PROPERTY

PAGE

Private Sub EditProperty(PropertyName As String)
If Ucase$(PropertyName) = “TEMPDATE” Then

txtTempDate.SetFocus
chkIsFahrenheit.enabled = False

Else
. . . other stuff

End If
End Sub

16 002-8 CH 13 3/1/99 8:22 AM Page 660

Chapter 13 CREATING ACTIVEX CONTROLS 661

Connecting a Property to a Standard
VB Property Page
If you have a custom property that represents a bitmap picture, a
system font, or a color, then you’re in luck: VB provides three stan-
dard Property Pages that you can use with the appropriate type of
property in your ActiveX control project.

These standard Property Pages keep you from having to “reinvent
the wheel” for commonly used property interfaces (such as bitmaps,
color, and font dialogs).

In order to connect one of your custom properties to a standard
Property Page, just follow the same steps as you would follow to con-
nect a property to a custom Property Page (see the previous section).
Instead of choosing a custom Property Page in the Procedure
Attributes dialog box, choose the appropriate standard Property Page.

TESTING AND DEBUGGING YOUR
ACTIVEX CONTROL

You can test and debug your ActiveX Control project from the
design-time environment in one of two ways:

á Test your ActiveX control inside an existing container applica-
tion, such as Internet Explorer.

á Create a Standard EXE test project in the same program group
as your ActiveX control and test your ActiveX control in the
test project.

Notice that both methods require another program in order to test
your ActiveX control. You cannot test an ActiveX control project
completely on its own because, of course, ActiveX controls have no
function outside of a container provided by another application.

We discuss both these methods in the following sections.

N
O

T
E OLE_COLOR-Type Properties Have

Automatic Color Dialog Boxes If you
create a custom property and declare
its type to be OLE_COLOR, then VB
will automatically show the Color prop-
erty dialog box to the developer in the
Properties Page of an instance of your
control. Remember that you must then
consistently refer to its type as
OLE_COLOR throughout the control’s
code (in its Private variable and
Property procedure declarations).

16 002-8 CH 13 3/1/99 8:22 AM Page 661

662 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Testing Your ActiveX Control with
Existing Container Applications
The most common container applications that you will want to test
against your ActiveX control would be Internet browsers that sup-
port ActiveX controls such as Internet Explorer.

In order to test your ActiveX control with a browser, you will use the
Debugging tab of VB’s Project, Properties dialog box to indicate your
control’s behavior when you run it from the design-time environment.

S T E P B Y S T E P
13.7 Testing Your ActiveX Control with a Browser

1. Make sure that your ActiveX control project is the startup
project in its Project Group (only necessary if there are
other projects in the Project Group).

2. Run the application. The first time you do this, the
Project Properties dialog box appears with its Debugging
tab selected, as in Figure 13.12. You will typically want to
accept the default settings with the Start Component
option button selected and the Use Existing Browser
check box checked.

3. Internet Explorer will load, and an instance of your con-
trol will appear in the Internet Explorer window frame, as
in Figure 13.13.

4. Note that you can choose IE’s View Source menu option
to see the sample page that was created with your project’s
class ID, as in Figure 13.14. If you wish at this point, you
could modify the HTML source to manipulate your con-
trol with, say, VBScript and further test its behavior in a
Web page.

5. If you later want to change debugging options, such as the
type of container that your control runs in, then you must
use the Project, Properties menu option and choose the
Debugging tab.

F IGU R E 13 .12
The Debugging tab of the Project, Properties
dialog box.

16 002-8 CH 13 3/1/99 8:22 AM Page 662

Chapter 13 CREATING ACTIVEX CONTROLS 663

Testing and Debugging your ActiveX
Control in a Test Project
The testing method discussed in the previous section is fine if you
want to see how your control behaves in an existing application.
However, you will also want to see how your control behaves when
other programmers use it in their own VB projects. In order to test
your ActiveX control in the VB design environment, you need to use
a test project in the same Project Group as your ActiveX control.

To test your control with another VB project, you should take the
following steps:

, F IGURE 1 3 .13
Internet Explorer, running with the test control
loaded.

, F IGURE 1 3 .14
Viewing the HTML source for the test Internet
Explorer page created for your control.

16 002-8 CH 13 3/1/99 8:22 AM Page 663

664 Par t I VISUAL BASIC 6 EXAM CONCEPTS

S T E P B Y S T E P
13.8 Testing Your ActiveX Control with Another VB

Project

1. Choose the File, Add Project menu option and add a stan-
dard EXE project to your Project Group.

2. Make sure that the new project is the Startup project of
the Project Group by right-clicking on the project’s entry
in the Project explorer and choosing Set as Startup from
the menu (see Figure 13.15).

N
O

T
E ActiveX Control Projects Shouldn’t Be

the Startup of Multiple Project Groups
An ActiveX Control project shouldn’t be
the startup project of a Project
Group—so it’s a good idea to get into
the habit of making sure that the test
project is the Startup of your group.

In VB5, it was impossible for an
ActiveX control to be the Startup pro-
ject, but in VB6 an ActiveX control can
be the startup, as discussed in the
previous section.

F IGU RE 13 .15
Add a standard EXE project to test your cus-
tom control and make sure it’s the Startup pro-
ject of the Project Group.

3. Make sure to close the Designer window for your
UserControl object. If you forget to close its Designer, the
custom control won’t be available in your test project.
You’ll be able to see it in the test project, but its toolbox
image and any instances you’ve already placed on test
forms will be disabled, as illustrated in Figure 13.16).

4. Switch to the test project, and you will see the
UserControl’s ToolBoxBitmap or default ActiveX control
bitmap in the toolbox (see Figure 13.17).

16 002-8 CH 13 3/1/99 8:22 AM Page 664

Chapter 13 CREATING ACTIVEX CONTROLS 665

5. Place an instance of your control from the toolbox on the
test project’s startup form. Write code and manipulate
properties to exercise your control.

6. Run the test project to observe the control’s behavior.

, F IGURE 1 3 .16
This custom control’s design-time instance is
disabled in the test project because the devel-
oper hasn’t closed the Designer window for the
control itself.

, F IGURE 1 3 .17
This toolbox contains the default ActiveX control
bitmap for a custom control that is being tested.

16 002-8 CH 13 3/1/99 8:22 AM Page 665

666 Par t I VISUAL BASIC 6 EXAM CONCEPTS

What to Look for When Testing Your
Activex Control
In the following sections, we discuss some considerations for testing
the features that you have built into your custom ActiveX control.

In order to test these features, you must run a test project against
your control, as discussed in the previous sections.

Here is a list of things you should do to make sure that your control
behaves in a way that developers will recognize as standard control
behavior.

á Use an instance of your control to test its methods by calling
each method in code from the code of the test project.

á Test your control’s events by placing an instance of your con-
trol in the test project. Then follow these steps for each event:

• Write code in the test project that will trigger the event
(what the test code needs to do depends on how you’ve
designed the event).

• In the test project’s code, find the event procedures for
your control instance’s events. Then put code in the event
procedures that will test whether the event fired.
Debug.Print messages are a good idea. Message boxes are
not such a good idea because they can interrupt the flow of
processing, especially when keyboard input is important.
Also include code to test the value of any parameters
passed by the event procedure.

á Test your control’s properties by placing an instance of your
control in the test project. Make sure you test the following
features of each property:

Make sure that the control starts with its properties initial-
ized to their default values: Add an instance of your control
to the test project and make sure that the initial property
values are what you expect. You should have specified
default values in the UserControl’s InitProperties event
procedure.

Make sure that default values don’t overwrite developer
changes when the project goes from design time to runtime:

16 002-8 CH 13 3/1/99 8:22 AM Page 666

Chapter 13 CREATING ACTIVEX CONTROLS 667

This might happen if you’ve mistakenly assigned default
values in the ReadProperties event procedure.

Make sure that design time changes to controls persist to
runtime. Check the WriteProperties and ReadProperties
event procedures as well as the Property Let/Set and Get
procedures if there are problems. Make sure you’re calling
the PropertyChanged method in Property Let/Set proce-
dures.

Make sure that runtime changes actually take effect at run-
time: Make sure you’re storing property values in the appro-
priate intermediate variables or underlying delegated
properties in the Property Let/Set procedures.

Make sure that data-bound properties correctly reflect
underlying data: If you have implemented data-bound prop-
erties, then check your control’s properties for a DataSource
property. (If it’s missing it means you haven’t designated any
property as the DataField property). Put a Data Control on
your test form, connect it to data, and set the DataSource
property to point to the Data Control. Then set the
DataField and other data-bound properties to point to the
fields provided by the Data Control’s Recordset.

NEEDS
Your business needs a common look and feel for
entry of currency amounts on user input screens.

In the past, there have been currency-amount
entry problems ranging from slight annoyances to
costly mistakes.

Your business’ Windows programmers are scat-
tered across many unconnected locations.
Standardization between all of them is going to
be a problem as well.

CASE STUDY: AN ACTIVEX CONTROL TO PROVIDE A STANDARD

INTERFACE FOR CURRENCY AMOUNTS

R EQ U IR EMEN TS
Some of the problems encountered in the entry
of currency rates might include:

• Confusion about what national currency was
being used for the amount displayed in a
field.

• In some environments, however, the cur-
rency symbol is seen as an annoyance and
a waste of screen real estate.

continues

16 002-8 CH 13 3/1/99 8:22 AM Page 667

668 Par t I VISUAL BASIC 6 EXAM CONCEPTS

• On some screens, the requirements of the
interface to mainframe data might mean
that the underlying number needed to be
stored with no decimal places, that is
100.03 would be stored as 10003 and
5.00 would be stored as 500. The applica-
tion that consumes this data would need to
be intelligent enough to know when to
divide and multiply by factors of 100 both
for display purposes and for computation.

• Some users might prefer nicely formatted
numbers with thousands separators while
others (especially those using larger num-
bers and requiring more space) might not
like them.

• There will be localization issues since thou-
sands separators and decimal-place mark-
ers vary internationally.

DES IGN SPEC I F ICAT IONS
You might be able to meet these needs by dis-
tributing an ActiveX control for currency entry to
all your Windows programmers. This control
would enforce your company’s user-interface and
data storage standards and could be flexible
enough to accommodate different situations.

In addition by distributing a compiled control to
your company’s programmers, you could automat-
ically enforce standard programming for currency
amounts across the organization.

CASE STUDY: AN ACTIVEX CONTROL TO PROVIDE A STANDARD

INTERFACE FOR CURRENCY AMOUNTS

General specifications
The control should be

• bindable to data (a data consumer with
DataField and DataSource fields).

• resizable.

The following are proposed members of the con-
trol. The names should be self-explanatory.

Properties
DisplayAmount

StoreAmount

ThousandsSeparator

DecimalCharacter

DecimalPlacesToShow

CurrencyCode

ShowCurrencySymbol

DecimalPlacesToShift

Methods
ApplyCurrencySymbol

ApplyThousandsSeparator

UnApplyCurrencySymbol

UnApplyThousandsSeparator

Events
Change (delegated event of underlying TextBox)

KeyPress (delegated event of underlying
TextBox)

continued

16 002-8 CH 13 3/1/99 8:22 AM Page 668

Chapter 13 CREATING ACTIVEX CONTROLS 669

We have covered the following key points in this chapter:

á Standalone ActiveX controls and ActiveX controls imple-
mented as part of larger projects

á ActiveX controls created from constituent controls

á User-drawn ActiveX controls

á ActiveX control lifetime

á Steps for creating an ActiveX control

á The UserControl object

á The Extender and Ambient objects

á Implementing custom methods and events

á Implementing custom properties and property persistence with
the InitProperties, ReadProperties, and WriteProperties
events and with the Property Bag object and its methods

á Implementing constituent controls including delegated members

á Creating controls that can be data consumers

á Creating controls that serve as data sources

á Creating Property Pages

á Testing and debugging an ActiveX control project

CHAPTER SUMMARY

KEY TERMS
• ActiveX control

• Composite control

• Constituent control

• Data consumer

• Data source

• Delegated member

• Designer

• Persist

• Property Page

• Standard control

16 002-8 CH 13 3/1/99 8:22 AM Page 669

670 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Exercises

13.1 Creating an ActiveX Control

In this exercise, you create a simple ActiveX control that
can track and change a running balance. The property
will have one event, one method, and one property. The
event will be called BalanceChanged and will pass two
double parameters. The method will be named
AddToBalance and will take a single double parameter
that will modify the CurrentBalance property. The
method will also raise the BalanceChanged event. The
property will be of type Double and will be called
CurrentBalance. It will raise the BalanceChanged event
whenever it is reset to another value. The
CurrentBalance property will not be fully functional
until you’ve completed Exercise 13.2 where you imple-
ment property persistence. In Exercise 13.3, you’ll run
this control in a test project, and in Exercise 13.4, you’ll
add some more properties and a Property Page to the
project. To complete this exercise, follow these steps:

Estimated Time: 25 minutes

1. Create a new ActiveX Control project.

2. Implement an event named BalanceChanged by
declaring it in the general section of the
UserControl. In the event’s declaration, specify
two double parameters named NewBalance and
AmountOfChange.

3. Implement a double property named
CurrentBalance. Create a Private variable to hold
its value and name the variable m_CurrentBalance.

4. In the Property Let procedure for
CurrentBalance, raise the BalanceChanged event
passing it the appropriate parameters (you’ll have
to compute the amount of change to pass as the
second parameter to the event).

5. Implement a method named AddToBalance by
creating a Public Sub procedure. Give it a
double-type parameter named AmountOfChange,
and in the procedure recompute the new
balance based on its previous value and the
AmountOfChange parameter’s value. Then raise the
event you declared in step 2, passing it the new
balance and the amount of change as parameters.

6. Now you can test the control as described in
Exercise 2. Note that because you haven’t yet
done anything to persist its properties, it will not
behave correctly in the design-time environment.

13.2 Testing and Debugging an ActiveX
Control

In this exercise, you will run the ActiveX control pro-
ject created in Exercise 1 in the design environment to
test it. You will use two different methods: running in a
test project and running inside Internet Explorer. To
complete this exercise, follow these steps:

Estimated Time: 25 minutes

1. Use the same ActiveX control project that you
created in Exercise 1.

2. Without adding a test project, run the applica-
tion. The first time you do this, the Project
Property dialog box appears with its Debugging
tab selected, shown in Figure 13.12. You will typ-
ically want to accept the default settings with the
Start Component option button selected and the
Use Existing Browser check box checked.

3. Internet Explorer will load and an instance of
your control will appear in the Internet Explorer
window frame.

Note that you can choose IE’s View Source menu
option to see the sample page created with your
project’s class ID.

16 002-8 CH 13 3/1/99 8:22 AM Page 670

Chapter 13 CREATING ACTIVEX CONTROLS 671

A P P LY YO U R K N O W L E D G E

If you wished at this point, you could modify
the HTML source to manipulate your control
with, say, VBScript and further test its behavior
in a Web page.

4. In order to test your control in the environment
of a generic Windows application, make sure
that your control project’s designer is closed, and
then add a new standard EXE project to the
Project Group.

5. Make sure that the test project is the Project
Group’s Startup project. If it’s not, then the
ActiveX control project will behave exactly as
before in the design-time environment, calling
up Internet Explorer and running inside it.

6. Put an instance of your control on the default
form of the test project and also place a
CommandButton on the form.

7. In the CommandButton’s Click event, put code to
call the control’s AddtoBalance method.

8. In the form’s code window, locate your control’s
instance in the drop-down list and then enter
code in its BalanceChanged event to alert the user
of a change in balance.

9. Run the project and click several times on the
CommandButton, noting that the amount contin-
ues to increment with each click beginning at 0.

10. Stop the test project. Call up the Designer to dis-
play it on the screen. Then return to your test
project without closing the Designer. Note that
the image of your control’s instance is cross-
hatched, indicating that it’s unavailable. This is
because the control project’s Designer is also
loaded at the moment.

13.3 Using Control Events to Save and Load
Persistent Properties

In this exercise, you will make your ActiveX control’s
custom properties persistent: That is, you will program
with the InitProperties, ReadProperties, and
WriteProperties event procedures and the PropBag
object. To complete this exercise, follow these steps:

Estimated Time: 25 minutes

1. Use the project group created in Exercises 1 and
2. Make sure you’re looking at the EXE project
and, in Design Mode, open the Properties
Window for your control and change the
CurrentBalance property to some number besides
0. Run the project again and note that your
application ignores the design-time setting, begin-
ning again at 0 for the CurrentBalance property.

2. Stop the application and check the
CurrentBalance property in the design-time win-
dow. You will notice that the environment has
lost track of the value you placed into
CurrentBalance property and is back to 0.

3. The problem in steps 1 and 2, of course, is that
you’ve done nothing yet to implement property
persistence in your control. The rest of this exercise
walks you through the basic steps for making a
custom property persistent for an ActiveX control.

4. In the General Declarations section of your
UserControl, declare a Private constant
m_def_CurrentBalance and assign it the default
value that you want the control to take on when
it’s first sited in a container.

5. In the UserControl’s InitProperties
event procedure, assign the default value
(m_def_CurrentBalance) to the Private variable
m_CurrentBalance, the variable that stores
the value of the CurrentBalance property.

16 002-8 CH 13 3/1/99 8:22 AM Page 671

672 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Recall that the InitProperties event procedure is
the preferred place to initialize property values. If
you were to use the Initialize event procedure,
the default value would override any value you’d
assigned in the property window every time you
ran your host application.

6. In the UserControl’s ReadProperties event proce-
dure, use the Property Bag’s ReadProperty
method to assign the stored value for the
CurrentBalance property to the m_CurrentBalance
memory variable using m_def_CurrentBalance as
the default value.

7. In the Property Let procedure for the
CurrentBalance property, make sure to call the
UserControl’s PropertyChanged method for the
CurrentBalance property. This call will alert the
system to the fact that a property has changed and
will guarantee that the WriteProperties event will
fire when the control goes out of memory.

8. In the WriteProperties event procedure, make
sure that the current value of the property gets
saved in the PropBag by calling its WriteProperty
method.

9. Retest your control with the test project as in
steps 1 and 2. This time you should see that the
system correctly handles your design-time
changes to the property’s value.

13.4 Creating a Property Page

In this exercise, you create a Property Page and map its
controls to the CurrentBalance property you created in
your ActiveX control in Exercises 1 and 2. To complete
this exercise, follow these steps:

Estimated Time: 30 minutes

1. Open the Project Group that you worked with in
Exercises 1 through 3. Make sure that you have
the ActiveX control project selected and not the
test project.

2. Add a Property Page to the ActiveX control
project.

3. Add a TextBox to the Property Page. Put a valida-
tion code in the Change event so that the value of
the TextBox is always numeric.

4. Make sure that the Property Page will use the
CurrentBalance property of the current control
by putting code in the SelectionChanged event
procedure. This code will assign the first selected
control’s CurrentBalance property value to the
TextBox.

5. Make sure that the system knows about changes
that the user makes on the Property Page by set-
ting the Property Page’s Changed property to True
in the TextBox control’s Change event.

6. Make sure that the changes get applied properly
back to the control’s property by coding the
ApplyChanges event procedure. Essentially, you’ll
reverse the assignment that you made in the
SelectionChanged event procedure, writing the
value of the TextBox back to the selected control.
Since the user may have selected more than one
control, it would be more robust to use a For
Each... loop to visit all selected controls and
change each control’s CurrentBalance property.

7. Add the Property Page to the ActiveX control’s
Property Page collection by navigating back to
the control project, opening the control’s
Properties Window and selecting the
PropertyPages property from the list. Check
the box for this Property Page project.

16 002-8 CH 13 3/1/99 8:22 AM Page 672

Chapter 13 CREATING ACTIVEX CONTROLS 673

A P P LY YO U R K N O W L E D G E

8. In the ActiveX control project, connect the
CurrentBalance property to this Property Page.
First make sure that your cursor is in some pro-
cedure of the Control’s Code Window. Choose
the name of the CurrentBalance property from
the Name drop-down list. Then choose Tools,
Procedure Attributes from the VB menu and
click the Advanced button. Choose the name of
your Property Page project from the drop-down
list labeled Use This Page in Property Browser.

9. Bring up the Properties Window for the instance
of your control in the test EXE project and click
on the ellipsis for the CurrentBalance property to
test the Property Page.

13.5 Enabling the Data-Binding Capabilities
of an ActiveX Control

In this exercise, you make sure that your ActiveX control
can be bound to a Data Source such as VB’s ADO Data
Control. To complete this exercise, follow these steps:

Estimated Time: 30 minutes

1. Start a new ActiveX control project.

2. In the UserControl object’s Properties Window,
change the DataBindingBehavior property’s value
to 1-vbSimpleBound.

3. Put a TextBox control in the project and name it
txtClientName. You will delegate its Text prop-
erty in a property called ClientName, as described
in the following steps.

4. Create Property Let and Property Get proce-
dures for a property called ClientName, and use
the Text property of the TextBox to store the
value of this property.

Property Let ClientName(sNewVal As String)
txtClientName.Text = sNewVal

End Property

Property Get ClientName() As String
ClientName = txtClientName.Text

End Property

5. To persist the ClientName property, put code in
the InitProperties, ReadProperties, and
WriteProperties events of the UserControl to
store and read the ClientName property in the
Text property of the TextBox. The default value of
the ClientName property will be a blank string:

Private Sub UserControl_InitProperties()
txtClientName.Text = “”

End Sub

Private Sub
UserControl_ReadProperties(PropBag As
➥PropertyBag)

txtClientName.Text =
➥PropBag.ReadProperty(“ClientName”, “”)
End Sub

Private Sub UserControl_WriteProperties
➥(PropBag As PropertyBag)

PropBag.WriteProperty “ClientName”,
➥txtClientName.Text, “”
End Sub

6. Call PropertyChanged for ClientName in the
Change event of the TextBox:

Private Sub txtClientName_Change()
PropertyChanged ClientName

End Sub

7. Place your cursor in one of the Property proce-
dures for ClientName, choose Tools, Procedure
Attributes from the VB menu, and click the
Advanced button. In the Data Binding section of
the resulting dialog box, click the boxes labeled
Property is Data bound and This property binds
to DataField, as shown in Figure 13.7.

16 002-8 CH 13 3/1/99 8:22 AM Page 673

674 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

8. Your new ActiveX control should now be ready to
test as a Data consumer: add a standard EXE pro-
ject to the Project Group. Add a Data Control to
the form and set its DataBaseName property to
point to one of the sample Microsoft Access data-
bases provided with VB. Then set its
RecordSource property to point to one of the
tables in the sample database.

9. Now, making sure you’ve closed the designer for
the UserControl, add an instance of your new
control to the standard EXE’s form.

10. Set the DataSource property of your control’s
instance to point to the Data Control you just
added to the form. Set your control’s DataField
property to point to one of the fields provided by
the Data Control’s RecordSource.

11. Test your control by running the application and
clicking the Data Control’s navigation buttons.
You should see the data in your control change as
you click the navigation buttons.

13.6 Creating an ActiveX Control that is a
Data Source

In this exercise, you create an ActiveX control that
behaves like Microsoft’s Data Control. You also create a
simple EXE project to test its behavior. To complete
this exercise, follow these steps:

Estimated Time: 60 minutes

1. Start a new ActiveX control project.

2. Make sure that the Project References include the
Microsoft ActiveX Data Objects 2.0 library (use
the Project, References dialog box from the VB
menu to set this reference).

3. Set the UserControl’s DataSourceBehavior prop-
erty to 1-vbDataSource.

4. Create property procedures for two custom string
properties: Connect and RecordSource. Create pri-
vate variables to hold the values of each of the
properties. Create private constants to hold their
initial default values.

‘Default Property Values:
Const m_def_RecordSource = “”
Const m_def_Connect = “”

‘Property Variables:
Private m_RecordSource As String
Private m_Connect As String

Public Property Get RecordSource() As String
RecordSource = m_RecordSource

End Property

Public Property Let RecordSource(ByVal
➥New_RecordSource As String)

m_RecordSource = New_RecordSource
PropertyChanged “RecordSource”

End Property

Public Property Get Connect() As String
Connect = m_Connect

End Property

Public Property Let Connect(ByVal New_Connect
➥As String)

m_Connect = New_Connect
PropertyChanged “Connect”

End Property

5. Create a third custom property, RecordSet. Its type
will be ADODB.RecordSet, and it will be read-only so
you need to give it only a Property Get procedure.
Declare a private variable rs to hold its value and
make sure that rs can support events. Also, declare a
private variable cn of type ADODB.Connection. It will
not correspond to a custom property, but it’s neces-
sary in order to host the ADODB.Recordset.

Private WithEvents rs As ADODB.RecordSet
Private cn As ADODB.Connection

Public Property Get RecordSet() As
➥ADODB.RecordSet

Set RecordSet = rs
End Property

16 002-8 CH 13 3/1/99 8:22 AM Page 674

Chapter 13 CREATING ACTIVEX CONTROLS 675

A P P LY YO U R K N O W L E D G E

6. Code the InitProperties, ReadProperties, and
WriteProperties events to properly manage and
persist the property values.

Private Sub UserControl_InitProperties()
m_RecordSource = m_def_RecordSource
m_Connect = m_def_Connect

End Sub

Private Sub
UserControl_ReadProperties(PropBag As
➥PropertyBag)

m_RecordSource =
PropBag.ReadProperty(“RecordSource”,
➥m_def_RecordSource)

m_Connect =
PropBag.ReadProperty(“Connect”,
➥m_def_Connect)
End Sub

Private Sub
UserControl_WriteProperties(PropBag As
PropertyBag)

Call
PropBag.WriteProperty(“RecordSource”,
m_RecordSource, m_def_RecordSource)

Call PropBag.WriteProperty(“Connect”,
m_Connect, m_def_Connect)
End Sub

7. Program the UserControl’s GetDataMember event
procedure to initialize the ADO Connection
object, cn, and the ADO Recordset object,
rs. You will base the specific connection and
Recordset on information contained in the pri-
vate variables that implement the Connect and
RecordSource properties. You should perform
some error-trapping to ensure that these two
properties will in fact yield a valid connection.

Private Sub
UserControl_GetDataMember(DataMember As
➥String, Data As Object)

On Error GoTo GetDataMemberError

‘ rs and cn are Private variables of the
➥UserControl

‘ if this is the first time through, then
➥they haven’t been set yet

If rs Is Nothing Or cn Is Nothing Then

‘ make sure various properties have
➥been set

If Trim$(m_Connect) = “” or
➥Trim$(m_RecordSource) = “” Then

Beep
Exit Sub

End If

‘ Create a Connection object and
➥establish

‘ a connection.
Set cn = New ADODB.Connection
cn.ConnectionString = m_Connect
cn.Open
‘ Create a RecordSet object.
Set rs = New ADODB.RecordSet
rs.Open m_RecordSource, cn,

➥adOpenKeyset, adLockPessimistic
rs.MoveFirst

End If

Set Data = rs

Exit Sub
➥

GetDataMemberError:

MsgBox “Error: “ & CStr(Err.Number) &
➥vbCrLf & vbCrLf & Err.Description,
➥vbOKOnly, Ambient.DisplayName

Exit Sub
End Sub

8. Put code in the UserControl’s Terminate event
that will gracefully close the data connection.

9. Add four command buttons to the surface of the
UserControl designer, and name them cmdFirst,
cmdPrevious, cmdNext, and cmdLast. You may give
them captions such as “First,” “Next,” “Last,” and
“Previous,” or you may give them more graphical
captions, shown in Figure 13.18, so your control
will look more like Microsoft’s Data Control.

16 002-8 CH 13 3/1/99 8:22 AM Page 675

676 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

10. Put code in the Click events of the
CommandButtons that will navigate the Recordset
object, rs.

11. Your new ActiveX control should now be ready to
test as a DataSource: Add a standard EXE project
to the Project Group. Now, making sure you’ve
closed the Designer for the UserControl, add an
instance of your new control to the standard
EXE’s form.

12. Set the Connect property of your control’s
instance to point to your sample copy of
NorthWind.MDB, and set the RecordSource property
to point to one of the tables in NorthWind.

13. Add a TextBox control to the form and set its
DataSource property to point to the instance of
your control. Set its DataField property to point
to a field in the RecordSource.

14. Run the application and test your control by
clicking its navigation buttons. You should see
the data in the TextBox control change as you
click the navigation buttons.

Review Questions
1. Describe how and why raising events are neces-

sary when creating ActiveX controls.

2. Describe the facilities provided in Visual Basic
that allow a UserControl to load and write its
properties.

3. How does the programmer prevent an ActiveX
control from being visible at runtime?

4. Describe the role of the PropertyBag object.

5. What must you do to test your ActiveX control
within Internet Explorer? What must you do to
test its behavior in another VB program?

6. What is the name of the collection that provides
the controls being modified by a Property Page?

7. What two things must you do to an ActiveX con-
trol project so that it will provide the program-
mer with DataField and DataSource properties?

8. When does the GetDataMember event fire?

Exam Questions
1. Give the code to define an event called TopClick

with two parameters, x and y.

A. You cannot define your own events in Visual
Basic.

B. Event TopClick(x as long, y as long).

C. Event Sub TopClick(x as long, y as long).

D. Event Function TopClick(x as long, y as long).

E. Sub TopClick(x as long, y as long).
F IGU R E 13 .18
Your Data Source user control, complete with navigational
interface for the end user.

16 002-8 CH 13 3/1/99 8:23 AM Page 676

Chapter 13 CREATING ACTIVEX CONTROLS 677

A P P LY YO U R K N O W L E D G E

2. Your ActiveX control needs to fire an event called
TopClick that has two parameters. The event is
defined as follows:

Event TopClick(x as long, y as long)

The parameters x and y must be set to the value
of 100 each. Which of the following statements
will accomplish this task?

A. Call Event TopClick(100,100)

B. FireEvent TopClick(100,100)

C. RaiseEvent TopClick(100,100)

D. Call TopClick(100,100)

3. Your ActiveX control has a Property Page whose
control txtCaption must display the current value
of the first selected control’s Caption property
when the Property Page is opened. Which of the
following code will provide this functionality?

A. Private Sub PropertyPage_
➥SelectionChanged()

Caption = txtCaption.Text

End Sub

B. Private Sub PropertyPage_
➥SelectionChanged()

SelectedControl.Caption

_txtCaption.Text

End Sub

C. Private Sub PropertyPage_
➥SelectionChanged()

Me.Caption = txtCaption.Text

End Sub

D. Private Sub PropertyPage_
➥SelectionChanged()

txtCaption.Text _

= SelectedControls(0).Caption

End Sub

4. Which of the following statements will raise an
event called Click with no parameters?

A. RaiseEvent Click

B. Call UserControl_Click

C. RaiseEvent UserControl_Click

D. Raise Click

5. Which of the following code snippets will load
the Caption property of a control?

A. Private Sub UserControl_
➥InitProperties()

Caption = PropBag.ReadProperties

➥(“Caption”)

End Sub

B. Private Sub UserControl_ReadProperties
➥(PropBag As PropertyBag)

Caption = PropBag.ReadProperties

➥(“Caption”)

End Sub

C. Private Sub UserControl_
➥InitProperties()

Caption = _

PropBag.ReadProperties(“Caption”,m_def_

➥Caption)

End Sub

D. Private Sub UserControl_Initialize()
Caption = LoadProperty(“Caption”)

End Sub

16 002-8 CH 13 3/1/99 8:23 AM Page 677

678 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

6. You have created an ActiveX control. The control
needs to be hidden from the user at runtime.
Which of the following actions will ensure that
the control is hidden at runtime?

A. Setting the Visible property to False in the
Initialize event of the control.

B. Setting the InvisibleAtRuntime property to
True.

C. Call the InvisibleNow method of the ActiveX
control.

D. This cannot be done because ActiveX controls
in Visual Basic are always visible.

7. Which of the following statements is true about
ActiveX controls?

A. ActiveX controls can only be used from Web
pages.

B. ActiveX controls cannot contain other con-
trols.

C. ActiveX controls must be visible at runtime.

D. An ActiveX control can read or save its prop-
erties from a persistent location.

8. Which statement is the best description of a
Property Bag object?

A. The Property Bag is a collection of the
ActiveX control properties.

B. Property Bag is an object used to read and
write properties to a persistent location.

C. A Property Bag is an array of properties of an
ActiveX control.

D. Property Bag is a not a valid object type in
Visual Basic.

9. Which statement best describes the
DataBindingBehavior property?

A. Setting it to True will allow the control to be
a data consumer.

B. Setting it to vbSimpleBinding will allow the
control to be a data consumer.

C. Setting it to True will allow the control to be
a data source.

D. Setting it to vbSimpleBinding will allow the
control to be a data source.

10. Which statements are true of the GetDataMember
event?

A. You initiate a data connection in its event
procedure.

B. You set its first parameter to the control’s data
connection.

C. It fires whenever a bound control needs to
refresh its data.

D. You set its second parameter to the control’s
Recordset.

11. How would you expose a DataSource control’s
Recordset so it can be programmed by other pro-
grammers using your control?

A. Implement a string property called
RecordSource and a string property called
ConnectString.

B. Return the Recordset in the second parameter
of the GetDataMember event procedure.

C. Initialize a property of type Recordset in the
GetDataMember event procedure.

D. Make sure the UserControl’s
DataSourceBehavior property is set to
vbDataSource.

16 002-8 CH 13 3/1/99 8:23 AM Page 678

Chapter 13 CREATING ACTIVEX CONTROLS 679

A P P LY YO U R K N O W L E D G E

12. In order to test an ActiveX control at design time,
when should you make it the Startup project?

A. Never.

B. When you want to test it with an EXE pro-
ject in the same Project Group.

C. When you want to test it with a container
application.

D. Always.

13. When switching from your ActiveX control pro-
ject to the EXE test project, you should

A. run the ActiveX project before switching to
the EXE test project.

B. close the ActiveX project’s Designer before
switching to the EXE test project.

C. make sure the ActiveX project’s Designer is
open before switching to the EXE test pro-
ject.

D. compile the ActiveX project before switching
to the EXE test project.

Answers to Review Questions
1. Events are raised by controls by using the

RaiseEvent statement. The RaiseEvent statement
allows a control to fire an event that its container
may respond to if something of interest occurs. If
the user changes the Text property of an ActiveX
control, for example, it may fire the Changed
event to notify its container that the property has
changed. See “Declaring and Raising Events.”

2. The UserControl provides the developer with
three events that help loading or writing
properties. These events are the InitProperties,
WriteProperties, and ReadProperties.

The ReadProperties and WriteProperties events
provide a PropertyBag object that is used to read
or write property values. See “Implementing
Property Persistence.”

3. The developer of the ActiveX control can prevent
the control from being visible at runtime by
using the InvisibleAtRuntime property or by set-
ting the Top or Left properties so that they are
outside the visible portion of the screen. See
“Implementing Property Persistence.”

4. The PropertyBag object is used to read and write
property from a persistent location provided by
the container. The PropertyBag object is only
accessible when the ReadProperties or the
WriteProperties events are fired. See
“Implementing Property Persistence” and “Using
the Property Bag to Store Property Values.”

5. To test your control with Internet Explorer, make
sure that the Debug tab of the Project, Properties
menu dialog box indicates that the control should
be loaded automatically, and that it should be
loaded in the Web browser. See “Testing Your
ActiveX Control with Existing Container
Applications.”

6. The name of the collection that provides the con-
trols being modified by a Property Page is
SelectedControls. See “Determining which
Controls are Selected for Editing with the
SelectedControls Collection.”

7. In order to enable an ActiveX control to be
a data consumer (that is give it a DataSource
and DataField property), you must set the
UserControl’s DataBindingBehavior property and
you must use the Tools, Procedure Attributes dia-
log box to specify a property that is bound to data
and is associated with the DataField property. See
“Providing DataSource and DataField Properties

16 002-8 CH 13 3/1/99 8:23 AM Page 679

680 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

with the Procedure Attributes Dialog Box.”

8. The UserControl’s GetDataMember event fires
whenever a data consumer sets its DataSource
property to an instance of the ActiveX control.
See “The GetDataMember Event.”

Answers to Exam Questions
1. B. Events can be defined in Visual Basic.

However, a Sub or Function statement is not
allowed. For more information, see the section
titled “Declaring and Raising Events.”

2. C. Events can be raised by using the RaiseEvent
statement. For more information, see the section
titled “Declaring and Raising Events.”

3. D. The SelectedControls collection of the
Property Page will return all the current selected
controls. In this case, the first item’s caption is
set. For more information, see the section titled
“Determining Which Controls Are Selected for
Editing with the SelectedControls Collection.”

4. A. The RaiseEvent statement fires an event in the
container. For more information, see the section
titled “Declaring and Raising Events.”

5. B. The ReadProperties event receives a Property
Bag from the container used to read the property.
For more information, see the section titled
“Retrieving Persistent Property Values with the
ReadProperties Event and the ReadProperty
Method.”

6. B. The InvisibleAtRuntime property is used to
determine whether the control is hidden at run-

time. For more information, see the section titled
“Understanding the UserControl Module.”

7. D. An ActiveX control can read and write its prop-
erties from a persistent location. ActiveX controls
can be used from any container that supports an
ActiveX control, such as Visual Basic,
Powerbuilder, or Microsoft Internet Explorer. In
addition, ActiveX controls can be visible or invisi-
ble at runtime. For more information, see the sec-
tion titled “Implementing Property Persistence,”
“Testing and Debugging Your ActiveX Control,”
and “Accessing Ready-Made Control Features with
the UserControl’s Extender Object.”

8. B. The Property Bag is a simple interface that
allows the ActiveX control to read and write its
properties. For more information, see the section
titled “Using the Property Bag to Store Property
Values.”

9. B. Setting the UserControl’s DataBindingBehavior
property to vbSimpleBinding will allow the con-
trol to be a data consumer (that is it will show
DataSource and DataField properties to the pro-
grammer). Its possible values are vbNone,
vbSimpleBinding, and vbComplexBinding. This
property does not have anything to do with
whether or not a control is a Data Source. See
“Providing DataSource and DataField Properties
with the Procedure Attributes Dialog box.”

10. A, D. The GetDataMember event is the place where
you would initiate a data connection and record-
set to provide to data consumers (bound con-
trols). You do so by setting the second parameter
to the initialized recordset. B is false because the
first parameter is a String used to identify mem-
bers of DataBindings collections. C is false

16 002-8 CH 13 3/1/99 8:23 AM Page 680

Chapter 13 CREATING ACTIVEX CONTROLS 681

A P P LY YO U R K N O W L E D G E

because the event only fires when a bound con-
trol’s DataSource is set to this control. See “The
GetDataMember Event.”

11. C. To allow other programmers to program your
ActiveX DataSource control’s Recordset, you can
expose it by implementing a property of type
Recordset and initializing it in the
GetDataMember event procedure. Each of the
other answers describes valid things you do with
a UserControl that is a DataSource but for other
purposes:
A) Implementing RecordSource and
ConnectString properties would give other pro-
grammers more control over how the Recordset
is initialized, but these properties will not by
themselves expose the Recordset nor are they
necessary for exposing the Recordset; B) While
it’s true you must return the Recordset in the
second parameter, doing so does not expose it
automatically for programming; C) You must set
the UserControl’s DataSourceBehavior property

to vbDataSource in order to implement a
DataSource control, but this does not implement
an exposed Recordset by itself. See “The
GetDataMember Event.”

12. C. You should make your ActiveX control the
Startup project when you want to test it with a
container application. When you want to test it
with an EXE project, make the EXE project the
startup project. See “Testing Your ActiveX
Control with Existing Container Applications”
and “Testing and Debugging your ActiveX
Control in a Test Project.”

13. B. Before switching from an ActiveX control pro-
ject to the EXE test project, you need to close the
ActiveX control’s Designer. Otherwise, the con-
trol will be disabled in the toolbox when you
switch to the EXE project, and any instances of
the control that you’ve already placed in the EXE
will be disabled. See “Testing and Debugging
your ActiveX Control in a Test Project.”

16 002-8 CH 13 3/1/99 8:23 AM Page 681

16 002-8 CH 13 3/1/99 8:23 AM Page 682

OBJECT IVES

14C H A P T E R

Creating an Active
Document

This chapter helps you prepare for the exam by cover-
ing the following objectives and their subobjectives:

Create an Active Document (70-175 and
70-176 exams).

• Use code within an Active Document to
interact with a container application.

• Navigate to other Active Documents.

. The Active Document concept provides a document-
centric approach to creating applications. An Active
Document is a special type of COM component that
is able to run inside a second application known as a
container.

. The first subobjective for this objective addresses
the fact that when you program an Active
Document component, you need to provide for the
Active Document’s behavior inside its container.
This behavior can vary depending on the type of
container application.

. Your Active Document application also can interact
with other Active Document instances that the con-
tainer might have open at the moment. These other
Active Document instances might include other
instances of the current Active Document or
instances of other Active Document types.

Use an Active Document to present informa-
tion within a Web Browser (70-175 exam).

. The second major objective for this chapter refers
to the most common type of container application
that’s currently used with an Active Document:
namely a Web Browser (such as “Internet
Explorer”). This objective deals mainly with how to
embed the appropriate instructions in a Web page
(HTML file) in order to display an instance of your
Active Document on the page.

17 002-8 CH 14 3/1/99 8:20 AM Page 683

OUTL INE

Overview and Definition of Active
Documents 687

Steps to Implementing an Active
Document 688

Setting Up the UserDocument 689

Converting an Existing Project to an
Active Document 690

Creating an Active Document Project 690

Choosing Between an Active Document
EXE and an Active Document DLL 691

Running Your Active Document in a
Container Application 692

Detecting the Type of Container with
the TypeName Function and
UserDocument.Parent 693

Managing the Events in Your Active
Document’s Lifetime 694

Initialize Event 694

InitProperties Event 695

EnterFocus Event 695

Show Event 695

The ReadProperties Event and
ReadProperty Method 696

The WriteProperties Event and the
WriteProperty Method 697

ExitFocus Event 698

Hide Event 698

Terminate Event 698

Managing Active Document Scrolling 698

The Scrollbars Property and MinHeight
and MinWidth Properties 699

The HScrollSmallChange and
VScrollSmallChange Properties 700

The Scroll Event Procedure and the
ContinuousScroll Property 700

Managing the Active Document’s
ViewPort 701

The ViewPort Coordinate Properties 701

SetViewPort Method 704

Defining Your Active Document’s
Custom Members 704

Methods 705

Properties 705

Data and Property Persistence in Active
Documents 706

Saving Information in the .vbd File 706

Data Preservation Events and the
Properties Bag 707

Asynchronous Download of Information 708

Starting the Download With the AsyncRead
Method 709

Stopping the Download With the
CancelAsyncRead Method 710

Reacting to the Download Completion
With the AsyncReadComplete Event 711

17 002-8 CH 14 3/1/99 8:20 AM Page 684

Defining Your Active Document’s Menus 712

Design Considerations for Active
Document Menus 712

Negotiating With the Container’s Menus 713

Merging Your Help Menu With the
Container’s Help Menu 714

Limitations of Modeless Forms in an
Active Document Project 715

Navigating Between Documents in the
Container Application 716

Using the Hyperlink Object With
Internet-Aware Containers 716

Navigating the Container App’s Object
Model 718

Writing an Application to Handle Different
Containers’ Navigation Styles 718

Creating an ActiveX Project With Multiple
UserDocument Objects 719

Testing Your Active Document in the
VB Design Environment 722

Compiling and Distributing Your Active
Document 724

Using Your Active Document on a
Web Page 725

Chapter Summary 726

. Before reviewing this material, you should be
familiar with how to create and use COM com-
ponents such as ActiveX Controls and other
types of components (see Chapter 12,
“Creating a COM Component that Implements
Business Rules or Logic” and Chapter 13,
“Creating ActiveX controls”).

. Create and experiment with a simple Active
Document application that provides navigation
between document instances (see Exercises
14.1 and 14.2).

. Create a simple HTML page and include a refer-
ence to your Active Document in the page.

OUTL INE STUDY STRATEGIES

17 002-8 CH 14 3/1/99 8:20 AM Page 685

686 Par t I VISUAL BASIC 6 EXAM CONCEPTS

INTRODUCTION

Programmers can use Active Documents to provide a variety of new
services previously unavailable. Some of these services are summarized
as follows:

á You can create applications that can execute within a container
application such as Microsoft Internet Explorer or Microsoft
Binder.

á The Active Document server will execute locally and have all
the code needed to carry out its operations.

á Designing the GUI portion of Active Documents is easier than
using HTML because of Visual Basic’s WYSIWYG design
environment.

á Built-in support of hyperlinks that allow the document to navi-
gate a browser container to a specific document or Web site.

á Support for asynchronous data transfers.

The Active Document consists of two pieces: the Active Document
(which contains the data) and the Active Document Server. The data
in an Active Document cannot be viewed or edited without the
Active Document Server present on the client machine. If the Active
Document Server is not on the client, a different document server
may view the Document contents if it can read the Document’s
data. This chapter covers the following topics:

á Using a UserDocument object, which is the basis of an Active
Document, just as the UserControl is the basis for an ActiveX
control.

á Understanding and implementing UserDocument lifetime events.

á Using the necessary techniques to persist property values.

á Understanding the relationship of an Active Document to vari-
ous types of container applications, such as Internet Explorer
or Office Binder, including the awareness of the container’s
ViewPort in the Active Document and the coexistence of
container and document menus.

á Implementing custom Active Document properties and
methods.

17 002-8 CH 14 3/1/99 8:20 AM Page 686

Chapter 14 CREATING AN ACTIVE DOCUMENT 687

á Understanding asynchronous downloads of property informa-
tion in the background while your document continues other
processing.

á Knowing when you can use Modeless Forms in an Active
Document.

á Writing code to navigate among container documents.

á Testing your Active Document project at design time.

á Compiling and distributing an Active Document including
Internet distribution issues.

An Active Document application is a special type of ActiveX
Component application that acts very much like a form. The Active
Document, however, is unlike a form in that it integrates seamlessly
into another special type of application known as an Active
Document container.

OVERVIEW AND DEFINITION OF
ACTIVE DOCUMENTS

The two most well-known Document container applications on the
market today are Microsoft Office Binder and Internet Explorer
(version 3.0 and above). However Microsoft’s 97 Office Suite pro-
vides examples of important end-user applications that can serve as
Active Document applications: You can already open a Word or
Excel document in Internet Explorer without having to go through
the Word or Excel programs. (Of course Word and Excel still need
to be installed on the user’s workstation for this to work!)

And, of course, the VB6 IDE can act as an Active Document
container!

When users run a container application, they can open an Active
Document component’s data files directly from the container with-
out having to think about the mechanics of the Active Document
application itself.

17 002-8 CH 14 3/1/99 8:20 AM Page 687

688 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Superficially, then, an Active Document running in its container
application might look like an exposed ActiveX server object in an
OLE container. However, an Active Document exposes an entire
application to its container. An OLE container, on the other hand,
makes available only a piece of an ActiveX server application’s data.

End users will no longer have to think about opening an application
just to get to their data. The ActiveX container (the operating sys-
tem’s file interface) will use Active Document applications (such as
the current versions of Word and Excel and, who knows, perhaps
your applications) to offer a seamless user interface for Active
Document applications’ data files.

When you program your own Active Document applications, you will
use many ActiveX concepts and techniques such as those discussed in
the previous two chapters on ActiveX servers and ActiveX controls.

STEPS TO IMPLEMENTING AN ACTIVE
DOCUMENT

. Create an Active Document.

The following points give an overview of the general steps you need
to take to set up your own Active Document application:

1. Initiate a VB ActiveX DLL or VB ActiveX EXE project based
on one or more UserDocument objects. You might want to also
convert an existing VB Standard EXE to an ActiveX project.

2. Create your own properties for your ActiveX project.
Implementing these custom members is almost identical to the
techniques for implementing custom members we discussed in
Chapter 13, “Creating ActiveX Controls.”

3. Provide for data persistence. This concept is very similar to the
concept of property persistence as discussed in Chapter 13.

4. Design and implement your Active Document application’s
menu system. Besides creating the menu with the techniques
discussed in Chapter 3, “Implementing Navigational Design,”
you will need to determine how your Active Document applica-
tion’s menus will coexist with the container application’s menus.

5. Program specific Active Document features that make your
Active Document aware of and able to react to its container.

N
O

T
E The Future of the Active Document

Concept Although it might seem like
an insignificant area because so few
applications are able to act as Active
Document containers, Microsoft is
grooming the Active Document con-
cept to be the future of operating sys-
tem interfaces to application data.
Windows 98’s integration of Internet
Browser and Windows Explorer is just
one more step toward Microsoft’s
docu-centric environment of the future.

17 002-8 CH 14 3/1/99 8:20 AM Page 688

Chapter 14 CREATING AN ACTIVE DOCUMENT 689

6. Provide for the environments of specific container applications.
To some extent an Active Document application must be
aware of the specific object model of its container. Because dif-
ferent containers can have differing object models, you’ll need
to learn how to detect which container currently holds the
Document. You’ll need your application to act differently
depending on which container it detects.

7. Provide document navigation. Different container applications’
object models will provide differing techniques for moving
between Active Documents. You must program effective docu-
ment navigation for the different types of containers.

8. Test your Active Document application with possible containers.
This usually involves running the container application while
your Active Document application is in VB’s design mode.

9. Compile and distribute your Active Document application
bearing in mind special considerations for Internet distribu-
tion. Again, Active Document application compiling and dis-
tribution is quite similar to the compiling and distribution of
ActiveX controls, as discussed in Chapter 13.

Each of the previously listed steps is discussed in the remaining sec-
tions of this chapter.

SETTING UP THE UserDocument

UserDocument objects are the basis of an Active Document applica-
tion. A UserDocument bears the same relation to an Active Document
as the UserControl object bears to an ActiveX Control project: It’s
the design basis for each component, providing built-in properties,
events, and methods, and also providing a visual design surface for
the component’s finished appearance. In addition, you can add your
own members to the finished component.

You can create an Active Document project with a new UserDocument
object either by starting a new Active Document project (a
UserDocument object automatically appears in the project) or by con-
verting an existing VB Standard EXE project to an Active Document.

Both possibilities are discussed in the following sections.

17 002-8 CH 14 3/1/99 8:20 AM Page 689

690 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Converting an Existing Project to an
Active Document
Even though it’s not a very automatic operation, it is possible to con-
vert an existing VB application to a VB Active Document applica-
tion. Follow these steps to perform the conversion:

1. Open the VB project whose Forms you want to convert to
UserDocument objects.

2. Make sure you have the Active Document Migration Wizard
loaded on VB’s Add-Ins menu.

3. Run the Active Document Migration Wizard, which will con-
vert all the forms that you select into UserDocument objects.

4. You are responsible for writing or defining any code such as
Form event procedures that don’t exist in a UserDocument object.
In particular, you must make sure that converted procedures
are compatible with the intended container applications in
which the Active Document will be running. You may specify
an option in the wizard to automatically comment out such
code. For more specifics on container compatibility, see the
section in this chapter titled “Running Your Active Document
in a Container Application.”

As stated in the following section, it’s much easier (and therefore rec-
ommended) to create an Active Document from scratch rather than
to use the techniques discussed in this section.

Creating an Active Document Project
Although it’s possible to create an Active Document project by con-
verting an existing VB project (as discussed in the previous section),
you might have problems redefining all the event procedures and
other code so that the application works properly. It’s much easier to
follow the steps described in this section and simply create a new
Active Document project.

You create a new Active Document project with the same ease that
you start any other type of project in VB:

17 002-8 CH 14 3/1/99 8:20 AM Page 690

Chapter 14 CREATING AN ACTIVE DOCUMENT 691

S T E P B Y S T E P
14.1 Creating a New Active Document Project

1. If VB is already open, choose File, New Project from the
menu. Otherwise, Open VB and make sure you’ve chosen
the New tab on the Project Open dialog.

2. Select either ActiveX Document DLL or ActiveX
Document EXE from the icons of available project types.
(See the following section for a discussion of how to
choose the type of Active Document project).

3. In the VB IDE, you will now see a new UserDocument in
its designer interface.

You are now ready to begin developing your Active Document pro-
ject, as discussed in the rest of this chapter.

Choosing Between an Active Document
EXE and an Active Document DLL
When you create an Active Document project, VB gives you the same
two choices as when you create an ActiveX server: EXE or DLL. As
discussed in Chapter 9, an EXE provides you with an out-of-process
component while a DLL provides you with an in-process component.

When you are deciding between an ActiveX DLL document and an
ActiveX EXE document, keep these differences in mind:

á An EXE supports both modeless and modal forms while DLLs
only support modal forms.

á An EXE can run as a standalone application apart from a con-
tainer application. A DLL must always show its data within a
container application.

á A DLL offers faster performance.

17 002-8 CH 14 3/1/99 8:20 AM Page 691

692 Par t I VISUAL BASIC 6 EXAM CONCEPTS

In short, you must choose an EXE if

á You need to display modeless Forms from your Active
Document application.

á You are concerned about keeping a completely separate address
space for each instance of the Active Document application.

á You want to create an application similar to Microsoft Excel or
Word that can also run as a stand-alone application. In other
words you don’t require that the user must use a container
application to view your application’s data.

If none of the above three conditions applies, then you should
choose a DLL because it will give you better performance.

RUNNING YOUR ACTIVE DOCUMENT
IN A CONTAINER APPLICATION

Your Active Document application might need to behave differently
depending on the type of container in which it runs.

For example, some containers (such as Internet Explorer) will be
aware of the Internet and will handle Internet addresses properly
while other containers such as Office Binder (at least as of Office 97)
won’t know URL from Earl. An Active Document that finds itself
sited in an Internet-aware application can use its Hyperlink object to
navigate to other documents. If the container is not aware of the
Internet, then the Active Document must use other techniques spe-
cific to that container. (See the section “Navigating Between
Documents in the Container Application.”)

This difference in behavior will, of course, translate into different
program code. Because you can’t know ahead of time what type of
container application will use your Active Document, you must pro-
grammatically detect your container’s type and then write different
code for each possible container type.

How to detect and react to the type of your UserDocument’s container
is discussed in the following section.

17 002-8 CH 14 3/1/99 8:20 AM Page 692

Chapter 14 CREATING AN ACTIVE DOCUMENT 693

Detecting the Type of Container
with the TypeName Function and
UserDocument.Parent
The UserDocument’s Parent property is an object that points to the
container where the current instance of the Active Document is sited.

You can use this fact to get information about the container, includ-
ing its application type. Recall that the TypeName function takes the
name of a variable as its argument and returns a string telling the
data type of the variable. Therefore, the following line of code in a
UserDocument will display the container type for all to see:

MsgBox “Container is “ & TypeName(UserDocument.Parent)

The example in Listing 14.1 will detect the type of container, store
the container type in a String variable, and then take different
actions depending on the contents of the String:

LISTING 14.1

DETECT ING THE TYPE OF CONTAINER

Dim strContainerType as String
strContainerType = Ucase$(UserDocument.Parent)
‘If container is Internet Explorer:
If Instr(strContainerType, “WEBBROWSER”) <> 0 Then

‘behave one way
‘or if it’s Office Binder:
ElseIf strContainerType = “SECTION” Then

‘behave another
‘or if it’s VB:
ElseIf strContainerType = “WINDOW” Then

‘behave a third way
‘or if the container type is unknown
Else

‘behave in a very generic fourth way
End If

Note that the string for the container type (as specified in the
Document’s Parent object) is not necessarily an intuitively obvious
name for the container application.

For further discussion of this topic, see the section in this chapter
titled “Writing an Application to Handle Different Containers’
Navigation Styles.”

17 002-8 CH 14 3/1/99 8:20 AM Page 693

694 Par t I VISUAL BASIC 6 EXAM CONCEPTS

MANAGING THE EVENTS IN YOUR
ACTIVE DOCUMENT’S LIFETIME

The important events for Active Document event management are
very similar to those of an ActiveX control. It is also important to
note that the firing and sequencing of these events will not be the
same for your Active Document in different container types. The
important Active Document events are listed in the following sec-
tions followed by a discussion of the typical sequencing of events in
an Active Document running under different container types.

The Scroll event is discussed in a separate section called “Managing
Active Document Scrolling.”

Initialize Event
The Initialize event is always the first event fired in a session with
the Active Document regardless of container type. It fires when the
document loads into its container.

You might use the Initialize event to set certain behavioral proper-
ties of the UserDocument, as in Listing 14.2.

LISTING 14.2

CODING THE INITIALIZE EVENT PROCEDURE

Private Sub UserDocument_Initialize()
UserDocument.ContinuousScroll = False
UserDocument.HScrollSmallChange = 20
UserDocument.VScrollSmallChange = 20
UserDocument.MinHeight = 10000
UserDocument.MinWidth = 10000

End Sub

Note that the Initialize event will typically fire more often under
Internet Explorer than under Office Binder. This is because Internet
Explorer will unload your document whenever the user has navigated
to four other documents after loading your document (see the section
called “Terminate Event”). Therefore, IE will need to reload your docu-
ment if the user wishes to return to it, thus firing the Initialize event.

17 002-8 CH 14 3/1/99 8:20 AM Page 694

Chapter 14 CREATING AN ACTIVE DOCUMENT 695

InitProperties Event
This event fires only when the container brings up a brand-new
instance of your object. If the container has already saved information
about your object once in its .vbd file, then InitProperties won’t fire.

You use InitProperties, therefore, in a similar manner to the way you
use the InitProperties event of the ActiveX Custom Control: to
assign default initial values. In the example of Listing 14.3, you can
manipulate the custom property named UserID, whose value is dele-
gated by the Text1 TextBox control.

LISTING 14.3

THE INITPROPERTIES EVENT PROCEDURE

[General Declarations]
Option Explicit
Private Const m_def_UserID = “YOWSA”
Private Sub UserDocument_InitProperties()

Text1.Text = m_def_UserID
End Sub

In the General Declarations of the UserDocument, the UserID’s default
value is defined in the constant m_def_UserID. In the InitProperties
event procedure, you can assign the value of this constant to the
TextBox that delegates the UserID property.

EnterFocus Event
This event fires when the user first sets focus anywhere in your docu-
ment. The event fires in both Internet Explorer and Office Binder.

Show Event
In Office Binder, this event does not normally fire. In Internet
Explorer, it fires when the user navigates to this document from
another page during the same Internet Explorer session.

17 002-8 CH 14 3/1/99 8:20 AM Page 695

696 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The ReadProperties Event and
ReadProperty Method
You use the ReadProperties in a similar way to the ReadProperties
event of the UserControl object in an ActiveX control project: to
retrieve persistent information from the Property Bag and store it
appropriately within your running application. Note that Active
Documents cooperate with their containers in using a .vbd file to
store and retrieve their persistent properties.

Unlike the use of ReadProperties in an ActiveX control project,
however, you don’t use ReadProperties to persist design-time infor-
mation to runtime property values. Instead, you use ReadProperties
to persist property values between sessions of the container applica-
tions. The PropBag object for Active Documents typically stores its
information in a .vbd (Visual Basic Document) file between con-
tainer application sessions.

In Listing 14.4, the ReadProperties event procedure uses the
Property Bag’s ReadProperty method to get the stored value for the
UserID property and then assigns this value to the text box that dele-
gates the UserID property. As you’ll recall from the discussion of
Chapter 13, the second argument to ReadProperty is a fallback—it
supplies a default value in case a value for UserID is missing from the
Property Bag.

LISTING 14.4

THE READPROPERTIES EVENT PROCEDURE

Private Sub UserDocument_ReadProperties _
(PropBag As PropertyBag)

Text1.Text = _
PropBag.ReadProperty _
(“UserID”, m_def_UserID)

End Sub

N
O

T
E More on ReadProperties For more

extensive coverage of ReadProperties,
see the discussion in Chapter 13.

17 002-8 CH 14 3/1/99 8:20 AM Page 696

Chapter 14 CREATING AN ACTIVE DOCUMENT 697

The WriteProperties Event and the
WriteProperty Method
You use the WriteProperties event in a parallel way to the way that
you use the WriteProperties event of the UserControl object in an
ActiveX control project: to store persistent information from your run-
ning application to the Property Bag. Note that Active Documents
cooperate with their containers in using a .vbd file to store and retrieve
their persistent properties.

Unlike the use of WriteProperties in an ActiveX control project,
however, you don’t use WriteProperties to persist design-time infor-
mation to runtime property values. Instead, you use WriteProperties
to persist property values between sessions of the container applica-
tions. The PropBag object for Active Documents typically stores its
information in a .vbd (Visual Basic Document) file between con-
tainer application sessions.

In Listing 14.5, the WriteProperties event procedure uses the
Property Bag’s WriteProperty method. The method is used to store
to the Property Bag the value for the UserID property from the
Textbox that delegates the UserID property. As you’ll recall from the
discussion in Chapter 13, the third argument to WriteProperty is a
fallback—it supplies a default value in case a value for UserID is
missing from the TextBox.

LISTING 14.5

AN ACTIVE DOCUMENT’S WRITEPROPERTY
EVENT PROCEDURE

Private Sub _
UserDocument_WriteProperties _
(PropBag As PropertyBag)
PropBag.WriteProperty _
“UserID”, Text1.Text, m_def_UserID

End Sub

For a more extensive treatment of WriteProperties, see Chapter 13.

17 002-8 CH 14 3/1/99 8:20 AM Page 697

698 Par t I VISUAL BASIC 6 EXAM CONCEPTS

ExitFocus Event
This event fires when the user first sets focus anywhere outside your
document to another document in the container application. The
event fires in both Internet Explorer and Office Binder.

Hide Event
In Office Binder, this event does not normally fire. In Internet
Explorer, it fires when the user navigates from this document to
another Web page during the same Internet Explorer session.

Terminate Event
The Terminate event happens when the container is about to destroy
the current instance of your document.

In Office Binder, this event fires upon a user action to close the
binder containing this document, or when the user removes this
document from its binder.

In Internet Explorer, this event can fire more often: Internet
Explorer will fire the Terminate event when it removes this docu-
ment from the active History list during the current session. In IE
3.0 and 4.0, only the four most recently accessed documents are on
the History list. So your document will receive a Terminate event if
the user navigates to four other documents after this one.

MANAGING ACTIVE DOCUMENT
SCROLLING

Your Active Document has some control over how it’s placed and
displayed in the container. Most of this control has to do with the
behavior it will exhibit when the user tries to scroll through it within
the container. Remember, because another application (the con-
tainer) is hosting your document, your document can’t have full con-
trol over its own appearance and behavior. With regards to scrolling,
you may specify:

17 002-8 CH 14 3/1/99 8:20 AM Page 698

Chapter 14 CREATING AN ACTIVE DOCUMENT 699

á Whether or not your object will have scrollbars and what type
they will be (Scrollbars property).

á How small the container has to shrink before your document
will receive horizontal or vertical scrollbars (MinHeight and
MinWidth properties).

á How far the scrollbar’s “elevator box” will travel when the user
clicks a scroll button (HScrollSmallChange and
VScrollSmallChange properties).

á How to behave whenever the user scrolls your document
(Scroll event procedure).

á How frequently to call the Scroll event (ContinuousScroll
property).

Each of the above features is discussed in the following sections.

The Scrollbars Property and
MinHeight and MinWidth Properties
You can use the Scrollbars property to determine whether the Active
Document will appear in its container with horizontal scrollbars, verti-
cal scrollbars, both types of scrollbars, or no scrollbars. Simply set the
UserDocument’s Scrollbars property to one of the four settings:

á vbSBNone (0)

á vbHorizontal (1)

á vbVertical (2)

á vbBoth (3)

Even if you set the Scrollbars property to display Scrollbars, your
Active Document might not always show them. This is because the
Active Document container’s height (ViewPortHeight) or width
(ViewPortWidth) must shrink below the values specified in the
MinHeight or MinWidth property respectively. The respective Height
and Width properties of the UserDocument determine the default val-
ues of the MinHeight and MinWidth properties. If ViewPortHeight is
greater than MinHeight, no vertical scrollbar will appear regardless of
the Scrollbars setting. If ViewPortWidth is greater than MinWidth, no
horizontal scrollbar will appear regardless of the Scrollbars setting.

N
O

T
E The Default Scrollbars Setting The

default Scrollbars setting is
vbSBNone (no scrollbars).

17 002-8 CH 14 3/1/99 8:20 AM Page 699

700 Par t I VISUAL BASIC 6 EXAM CONCEPTS

If you always want scrollbars to appear around your document appli-
cation, simply set MinHeight and MinWidth to arbitrarily large values
(equal to or greater than Screen.Height and Screen.Width). Your
container will always be smaller than these specified sizes, and scroll-
bars will, therefore, always appear.

The HScrollSmallChange and
VScrollSmallChange Properties
These properties control the distance that the scrollbar will move
when the user clicks one of the “thumb screws” (the arrow buttons) at
either end of the scrollbar. Units of measure are in twips, and the
minimum value for these properties is 15 twips (slightly over 1/100

th

of an inch).

The Scroll Event Procedure and the
ContinuousScroll Property
The UserDocument’s Scroll event fires whenever the user makes a
change on the Scrollbar. In Listing 14.6, the document’s background
color whimsically changes every time there is a Scroll event so you
can see how often the event fires.

LISTING 14.6

THE SCROLL EVENT

Private Sub UserDocument_Scroll()
‘Whenever the user moves the scroll bar,
‘we flash a different background color
BackColor = _

RGB(Rnd * 255, Rnd * 255, Rnd * 255)
End Sub

You can control how often the Scroll event fires by setting the
ContinuousScroll property. The settings of this Boolean property
have the following significance:

N
O

T
E Setting MinHeight and MinWidth

MinHeight and MinWidth aren’t avail-
able in the Properties window at
design time. You must set them in
code at runtime.

17 002-8 CH 14 3/1/99 8:20 AM Page 700

Chapter 14 CREATING AN ACTIVE DOCUMENT 701

á When ContinuousScroll is False, the Scroll event will not fire
while the user is dragging the Scroll box. The event will only
fire when the user releases the Scroll box.

á When ContinuousScroll is True, the Scroll event will fire con-
tinuously as the user drags the Scroll box.

The setting of ContinuousScroll has no effect one way or another on
the Scroll event if the user is clicking the scrollbar arrows or the shaft
of the scrollbar. In these cases, the Scroll event fires once for every
click.

MANAGING THE ACTIVE DOCUMENT’S
VIEWPORT

The Active Document’s ViewPort is the screen area that the con-
tainer allocates for the display of the document.

The ViewPort Coordinate Properties
You can discover the size and coordinates of this area with the
ViewPortWidth, ViewPortHeight, ViewPortTop, and ViewPortLeft
properties. The meaning of each of these properties is

á ViewPortWidth. The horizontal size (in twips) of the area
that the container is using to display your document.

á ViewPortHeight. The vertical size (in twips) of the area that
the container is using to display your document.

á ViewPortTop. The vertical coordinate (y-coordinate) of the
point on your document at the top of the ViewPort. As the
user scrolls downward through the container’s ViewPort over
your document’s surface, more and more of the document
disappears off the top edge of the ViewPort and the value of
ViewPortTop grows. When the user scrolls upward through the
container over your document’s surface, more and more of
the document appears from the top edge of the ViewPort
and the value of ViewPortTop decreases.

17 002-8 CH 14 3/1/99 8:20 AM Page 701

702 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á ViewPortLeft. The horizontal coordinate (x-coordinate) of
the point on your document at the left of the ViewPort.
As the user scrolls to the right through the container’s
ViewPort over your document’s surface, more and more of
the document disappears off the left edge of the ViewPort and
the value of ViewPortLeft grows. When the user scrolls to the
left through the container over your document’s surface, more
and more of the document appears from the left edge of the
ViewPort and the value of ViewPortLeft decreases.

To illustrate the behavior of ViewPortTop and ViewPortLeft, you can
put the code shown in Listing 14.7 into the Scroll event procedure
so that you can print the value of ViewPortLeft and ViewPortTop on
the surface of the document whenever the user scrolls. You can see
the results in Figure 14.1 and Figure 14.2.

LISTING 14.7

DISPLAYING ViewPortTop AND ViewPortLeft IN THE

Scroll EVENT PROCEDURE

Private Sub UserDocument_Scroll()
‘initialize a string for message
Dim msg As String
‘Get ViewPortTop and ViewPortLeft
‘into message
msg = “TOP: “ & _

UserDocument.ViewportTop
msg = msg & “ LEFT: “ & _

UserDocument.ViewportLeft
‘Clear graphics output surface
‘of document
UserDocument.Cls
‘save current font size
Dim OldFontSize As Long
OldFontSize = Font.Size
‘change font size to 48 pt.
Font.Size = 48
‘calculate point to begin
‘text output based on current
‘position of ViewPort (calculated
‘point will center text on screen)
UserDocument.CurrentX = _

((ViewportWidth - TextWidth(msg)) / 2) _
+ ViewportLeft

UserDocument.CurrentY = _
((ViewportHeight - TextHeight(msg)) / 2) _
+ ViewportTop

17 002-8 CH 14 3/1/99 8:20 AM Page 702

Chapter 14 CREATING AN ACTIVE DOCUMENT 703

‘Print out message
UserDocument.Print msg
‘and restore font to previous size
Font.Size = OldFontSize

End Sub

In Figure 14.1, you’ve scrolled all the way to the top and left of the
document, so ViewPortTop and ViewPortLeft are both 0.

, F IGURE 1 4 .1
ViewPortTop and ViewPortLeft are both set
at 0.

In Figure 14.2, you’ve scrolled a bit down and to the right, so part
of the document has disappeared off the left and top edges of the
container. The values of ViewPortTop and ViewPortLeft in this figure
represent the coordinates of the top left-most point of our docu-
ment that’s visible in the container.

, F IGURE 14 .2
ViewPortTop and ViewPortLeft have changed
because you’ve scrolled the document down
and to the right.

17 002-8 CH 14 3/1/99 8:20 AM Page 703

704 Par t I VISUAL BASIC 6 EXAM CONCEPTS

SetViewPort Method
You can use the SetViewPort method to set the property values of
ViewPortTop and ViewPortLeft. The effect of setting these values is
to position the point on your document whose coordinates corre-
spond to ViewPortTop and ViewPortLeft in the upper left corner of
the container window. You call the SetViewPort method with two
parameters whose values correspond to the desired ViewPortLeft and
ViewPortTop properties. For instance, the code

SetViewPort 100, 0

positions the document so that the first 100 twips (about 2/3 of an
inch) are cut off at the left edge of the container window and the top
of the document is flush with the top of the container window.

If you want a particular control on your UserDocument to be in the
upper-left corner of the container window, use its Left and Top
properties as the arguments to the SetViewPort method:

SetViewPort Text1.Left, Text1.Top

Even though the SetViewPort method resets the position of your
document inside the ViewPort, it does not fire the Scroll event.

DEFINING YOUR ACTIVE DOCUMENT’S
CUSTOM MEMBERS

You can define your own properties and methods for an Active
Document in the same manner that you define them for ActiveX
controls. These considerations are briefly discussed in the following
sections.

You shouldn’t create custom events in an Active Document project.
Recall that custom events are intended for use by a host or client
application. A moment’s reflection will show that it’s impossible for
an Active Document’s host (the container application) to have fore-
knowledge of the specific custom events that you might write in your
Active Document—the container (Internet Explorer for instance) was
created before your application and with no knowledge of you or
your application.

N
O

T
E More on Defining Properties and

Methods For more information and
examples, see the sections on proper-
ties and methods in Chapter 13.

17 002-8 CH 14 3/1/99 8:20 AM Page 704

Chapter 14 CREATING AN ACTIVE DOCUMENT 705

Methods
You define an Active Document’s custom methods just as you would
define the methods of any custom object in VB: as Public proce-
dures of the UserDocument object.

Although you can’t call custom methods from a container (see the
note in the previous section about events), you can still write methods
for your document. If you’ve created more than one Active Document
in your project, you can create object references to one or more of
them and manipulate the methods of the objects that you’ve declared.

Properties
You implement custom properties for your Active Document in
pretty much the same way as you implement properties for ActiveX
controls, as discussed in Chapter 13. You should refer to that chapter
for a detailed discussion of how to implement properties, including
delegated properties from constituent controls. For quick reference,
however, the major steps you must take to implement properties in
an Active Document are listed, noting any differences from ActiveX
control property implementation:

1. Decide whether to use a Private variable or a constituent con-
trol property to store the property’s value at runtime.

2. Create procedures for the custom property with Property
Let/Set and Property Get procedures that refer to the Private
variable or constituent control property.

3. Decide on the default first-time value for the property and
store this value in a constant in the UserDocument’s General
Declarations.

4. In the InitProperties event procedure, write code to assign
the property’s default value (as described in the previous point)
to the underlying runtime storage element (usually a Private
variable or constituent control’s property).

5. In the ReadProperties event procedure, write code that uses
the Property Bag to retrieve the value of the property from the
last session into the underlying runtime storage element (usu-
ally a Private variable or constituent control’s property).

N
O

T
E More on Using Methods in an

ActiveX Component Application For
more information on using methods in
an ActiveX component application, see
the discussion of methods of ActiveX
controls throughout Chapter 13.

17 002-8 CH 14 3/1/99 8:20 AM Page 705

706 Par t I VISUAL BASIC 6 EXAM CONCEPTS

6. In the WriteProperties event procedure, write code that uses
the Property Bag to store the value of the property from its
runtime storage element.

It’s possible that some containers might not support a Property Bag
concept. You will therefore have to use alternate strategies for persis-
tent data, as discussed in the In-Depth “Saving Information When a
Container Doesn’t Support the Properties Bag.”

DATA AND PROPERTY PERSISTENCE
IN ACTIVE DOCUMENTS

A user uses an Active Document container application such as
Internet Explorer or Office Binder to directly open a second applica-
tion’s data file. The container application uses the Windows Registry
to determine the application associated with the data file’s extension
and, if the data file’s application is an Active Document server, it runs
the server application and its data in an Active Document window.

For instance, if an Internet Explorer or Office Binder user attempts
to open a .DOC file, then IE or OB will host that file in an Active
Document implemented by Word. If, on the other hand, the user
opens an .XLS file, then IE or OB will host that file in an Active
Document implemented by Excel.

You might now be wondering: What data file must the user choose
to bring up my Active Document application written in VB? This
and other questions are answered in the following sections.

Saving Information in the .vbd File
The native document file format for an Active Document applica-
tion that you create with VB is a file with a .vbd extension. The .vbd
file contains persistent property values and other information that
the container needs to host your Active Document application. The
.vbd file is created at the same time the .EXE file is compiled.

When the user tells the container application to save information
from your Active Document (either because the user has chosen a
save option or because the user is trying to exit your document), then
the container application saves the information back to the .vbd file.

17 002-8 CH 14 3/1/99 8:20 AM Page 706

Chapter 14 CREATING AN ACTIVE DOCUMENT 707

When you run your VB Active Document application from the VB
design environment, VB creates a temporary .vbd file in the VB pro-
gram directory. For more details on testing your Active Document in
the design environment, see “Testing Your Active Document.”

When you compile and distribute your ActiveX DLL or EXE, the
.vbd file is installed in the same directory as the DLL or EXE.

Data Preservation Events and the
Properties Bag
As mentioned earlier in this chapter, a UserDocument object has the
same ReadProperties and WriteProperties events as the UserControl
object of an ActiveX Control project.

Within the event procedures of these events, you can use the
Property Bag object’s ReadProperty and WriteProperty methods to
retrieve and store persistent property values. Container applications
implement the Property Bag by reading and writing the .vbd file.
This happens transparently to your Active Document application.

SAVING INFORMATION WHEN A CONTAINER DOESN’T
SUPPORT THE PROPERTIES BAG

Although Internet Explorer and Office Binder support the Properties
Bag with .vbd files, you can expect that other container applications
that appear in the future might not use vbd files to implement a
Properties Bag.

In this case, you’ll need to change the type of code that you put in
the ReadProperties and WriteProperties event procedures of the
UserDocument.

Instead of calls to the ReadProperty method, you might put file-
handling code similar to the code in the listing below into the
ReadProperties event procedure. It provides for a code fragment to
read data directly from a file into a TextBox that delegates an
Active Document property.

Dim lHandle as Long
lHandle = FreeFile
Open lHandle for Input as _

gblstrPropBagFile

N
O

T
E More on Data Preservation Events

and the Properties Bag See the
appropriate sections of Chapter 12
for more information on the
ReadProperties and WriteProperties
events and on the Property Bag
object and its ReadProperty and
WriteProperty methods.

continues

17 002-8 CH 14 3/1/99 8:20 AM Page 707

708 Par t I VISUAL BASIC 6 EXAM CONCEPTS

txtData.Text = _
Input(Lof(#lHandle), lHandle)

Close #lHandle

Instead of calls to the WriteProperty method, you might put code
similar to the code in the listing shown below into the
WriteProperties event procedure. It shows a code fragment to
write data directly to a file from a TextBox that delegates an Active
Document property.

Dim lHandle as Long
lHandle = FreeFile
Open lHandle for Output as _

gblstrPropBagFile
Print #lHandle, txtData.Text

Close #lHandle

Note the use of the Open and Close statements and the Input func-
tion to manipulate the file.

ASYNCHRONOUS DOWNLOAD OF
INFORMATION

When you need to get information for a property from elsewhere on
a network or from an external source on the Internet, the amount of
time it takes to download such information might be a long time to
expect the user to wait.

In such cases, you’ll want to use asynchronous downloading of prop-
erty information. An asynchronous download can happen in the
background of the rest of your application, and users can have use of
your application while the download happens. The basic steps of an
asynchronous download are

1. Begin to download information. The application requests
data with the AsyncRead method.

2. Information is being downloaded. The download happens
in the background. During this time, the application is free to
do other things. If the users (or the application) change their
minds about downloading the data, you can call the
CancelAsyncRead method during this time.

continued

17 002-8 CH 14 3/1/99 8:20 AM Page 708

Chapter 14 CREATING AN ACTIVE DOCUMENT 709

3. Information has finished downloading. The application
receives an AsyncReadComplete event, notifying it that the
download has finished.

You can write code in the AsyncReadComplete event to handle the
downloaded data.

The following sections discuss these features of the asynchronous
download.

Starting the Download With the
AsyncRead Method
You call the AsyncRead method when you need to download exten-
sive information (perhaps a bitmap image) for a property or some
other feature of your UserDocument. You call AsyncRead with three
arguments:

á Target. Despite its name, this argument is a string represent-
ing the path to the source of the downloaded information.
Target will usually be an Internet URL or a path on an
Intranet site.

á AsyncType. This long argument can take one of three values
specifying where you plan to store the information that you
are going to download. This argument will help the download
process determine exactly what download format to use. The
possible values of the AsyncType parameter are:

• vbAsyncTypePicture (0). You plan to store the down-
loaded information in a Picture object such as the Picture
property of a PictureBox control.

• vbAsyncTypeFile (1). You plan to store the downloaded
information in a file.

• vbAsyncTypeByteArray (2). You plan to store the down-
loaded information in an array of type Byte.

á PropertyName (optional). You can use this third argument to
identify the download (this is especially useful if you might
have more than one asynchronous download going on at once).

17 002-8 CH 14 3/1/99 8:20 AM Page 709

710 Par t I VISUAL BASIC 6 EXAM CONCEPTS

You can then use the string that you assign here to
PropertyName in the AsyncReadComplete event procedure or in
the CancelAsyncRead method. Despite the term PropertyName,
this argument does not automatically guarantee that the infor-
mation will be assigned to a property. You must write code in
the AsyncReadComplete event procedure to do that.

Listing 14.8 initiates an asynchronous download from a site on a
local network. You will put the downloaded information into a
Picture object, and you will use the identifier “PRETTYPIX” to identify
this download.

LISTING 14.8

USING THE ASYNCREAD METHOD TO IN IT IATE A DOWNLOAD

UserDocument.AsyncRead _
“file://g:/Intranet/Graphics/PrettyPix.gif”, _
vbAsyncTypePicture, “PRETTYPIX”

After your code has initiated the asynchronous download, nothing
happens until the download has finished and the AsyncReadComplete
event fires—or until your user or your code decides to cancel the
download, as discussed in the next session.

Stopping the Download With the
CancelAsyncRead Method
While waiting for your download to complete, perhaps the user has
become tired or moved on to other tasks or perhaps you’ve defined a
timeout interval that has just passed. In such cases, your code may
call the CancelAsyncRead method to stop a pending asynchronous
download.

In order to call this method, you must have specified the optional
PropertyName parameter as mentioned in the previous session. With
a PropertyName identifier (even though your download might not be
intended for a property), you can identify which download you want
to cancel.

17 002-8 CH 14 3/1/99 8:20 AM Page 710

Chapter 14 CREATING AN ACTIVE DOCUMENT 711

Assuming that you’d like to cancel the “PRETTYPIX” download that
you began in the previous section’s example, you’d write a line of
code like this:

UserDocument.CancelAsyncRead “PRETTYPIX”

Reacting to the Download Completion
With the AsyncReadComplete Event
The UserDocument’s AsyncReadComplete event fires when the asyn-
chronous download that you requested with the AsyncRead method
finishes. You must write code in the AsyncReadComplete event proce-
dure to handle the data that has just been downloaded.

An event procedure for AsyncReadComplete might look like Listing 14.9.

LISTING 14.9

CODING THE ASYNCREADCOMPLETE EVENT PROCEDURE

Private Sub UserDocument_AsyncReadComplete _
(AsyncProp As AsyncProperty)

If AsyncProp.PropertyName = “PRETTYPIX” Then
Set PicPretty.Picture = AsyncProp.Value

End If
End Sub

In order to help you handle the data, the AsyncReadComplete event
procedure passes a parameter, AsyncProp. AsyncProp has a special data
type, AsyncProperty. AsyncProperty is a structured variable with three
elements thatyou can examine in the event procedure code you write:

á AsyncProp.AsyncType. This is a long integer and describes the
type of download that’s just occurred. It should match the value of
the second argument that you originally passed to the AsyncRead
method (see the previous section on the AsyncRead method).

á AsyncProp.PropertyName. This is a String that should match
the third argument that you originally passed to the AsyncRead
method (see the discussion of the AsyncRead method in the
previous section). You should check this element to make sure
that it does match the identifier of the download you’re expect-
ing: There could be confusion otherwise if more than one
download is pending.

17 002-8 CH 14 3/1/99 8:20 AM Page 711

712 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á AsyncProp.Value. This Variant element will contain the
actual data downloaded. If AsyncType is Picture or ByteArray,
the entire contents of the download will be in this variable. If
AsyncType is File, then the contents of this variable will be the
path to the file on the local system where the downloaded data
has been stored by Visual Basic.

DEFINING YOUR ACTIVE DOCUMENT’S
MENUS

An Active Document can have menus that coexist with the container
application’s menus. You create the Active Document’s menus just as
you would create menus for any other type of VB application—with
the Menu Editor.

After you’ve created the Active Document’s menu structure, you
should then provide for the way that your Document application’s
menu will merge with the container’s menu system. The following
sections discuss some design rules to keep in mind for an Active
Document menu, how to determine the relative placement of your
Active Document menus on the container in the following section,
and how to merge an Active Document menu into the container’s
Help menu.

Design Considerations for Active
Document Menus
Because your Active Document menu will display side-by-side with the
container’s menu, your application needs to observe some rules of eti-
quette to be a good guest of the container host. Here are several rules:

á Use distinctive menu captions to avoid possible conflicts with
host menu captions.

á Don’t create a File menu or a menu of any other name that
attempts to save or print data or terminate the host applica-
tion. This menu is reserved for the container host.

á Don’t create a Windows menu. This menu should also be left
to the container host.

N
O

T
E More on Menu Creation For more

information on menu creation, see
Chapter 3, “Implementing Navigational
Design.”

17 002-8 CH 14 3/1/99 8:20 AM Page 712

Chapter 14 CREATING AN ACTIVE DOCUMENT 713

á Merge your Help menu with the host’s Help menu as
described in the following sections titled “Negotiating with the
Container’s Menus” and “Merging Your Help Menu with the
Container’s Help Menu.”

If you follow these rules, your Active Document will provide help
to the user, but on the container application’s terms.

Negotiating With the Container’s
Menus
When you begin to program with Active Documents, you are con-
cerned with two applications that must share menu space on the
same Window.

The solution to this issue is the NegotiatePosition property of the
menu items. NegotiatePosition indicates the relative placement
(left, middle, center, or none) of a menu item inside another applica-
tion’s menu system.

As illustrated in Figure 14.3, you will choose a NegotiatePosition
property from the drop-down list in the Menu Editor for each top-
level menu item.

Here are the special considerations for each of the choices for
NegotiatePosition:

á None. The item won’t show up with the container’s menu.

á Left. The container will typically never place your menu
item on the extreme left side of the menu bar. This is because
the left-most item is typically reserved for the container’s File
menu, which by convention always goes on the left. Instead
the container will usually attempt to situate your menu item as
close to the left as possible.

á Middle. If you have a number of top-level menu items, all
but two of them should have their NegotiatePosition property
set to Middle (that is you can have at most one Left item and
one Right item). The container will then use its own logic to
determine where to place all the items you’ve designated with a
Middle NegotiatePosition.

F IGURE 14 .3
The NegotiatePosition property in the Menu
Editor.

17 002-8 CH 14 3/1/99 8:20 AM Page 713

714 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á Right. If the container has a Help menu, the menu you spec-
ify with a NegotiatePosition of Right will show up under the
container’s Help menu (see the following section for more
details). Otherwise, this menu will usually show up on the
right of the container’s menus.

You should note that the container application will make its own
decision about how to interpret your NegotiatePosition property.
You should think of this setting as a preference you are indicating to
the container rather than an order that the container will definitely
carry out.

Merging Your Help Menu With the
Container’s Help Menu
If you have Help menu items for your Active Document and your
container application also has a Help menu, you can resolve the
potential conflict between the two Help menus by merging your
Help menu into the container’s. All you need to do is

1. Specify your Help menu’s NegotiatePosition as Right.

2. Make sure that your Help menu item’s Caption property is
“Help” or “&Help.” (A container such as Internet Explorer will,
however, display it with your Active Document Project’s name).
The Help menu item’s name can be anything you choose.

3. Provide at least one menu item under your Help menu. If you
don’t do this, then your Help menu will appear on the main
menu bar of the container to the left of the container’s Help
menu.

If you take these measures, then the container will display your Help
menu as a sub-item of the container’s Help menu. The caption of
your Help menu will disappear, and the container will supply a cap-
tion indicating that the sub-item provides help for your Active
Document (see Figure 14.4).

17 002-8 CH 14 3/1/99 8:20 AM Page 714

Chapter 14 CREATING AN ACTIVE DOCUMENT 715

LIMITATIONS OF MODELESS FORMS IN
AN ACTIVE DOCUMENT PROJECT

Your Active Document project may contain forms as well as
UserDocument objects because you might want to display these forms
as part of the functioning of your Active Document application.

There are two situations when you can’t display modeless forms,
however:

á An Active Document project compiled as a DLL cannot use
modeless forms. Only Active Document EXE projects can use
modeless forms at all.

á Some container types will not support modeless Forms in any
type of Active Document regardless of whether the underlying
application is an EXE or DLL. At the present writing, for
instance, Internet Explorer 4.0 and components of MS Office
97 and higher will support modeless Forms in Active
Document EXEs, but Internet Explorer 3.x will not (it causes
a runtime error). Your UserDocument’s code can determine
whether or not its current container supports modal forms by
checking the value of App.NonModalAllowed. If its value is
True, you can go ahead and display a form modelessly.
Otherwise, better not display the form or display it as a modal
form (see Listing 14.10).

F IGURE 1 4 .4
Merging your Active Document’s Help menu
with the container’s Help menu.

17 002-8 CH 14 3/1/99 8:20 AM Page 715

716 Par t I VISUAL BASIC 6 EXAM CONCEPTS

LISTING 14.10

DETERMINING WHETHER IT’S OK TO DISPLAY A FORM

MODELESSLY

Private Sub cmdShowData_Click()
If App.NonModalAllowed Then

frmData.Show vbModeless
Else

frmData.Show vbModal
End If

End Sub

As a general rule, it’s safest to always display forms modally even in
an ActiveX EXE.

NAVIGATING BETWEEN DOCUMENTS
IN THE CONTAINER APPLICATION

Container applications can typically contain several documents at
the same time. You must choose a method for navigating between
these documents based on the type of container.

You can use the container’s object model to navigate its documents
as described in the second section following this one. You can also
use the Hyperlink object (described in the next section) to navigate
documents if the container is aware of the Internet.

Using the Hyperlink Object With
Internet-Aware Containers
The main purpose of Active Documents is to provide an interface
within a browser-type application such as Internet Explorer or Office
Binder. It should come as no surprise to you, therefore, that Active
Documents support the Hyperlink object. The Hyperlink object
enables you to easily jump between documents in an Internet-aware
browser application.

17 002-8 CH 14 3/1/99 8:20 AM Page 716

Chapter 14 CREATING AN ACTIVE DOCUMENT 717

The Hyperlink object is a property of the UserDocument and
UserControl that has its own methods:

á NavigateTo method. This method requires one argument,
which is the address of another document to which the con-
tainer will jump. You can provide the URL of a Web Page or
of a local document that the container application can open as
an Active Document.

á GoBack method. This method requires no arguments. It
causes the container application to navigate to the previous site
in its history list. If this document is the first site in the history
list, then GoBack has no effect.

á GoForward method. This method requires no arguments. It
causes the container application to navigate to the next site in
its history list. If this document is the last site in the history
list, then GoForward has no effect.

The functionality of these methods corresponds to the familiar Go,
Forward, and Back functionality of popular Web Browser software
such as Internet Explorer or Netscape’s Navigator. As the following
code snippet illustrates, the Hyperlink object’s NavigateTo method
takes a URL as its argument:

Hyperlink.NavigateTo “http://www.microsoft.com”

When you supply a URL in the String argument to
Hyperlink.NavigateTo, you must specify the full Internet path
including the protocol at the beginning of the string.

Correct way:

UserDocument.Hyperlink.NavigateTo _
“http://www.microsoft.com”

Wrong way:

UserDocument.Hyperlink.NavigateTo _
“www.microsoft.com”

The second format will cause a runtime error.

Also note that if you use the Hyperlink object when your document
is sited in a container that isn’t Internet-aware, then the user’s system
will attempt to load the default Internet browser application.

17 002-8 CH 14 3/1/99 8:20 AM Page 717

718 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Navigating the Container App’s Object
Model
If the container for your Active Document is an application such as
Office Binder that isn’t Internet-aware, then you must use the fea-
tures of the container’s object model that enable you to open docu-
ments. You will need to use the container application’s
documentation to discover how to do this, or you might be able to
get this information using the Object Browser.

Office Binder, for instance, has an object model whose top element
is known as “Binder.” The Binder object contains a collection of sec-
tions, and each Section object corresponds to an open document. To
add a new document, you must call the Add method of the Sections
collection. Assuming you have a document path and name in the
variable strDocName, you could write code like this to open that doc-
ument when Binder is the container:

UserDocument.Parent.Parent.Sections.Add , strDocName

Note that there’s a blank first argument to the Add method. This cor-
responds to an index, which you allow to assume a default value.

Writing an Application to Handle
Different Containers’ Navigation Styles
The code described so far in this chapter is tailored to one type of
container or another. However one of the main features of Active
Document development is the fact that you don’t know ahead of
time which container might be using your document.

For more discussion of this topic, see the section in this chapter enti-
tled “Detecting the Type of Container with the TypeName function
and userDocument.Parent.”

You must therefore write code such as that shown in Listing 14.11.

17 002-8 CH 14 3/1/99 8:20 AM Page 718

Chapter 14 CREATING AN ACTIVE DOCUMENT 719

LISTING 14.11

DIFFERENT NAVIGAT ION CODE FOR DIFFERENT

CONTAINER TYPES

‘Assume we’ve already
‘determined document
‘name in strTargetDoc

Dim strContainerType as String
strContainerType = Ucase$(TypeName(UserDocument.Parent))
‘If container is Internet Explorer:
If Instr(strContainerType, “WEBBROWSER”) <> 0 Then

UserDocument.Hyperlink.NavigateTo _
“File://” & strTargetDoc

‘or if it’s Office Binder:
ElseIf strContainerType = “SECTION” Then

UserDocument.Parent.Parent.Sections. _
Add , strTarget

‘or if the container type is unknown
Else

MsgBox “Can’t activate document
End If

This code will serve to navigate to the same document from either
Office Binder or Internet Explorer.

Creating an ActiveX Project With
Multiple UserDocument Objects
Many Active Document projects will have more than one type of
Active Document. In these cases, you will have two or more
UserDocument objects, and it may be necessary to pass data between
the two documents. This can occur when one document has data
upon which the other document depends. Additionally, with Active
Documents, you do not necessarily know in what sequence your
Active Document was invoked. You might expect that the normal
course of your application is to use document A, for example, and
then document B. However there is no automatic way to prevent the
user from going to document B directly. If you have code in docu-
ment B that depends on data from document A, you could have
some problems.

17 002-8 CH 14 3/1/99 8:20 AM Page 719

720 Par t I VISUAL BASIC 6 EXAM CONCEPTS

This behavior can be controlled using global variables to pass
between documents. Consider a VB project made up of three files: a
Standard Code module and two UserDocument modules. In the Code
module, a global variable called gobjCurrentDocument is defined as an
object. This variable is used to pass the document object references
between documents. The entire contents of the Standard module
reads as follows:

Option Explicit
Public gobjCurrentDocument As Object

The two UserDocuments are for the most part identical; they both
display each other’s data. The code listing for one UserDocument is
shown as follows (the code listing for the second UserDocument
would simply contain changed references to the “other”
UserDocument):

Public Property Get DocText()
‘Return the current document’s code
DocText = txtMyDoc.Text

End Property

Private Sub Command1_Click()
‘Navigate to a new document
Set gobjCurrentDocument = Me
Hyperlink.NavigateTo App.Path & “\usrdoc2.vbd”

End Sub

Private Sub txtMyDoc_Change()
PropertyChanged “DocText”

End Sub

Private Sub UserDocument_ReadProperties(PropBag As
➥PropertyBag)

txtMyDoc.Text = PropBag.ReadProperty(“DocText”, “”)
End Sub

Private Sub UserDocument_Show()
‘When show is called then get the other documents
‘data using the global variable
If gobjCurrentDocument Is Nothing Then

txtOutPutFromOtherDoc.Text = “No Older Document”
Else

txtOutPutFromOtherDoc.Text =
➥gobjCurrentDocument.DocText

‘destroy the object reference
Set gobjCurrentDocument = Nothing

End If
End Sub

Private Sub UserDocument_WriteProperties(PropBag As
➥PropertyBag)

17 002-8 CH 14 3/1/99 8:20 AM Page 720

Chapter 14 CREATING AN ACTIVE DOCUMENT 721

PropBag.WriteProperty “DocText”, txtMyDoc.Text, “”
End Sub

Each module has only the following procedures:

á The DocText property is used to return the document’s data.

á The Command1_Click event sets the global variable to the cur-
rent document and then navigates to the other document.

á The Show event is fired when the document is displayed. The
global variable is checked, and the data from the other docu-
ment is shown on a No Older Document message.

á The Change event of the TextBox calls the PropertyChanged
method to alert the system that the DocText property has
changed.

á If there has been a change in the DocText property, the
WriteProperties event fires when the container closes the doc-
ument.

á The ReadProperties event fires each time the document is
resited in its container.

When the application is executed in an Internet Explorer container,
a window appears, as shown in Figure 14.5.

F IGURE 14 .5
The first document opened.

Notice that the Document Two text box is set to No Older
Document. This means that the global variable is set to Nothing, indi-
cating that an older instance of Document Two has not yet run dur-
ing this session. When the user presses the CommandButton, a window
appears, as shown in Figure 14.6.

17 002-8 CH 14 3/1/99 8:20 AM Page 721

722 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Notice that the second text box now has Document One’s data.

You could further enhance this method to enforce the sequence in
your Active Documents. If the global variable were not equal to a
predetermined value, you could then notify the user and navigate to
the appropriate document.

TESTING YOUR ACTIVE DOCUMENT IN
THE VB DESIGN ENVIRONMENT

To test an Active Document project while still in the VB design
environment, you must run each container application that you
expect to use against your Active Document project.

In VB6, you can use the Debugging tab of the Project Properties
menu to specify which container application you want to use to test
your Active Document project.

The general steps for testing an Active Document project are:

S T E P B Y S T E P
14.2 Testing an Active Document

1. In the Project, Options menu dialog box, choose the
Debugging tab.

2. To automatically run an instance of your Active
Document inside your Internet browser, choose the com-
bined default settings of the Option Button titled Start
component and the check box entitled Use existing
browser, as illustrated in Figure 14.7.

3. If you wish to run your Active Document in another con-
tainer application such as Microsoft Office Binder, select
the Start program option and choose that application’s
EXE file in the box just below the option, as illustrated in
Figure 14.8.

F IGU R E 14 .6▲
The second document opened.

F IGU R E 14 .7▲
Default settings on the Debugging tab of the
Project, Options menu dialog box.

17 002-8 CH 14 3/1/99 8:20 AM Page 722

Chapter 14 CREATING AN ACTIVE DOCUMENT 723

4. Run the Active Document project in design mode.

5a. If you specified Start Component and Use Existing
browser, then the browser you specified (typically Internet
Explorer) will appear containing an instance of your
Active Document project.

5b. If you specified another container application, then open
the Active Document in the container application. Visual
Basic will typically create a temporary .vbd file in the
Visual Basic program directory when it begins to run your
Active Document. You should open this .vbd file in the
container (see the discussion below).

6. Test the document in the container application.

7. Beforereturning to the VB environment to make any
changes, close the Active Document in the container
application and close the container application.

8. Return to VB and stop the ActiveX project so that you
can make changes.

The details of step 5 will differ depending on the type of container
you are using to test your document project as detailed in the fol-
lowing points:

á To open your document in Internet Explorer. On the File
menu, click Open. Then navigate to the Visual Basic program
directory. Make sure that you are viewing All File Types and
then select the temporary .vbd file that VB has created.

á To open your document in Office Binder (method A). On
the Section menu, click Add to display the Add Section dialog
box. You’ll see a list of components from the Windows
Registry of applications that can provide Active Documents. If
your Active Document project is running, VB will have made
a temporary Windows Registry entry for it and you’ll see it in
the list. Choose your project’s name from the list to activate an
Active Document based on your project.

F IGURE 1 4 .8
Settings on the Debugging tab of the Project,
Options menu dialog to allow you to test your
Active Document project with a Microsoft Office
Binder container.

17 002-8 CH 14 3/1/99 8:20 AM Page 723

724 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á To open your document in Office Binder (method B).
On the Section menu, click Add From File. In the resulting
file dialog box, navigate to the VB program directory and
choose the temporary .vbd file.

Step 7 will also be different for different containers:

á To close your document in Internet Explorer (method A).
Navigate to several other documents in order to take this doc-
ument off the History list and close it (IE keeps the docu-
ments in its History list in a memory cache; therefore these
documents don’t close until they are removed from the list).
For IE 3.0 and 4.0, you must navigate to four other docu-
ments in order to close this document because IE keeps four
documents in its History list.

á To close your document in Internet Explorer (method B).
Close Internet Explorer.

á To close your document in Office Binder. Select File,
Close from the menu.

Note that future container applications may have other ways of
opening or closing an Active Document.

COMPILING AND DISTRIBUTING YOUR
ACTIVE DOCUMENT

Use the File, Make menu option to compile your Active Document
project to a DLL or EXE file.

Before compiling, remember the special considerations for ActiveX
projects:

á Base DLL address

á Binary compatibility

á Specifying a license key

See the final sections of Chapter 13 for more information about
these issues.

See also Chapter 21 for information about creating distribution
media for ActiveX projects with Package and Deployment Wizard
and about special Internet distribution considerations.

17 002-8 CH 14 3/1/99 8:20 AM Page 724

Chapter 14 CREATING AN ACTIVE DOCUMENT 725

USING YOUR ACTIVE DOCUMENT ON
A WEB PAGE

. Use an Active Document to present information within a Web
browser.

You can tell the Package and Deployment Wizard to create an
Internet download setup for your ActiveX project. The wizard will
then create a sample HTML file that shows how to include your
Active Document project in HTML script (see Listing 14.12).

LISTING 14.12

PACKAGE AND DEPLOYMENT WIZARD WILL CREATE A

SAMPLE HTML FILE FOR YOUR ACTIVE DOCUMENT

<HTML>
<HEAD>
<TITLE>Project1.CAB</TITLE>
</HEAD>
<BODY>

UserDocument1.VBD
<!--*********** Comment Begin **********

Internet Explorer Version 3.x HTML
====================================
The following HTML code has been commented
out and provided for ActiveX User Documents
download support in IE 3.x only. This
HTML script may not work properly in later
versions of Internet Explorer.

Additional information about downloading
ActiveX User Documents in IE 3.x can be
found in Microsoft’s online support on the
internet at http://support.microsoft.com.
*********** Comment End ********** —>

<!--*********** Comment Begin **********
<HTML>
<OBJECT ID=”UserDocument1”
CLASSID=”CLSID:”
CODEBASE=”Project1.CAB#version=1,0,0,0”>
</OBJECT>

<SCRIPT LANGUAGE=”VBScript”>
Sub Window_OnLoad

Document.Open
Document.Write “<FRAMESET>”
Document.Write “<FRAME SRC=””UserDocument1.VBD””>”
Document.Write “</FRAMESET>”

17 002-8 CH 14 3/1/99 8:20 AM Page 725

726 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Document.Close
End Sub
</SCRIPT>
</HTML>

*********** Comment End ********** —>

</BODY>
</HTML>

The <OBJECT ... </OBJECT> tag that you see in the HTML script
has the same function as the <OBJECT ... </OBJECT> tag for an
ActiveX control (see Chapter 12 for details).

Notice the VBScript code in the second half of the sample listing.
This code essentially tells the HTML script to load your document
into the Window Frame of the browser.

This chapter covered the following major topics:

á Definition of Active Documents

á Setting up a UserDocument in an Active Document project

á Differences between Active Documente EXEs and DLLs

á Running an Active Document in a container application

á Programming the events in an Active Document’s lifetime

á Managing Active Document scrolling and ViewPorts

á Defining Active Document custom members

á Persisting Active Document data

á Asynchronous information download with Active Documents

á Active Document menus and their relation to container menus

á Modeless forms in an Active Document

á Navigating between documents in container application

á Creating multiple UserDocument objects in the same project.

á Testing and compiling an Active Document

á Using an Active Document on a Web page

CHAPTER SUMMARY

KEY TERMS
• ActiveX Container

• Active Document

• .dob

• Siting

• .vbd

17 002-8 CH 14 3/1/99 8:20 AM Page 726

Chapter 14 CREATING AN ACTIVE DOCUMENT 727

A P P LY YO U R K N O W L E D G E

Exercises

14.1 Interacting With a Container and
Navigating Between Documents

In this exercise, you write a simple ActiveX DLL
Document application to interact with its container
application and to navigate between the container
application’s documents.

Estimated Time: 30 minutes

1. Create an ActiveX DLL Document project. Add
two CommandButtons named cmdForward and
cmdNavigate, as illustrated in Figure 14.9. Also
add a TextBox named txtEntry and an appropri-
ate label as shown in Figure 14.9.

Private Sub txtEntry_Change()
PropertyChanged “Entry”

End Sub

Private Sub UserDocument_InitProperties()
txtEntry.Text = m_def_Entry

End Sub

Private Sub
UserDocument_ReadProperties(PropBag As
➥PropertyBag)

txtEntry.Text =
PropBag.ReadProperty(“Entry”, m_def_Entry)
End Sub

Private Sub
UserDocument_WriteProperties(PropBag As
➥PropertyBag)

PropBag.WriteProperty “Entry”,
➥txtEntry.Text, m_def_Entry
End Sub

4. Implement navigation between container docu-
ments by inserting the following code into the
click event procedures of your project’s
CommandButtons:

Private Sub cmdForward_Click()
Dim strParentType As String
strParentType =

UCase$(TypeName(UserDocument.Parent))
If InStr(strParentType, “IWEBBROWSER”) <>

➥0 Then ‘Internet Explorer
Hyperlink.GoForward

Else ‘unrecognized
MsgBox “Invalid request outside of

➥Internet Explorer”
End If

End Sub

Private Sub cmdNavigate_Click()
Dim strParentType As String
strParentType =

➥UCase$(TypeName(UserDocument.Parent))
On Error Resume Next
If InStr(strParentType, “IWEBBROWSER”) <>

➥0 Then ‘Internet Explorer
Hyperlink.NavigateTo txtEntry

ElseIf strParentType = “SECTION” Then
➥‘Office Binder

F IGUR E 14 .9
Design-time view of the ActiveX DLL Document project for
Exercise 14.1.

2. You will use Internet Explorer as the test con-
tainer. Check to make sure that your project’s
Debugging options are set to their default values,
as illustrated earlier in Figure 14.7.

3. Delegate a property to the Textbox control by
placing the following code in your ActiveX DLL
Document application:

Option Explicit
Private Const m_def_Entry =
➥“http://www.microsoft.com”

17 002-8 CH 14 3/1/99 8:20 AM Page 727

728 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

UserDocument.Parent.Parent.sections.Add ,
➥txtEntry

Else ‘unrecognized
MsgBox “Only valid in Internet

➥Explorer and Office Binder”
End If
If Err.Number <> 0 Then

MsgBox “Error: “ & Err.Description
End If

End Sub

5. Run your application and notice that Internet
Explorer runs automatically with an instance of
your document inside it. Experiment with the
contents of the TextBox and with the
CommandButtons.

6. End the application by closing the instance of
Internet Explorer and then stopping the VB
design-time instance of your application.

7. Run the application and notice that no scrollbars
appear on the application’s borders. Now, shrink
the container’s window and notice that scrollbars
appear. This is because the document’s Viewport
dimensions are now less than the MinHeight and
MinWidth properties (the MinHeight and MinWidth
properties’ values have defaulted from the initial
size of the container).

8. Stop the application as described in step 6 and, in
the UserDocument’s Initialize event procedure,
write the following code. By setting MinHeight
and MinWidth to 0, you effectively disable the
scrollbars because the container can never shrink
that small.

Private Sub UserDocument_Initialize()
MinHeight = 0
MinWidth = 0

End Sub

9. Stop the application as described in step 6 and, in
the UserDocument’s Initialize event procedure,
write the following code. By setting MinHeight
and MinWidth to the maximum size of the screen,
you effectively keep the scrollbars on all the time
because it is the maximum size that the container
can take.

Private Sub UserDocument_Initialize()
MinHeight = Screen.Height
MinWidth = Screen.Width

End Sub

14.2 Making Active Documents Persistent

In this exercise, you read and write properties from
Property Bags.

Estimated Time: 25 minutes

To complete this exercise, follow these steps:

1. Create a new ActiveX document project and on
its surface place a TextBox named txtUserID and
an accompanying Label for the TextBox. See
Figure 14.10.

F IGURE 1 4 .10
The UserDocument for Exercise 14.2.

17 002-8 CH 14 3/1/99 8:20 AM Page 728

Chapter 14 CREATING AN ACTIVE DOCUMENT 729

A P P LY YO U R K N O W L E D G E

2. Create Property Let and Property Get proce-
dures to implement a property called UserID that
will delegate the Text property of txtUserID:

Property Let UserID(strNewVal As String)
txtUserID.Text = strNewVal

End Property

Property Get UserID() As String
UserID = txtUserID.Text

End Property

3. Write the code necessary to read the UserID
property in the UserDocument’s ReadProperties
event:

Private Sub
➥UserDocument_ReadProperties(PropBag As
➥PropertyBag)

txtUserID.Text = _
PropBag.ReadProperty(“UserID”, _
“”)

End Sub

4. Write code in the Change event of txtUserID to
signal that the UserID property has changed and
must be resaved to the Property Bag:

Private Sub txtUserID_Change()
PropertyChanged UserID

End Sub

5. Write the necessary code to write the UserID
property in the UserDocument_WriteProperties
event:

Private Sub
➥UserDocument_WriteProperties(PropBag As
➥PropertyBag)

PropBag.WriteProperty “UserID”,
➥txtUserID.Text
End Sub

6. Run the application, letting the Document
appear in Internet Explorer. Make changes to the
UserID property through the TextBox. Navigate
to another URL such as www.microsoft.com.
Note that IE prompts you to save changes.

Return to the Document with the Back button of
IE and note that the UserID property persists.

7. Stop IE and the application, and then comment
out the call to PropertyChanged in the Change
event procedure of txtUserID. Rerun the applica-
tion, change UserID, and navigate to another URL.
Note that the system does not prompt you to save
changes this time. When you return to the docu-
ment, the change you made will be discarded.

14.3 Adding Active Documents to a Web
Page

In this exercise, you create an HTML file that enables
the user to open the Active Document from the preced-
ing exercise.

Estimated Time: 15 minutes

1. Use the ActiveX Document project from the pre-
vious exercise.

2. In the VB IDE, choose the Package and
Deployment Wizard from the Add-Ins menu. If
this wizard is not available, see Chapter 21,
“Using the Package and Deployment Wizard to
Create a Setup Program” for more information on
making this add-in available. See Chapter 21 as
well for more detailed information on the Package
and Deployment Wizard screens described below.

3. On the first screen of the Package and
Deployment Wizard, choose the Package option.

4. Follow the prompts on the various screens to cre-
ate an Internet download package. Set the distrib-
ution folder (create a new folder if you desire),
choose the distribution support files (leave the
defaults), VB and OLE support file sources (leave
the defaults), and the safety settings for this docu-
ment (leave the defaults).

17 002-8 CH 14 3/1/99 8:20 AM Page 729

730 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

5. Click Finish on the final screen and close the
Report window that appears after a brief pause
for writing the distribution files

6. In Windows Explorer, navigate to the folder that
you designated as the distribution folder. In that
folder, you’ll find an HTML document with the
same name as your ActiveX Document project.
Open the document with Notepad or some other
text editor to examine it. It should look similar to
Listing 14.12 above.

7. Open Internet Explorer and navigate to the
HTML document. It will invoke your ActiveX
document project.

Review Questions
1. Describe some of the basic characteristics of

Active Documents.

2. What occurs when the displayable area of the
Active Document is larger than the area that the
container provides to the Active Document?

3. Briefly describe what objects, methods, or events
are read or stored on an Active Document’s data
from a persistent location.

4. Create a simple HTML page that enables you to
open an Active Document called mydoc.vbd.

5. Describe the types of data that can be requested
during an Asynchronous Data Request from an
Active Document.

6. How can you detect the type of container that is
hosting the Active Document at runtime?

7. Why is it important to know the type of con-
tainer that hosts the Active Document?

Exam Questions
1. Your Active Document needs to determine what

type of container is siting it. Which of the follow-
ing commands will provide this functionality?

A. TypeName(UserDocument.Parent)

B. GetName(UserDocument.Parent)

C. UserDocument.Parent.Name

D. UserDocument.Parent.Type

2. Your project file has two documents. You need to
pass data between the two documents at runtime.
How can this be done?

A. You cannot pass data between documents at
runtime.

B. Create a public method and use it.

C. Create a global variable in a module.

D. This is not necessary.

3. Which of the following events is fired when an
Asynchronous Data Request is completed?

A. Asynchronous Data Requests not available in
Visual Basic

B. AsyncReadComplete

C. ReadComplete

D. Load

4. To start and cancel an Asynchronous Data
Request, which of the following commands
should be used?

A. AsyncRead and CancelAsyncRead

B. StartAsyncRead and CancelAsyncRead

C. Parent.AsyncRead and
Parent.CancelAsyncRead

17 002-8 CH 14 3/1/99 8:20 AM Page 730

Chapter 14 CREATING AN ACTIVE DOCUMENT 731

A P P LY YO U R K N O W L E D G E

D. The Asynchronous Data Request is not
supported in Visual Basic

5. Which of the following statements about Active
Documents are false?

A. Active Documents can only be used in
Microsoft Internet Explorer.

B. Active Documents can be implemented as
DLLs or Executables.

C. Active Documents can run only inside a
container.

D. All are incorrect.

6. The user has changed some items in your Active
Document and you must notify the container
that data has been changed. Which of the fol-
lowing statements will notify the container?

A. Parent.PropertyChanged = True

B. PropertyChanged = TRUE

C. PropertyChanged [propertyname]

D. Container.ChildChanged

7. Your Active Document has two string properties
named MyData and YourData respectively. The
variables are declared as follows:

Friend MyData As String
Public YourData As String

If a client uses automation to create an instance
of the Active Document, then which of the fol-
lowing is true?

A. The client does not have access to the variable
YourData because the client is not a container.

B. The client cannot use automation to create
an instance of an Active Document.

C. The client has access to both variables.

D. The client has access to the MyData variable only.

E. The client has access to the YourData variable
only.

8. If the display area that the container provides is
smaller than the display area of the Active
Document and smaller than its own MinHeight
and MinWidth settings, what happens?

A. Nothing.

B. Scrollbars will appear that enable you to see
the Active Document.

C. A new larger window is created that enables
you to edit the document.

D. A runtime error that the Active Document
must trap occurs.

9. When an Active Document created in Visual
Basic is compiled as a DLL or Executable, an
additional document file is created. What is the
extension of the file, and what is its purpose?

A. .vbd (Visual Basic document)—the file is
used by a container to open the Active
Document.

B. The file has no extension. The file is used by a
container to open the Active Document.

C. .ado (Active Document object)—the file is
used by a container to open the Active
Document.

D. This file type does not exist in Visual Basic.

10. You can use the Hyperlink object in an Active
Document application

A. Only when the container is Internet-aware.

B. In all containers.

17 002-8 CH 14 3/1/99 8:20 AM Page 731

732 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

C. Only when the container is Microsoft Office
Binder.

D. Only when the container is Microsoft Office
Binder or Microsoft Internet Explorer.

11. NavigateTo and GoBack

A. Are always methods of the Parent object.

B. Are methods of the UserDocument object.

C. Are methods of the Parent object but only if
the container is Internet Explorer.

D. Are methods of the Hyperlink object.

Answers to Review Questions
1. Active Documents, like automation components,

can be implemented either as Dynamic Linked
Libraries or Executables. Active Documents can
be viewed inside any container that supports
Active Documents such as Microsoft Internet
Explorer or Microsoft Binder. Active Documents
can obtain data asynchronously from an URL or
a file. The data in an Active Document can be
saved to a persistent location such as a file. See
“Overview and Definition of Active Documents,”
“Steps to Implement a Active Document,” and
“Setting up the User Document” and the sub-
sections under these secitons.”

2. Depending on the settings of the UserDocument’s
MinHeight and MinWidth properties, scrollbars that
enable the user to navigate around the displayable
area may appear. See “Managing Active
Document Scrolling.”

3. During a Write operation, the developer uses
PropertyChanged property of the Active
Document to notify the container that data
has been changed in the Active Document.

At some point, the ActiveX container will fire the
WriteProperties event of the Active Document.
The container supplies a PropertyBag object
when the WriteProperties event is fired. This
PropertyBag object can be used to write data to a
persistent location by using the WriteProperty
method.

During a read operation, usually when the Active
Document is loaded or returned to be a browser
application, the ReadProperties event is fired by
the Active Document container. As with the
WriteProperties event, a PropertyBag object is
supplied that allows the object to be read from
the persistent location by using the ReadProperty
method.

See “Data and Property Persistence in Active
Documents.”

4. The following HTML code will open an Active
Document called mydoc.vbd:

Open User Document

See “Using Your Active Document on a Web Page.”

5. The types of data that can be requested are File,
Byte, Array, and Picture. See “Starting the
Download with the AsyncRead Method.”

6. You can use the TypeName function call to detect
the type of container that currently is hosting the
Active Document. See “Detecting the Type of
Container with the TypeName function and
UserDocument.Parent.”

7. You need to know the type of container that is
hosting the Active Document because different
containers have different object models. In partic-
ular, the techniques for navigating between docu-
ments differ from one container type to another.
See “Running Your Active Document in a
Container Application.”

17 002-8 CH 14 3/1/99 8:20 AM Page 732

Chapter 14 CREATING AN ACTIVE DOCUMENT 733

A P P LY YO U R K N O W L E D G E

Answers to Exam Questions
1. A. TypeName function is used to return the type

of object a current object pointer contains. For
more information, see the section titled
“Detecting the Type of Container with the
TypeName function and UserDocument.Parent.”

2. C. Global variables defined in a module can be
effectively used to pass data between documents.
For more information, see the section titled
“Creating an ActiveX Project with Multiple
UserDocument Objects.”

3. B. When an Asynchronous Data Request is com-
pleted, the AsyncReadComplete event is fired to
notify the client. For more information, see the
section titled “Reacting to the Download
Completion with the AsyncReadComplete Event.”

4. A. The AsyncRead method starts the
Asynchronous Data Request, and a
CancelAsyncRead terminates the request. For
more information, see the section titled “tarting
the Download with the AsyncRead Method” and
“Stopping the Download with the Container
Application.”

5. A. Active Documents can be used with any con-
tainer that supports Active Documents such as
the OLE control or the Microsoft Binder appli-
cation. For more information, see the section
titled “Overview and Definition of Active
Documents” and “Running Your Active
Document in a Container Application.”

6. C. The PropertyChanged method signals whether
the Active Document data has changed. For more
information, see the section titled “Creating an
ActiveX Project with Multiple UserDocument
Objects” and Exercise 13.1.

7. E. A client application can use automation to cre-
ate an instance of Active Documents. The only
variables the client has access to are variables
defined as public variables. For more information,
see the section titled “Defining Your Active
Document’s Custom Members.”

8. B. In this instance, scrollbars would appear
around the displayable area that would allow nav-
igation within the displayable area. For more
information, see the section titled “Managing the
Active Document’s ViewPort.”

9. A. The .vbd file is used by a container to open an
Active Document. For more information, see the
section titled “Data and Property Persistence in
Active Documents.”

10. A. You can use the Hyperlink object in a
UserDocument only when the container is
Internet-aware.

11. D. NavigateTo and GoBack are methods of the
Hyperlink object. For more information, see the
section titled “Data and Property Persistence in
Active Documents.”

17 002-8 CH 14 3/1/99 8:20 AM Page 733

17 002-8 CH 14 3/1/99 8:20 AM Page 734

OBJECT IVES

15C H A P T E R

Understanding the
MTS Development

Environment

The following objectives relating to the MTS develop-
ment environment appear on the Designing and
Implementing Distributed Applications with Microsoft
Visual Basic 6.0 exam:

Configure a server to run Microsoft
Transaction Server (MTS) (70-175).

• Install MTS.

• Set up security on a system package.

. The certification candidate should know the
software and hardware prerequisites for each
supported operating system platform.

. Installing MTS is complicated by the fact that it is
part of another Microsoft product, the Windows
NT 4.0 Option Pack.

. Because you must choose between three options
when installing MTS, it is important to understand
which option is best for the developer.

. By default, the security settings in MTS are not
very secure. The security settings on the system
package determine which users have administrative
access to a particular MTS installation. A developer
is likely to require the least restricted security
privileges possible.

Create a package by using the MTS Explorer
(70-175).

• Use the Package and Deployment Wizard
to create a package.

• Import existing packages.

• Assign names to packages.

• Assign security to packages.

18 002-8 CH 15 3/1/99 8:32 AM Page 735

OUTL INE

. Packages, which contain one or more components
on an MTS machine, are created from the MTS
Explorer.

. Using the Package and Deployment Wizard is
important because it provides the method for
creating a setup program for a COM component.
It ensures the machine that runs MTS will have the
necessary support files and registry entries to run
any COM component used by MTS.

. Organizations will commonly have a need to run
MTS components on multiple machines in a dis-
tributed environment. The easiest way to duplicate a
package is to export it from one machine and then
import it onto as many machines as is necessary.

. Logical names can be assigned to MTS packages
from the MTS Explorer.

. Understand security properties of packages such as
Identity. The Identity property of a package will
determine the security context that components in
the package will run in, both locally and on the
network. Also recognize additional package prop-
erty settings that are necessary to make role-based
security active.

Basic MTS Concepts 738

Overview of MTS 738

MTS Packages and Their Relationship to
COM Components 739

Setting Up MTS 741

Configuring a Server to Run MTS 741

Installing MTS 741

Setting Up Security on the System
Package 744

Working With MTS Packages 746

The Package and Deployment Wizard 746

Creating a Package by Using the MTS
Explorer 750

Assigning Names to Packages 752

Assign Security to Packages 753

Exporting and Importing Existing
Packages 755

Chapter Summary 758

OBJECT IVES

18 002-8 CH 15 3/1/99 8:32 AM Page 736

STUDY STRATEGIES

. Get acquainted with all of the MTS test objec-
tives as a group. MTS related test objectives
are scattered throughout the entire Exam
Preparation guide. In this book, they are consoli-
dated and reordered to provide you with a more
logical flow.

. Familiarize yourself with background concepts.
The MTS objectives assume some basic knowl-
edge of the architecture of MTS. Also keep in
mind that COM is the foundation of MTS. Do
not even start to explore MTS until you thor-
oughly understand COM objects.

. Practice, practice, practice. Learn the ins and
outs of the MTS Explorer. Develop simple
ActiveX components and experiment by adding
them into packages with the MTS Explorer.
Import and Export them.

. If at all possible, run MTS on a different
machine than the developer workstation in your
test environment. MTS is truly designed for a
distributed environment. You will stand to gain
the most if you can simulate the enterprise.

. For more suggestions, consult the online help
that is included with MTS. It includes refer-
ences for both administration and development.
This book focuses on the VB6 test objectives.
MTS is packed with features; looking into these
additional features will round out your knowl-
edge and enhance your understanding of sur-
rounding concepts.

18 002-8 CH 15 3/1/99 8:32 AM Page 737

738 Par t I VISUAL BASIC 6 EXAM CONCEPTS

INTRODUCTION

MTS is a service built into Windows NT 4.0 that provides component-
based transaction processing. It provides VB developers with a fairly
simple technique to scale existing knowledge of COM components to
the enterprise. With MTS, distributed applications can be built for a
Windows environment, as well as for the Internet/intranet.

BASIC MTS CONCEPTS

Although Microsoft does not expressly list the basic concepts
and theory of MTS as part of the Designing and Implementing
Distributed Applications with Microsoft Visual Basic 6.0 exam, such
a list is certainly implied. In order to understand all the other objec-
tives, a developer should have an understanding of the basic features
and architecture of MTS. Although it is beyond the scope of this
book to deal with details of the internals of MTS, a high level
approach to this topic is sufficient.

Overview of MTS
Microsoft Transaction Server provides a runtime environment for
COM components. Although ActiveX component development in
Visual Basic provides a developer with the means to implement busi-
ness logic, it does not deal with the issue of scalability and other
enterprise issues. The features of MTS help to take this concern
away from the developer. MTS is an option for deploying ActiveX
business components in the enterprise.

First, it allows multiple components to share critical system resources
such as ODBC connections. This is advantageous for organizations
that have applications with large numbers of existing users or expec-
tations for growth in the user base. The number of available database
connections is a classic obstacle to enterprise developers. A properly
designed MTS application can greatly reduce and sometimes even
eliminate this concern.

This is not the only way in which MTS increases the efficiency of
resource usage. In a distributed environment, it is quite possible
that the business components may be running on a separate machine.

18 002-8 CH 15 3/1/99 8:32 AM Page 738

Chapter 15 UNDERSTANDING THE MTS DEVELOPMENT ENVIRONMENT 739

As the number of users of the application increases, so does the
number of instances of that component. It is not difficult to see how
a middle-tier component can become a resource hog. MTS solves
this problem by running the component in process while efficiently
keeping track of client specific instance data internally. In other
words, overhead is reduced because MTS internally separates the
object’s runtime code from property values that might be different
from one client to another.

MTS provides a simple method for releasing the resources associated
with property values when they are no longer needed without
destroying the object. This is very useful because an object that will
be reused by a client does not have to be created and destroyed many
times over the life of the application—a potentially expensive opera-
tion. The concern of inefficient memory usage associated with keep-
ing an instance of an object alive for a long period of time is
virtually non-existent.

MTS, as the name implies, also has built-in support for transactions.
MTS components can automatically include any activity on a data-
base connection in a transaction. When an MTS component com-
pletes its work, it can commit the transaction automatically or roll it
back if there is an error. This feature is part of the MTS infrastruc-
ture, so adding transaction support is an issue of MTS configuration
rather than a coding task for the developer.

Finally, MTS simplifies the deployment of a multitier application.
MTS allows you to create a single executable intended to run on the
client machine that properly registers all the necessary type library
information needed to call your MTS component. Additionally, it
automatically handles the details of client-side DCOM configuration
for you. Anyone who has experienced the problem of tracking down
the registry entries and related problems with COM components,
especially when they are implemented in a DCOM environment,
will immediately see the value of MTS.

MTS Packages and Their Relationship
to COM Components
A good place to begin the MTS learning process is the MTS
Package. An MTS server will always have one or more MTS
Packages. A package is simply a collection of COM components.

18 002-8 CH 15 3/1/99 8:32 AM Page 739

740 Par t I VISUAL BASIC 6 EXAM CONCEPTS

More particularly, the COM components must be in the form of an
in-process ActiveX DLL.

Essentially, MTS provides a runtime environment for COM objects.
Figure 15.1 shows how a DLL and its objects fit into the MTS envi-
ronment. Although the DLL is running in a MTS process, the appli-
cation that uses an object from this DLL will call it in the exact
same way it would if it were running in its own process.

F IGU RE 15 .1
Clients call an object in the usual way, but
those calls are intercepted by MTS before
they are forwarded to the object.

Client Application
COM Interface

COM Interface
COM Object

MTS Runtime Environment

The components in a package are treated as a group in many ways.
First the package defines how a group of components will run. All
components in the same package will run in the same process on
the MTS machine. Also, security settings for all the components
can be applied at the package level. Any client that attempts to use
a component on a MTS machine will be authenticated according to
the security settings associated with the component’s parent pack-
age. Finally, since the package provides a logical grouping of COM
components on the server, it also follows that it can provide a
grouping for deployment purposes. If a client application requires a
set of components, the MTS paradigm would place this set of com-
ponents into a package. MTS allows you to export a setup program
torun on a client machine that will install all the necessary support
files and configure the client machine to use the components in the
MTS package.

18 002-8 CH 15 3/1/99 8:32 AM Page 740

Chapter 15 UNDERSTANDING THE MTS DEVELOPMENT ENVIRONMENT 741

SETTING UP MTS
In this chapter, we will look at how to set up the MTS environment,
how to obtain MTS, how to install it, and a few installation options. We
will also look at both hardware and software platform requirements.

. Configure a server to run Microsoft Transaction Server (MTS).

Configuring a Server to Run MTS
MTS 2.0 is bundled with Windows NT 4.0 in the Windows NT 4.0
Option Pack and is available as a free download over the Internet or
for purchase in a CD format. It will run on Windows 95 or Windows
NT. To run MTS on Windows 95, you must have previously installed
DCOM support for Windows 95. For Windows NT, MTS requires at
least Service Pack 3, which is included with the Option Pack. This
chapter will limit its focus to using MTS on Windows NT Server.

Before installing MTS on a Windows NT Server, verify that at least
30 megabytes of disk space are available and that the server has at
least 32 megabytes of RAM. The Windows NT 4.0 Option Pack
also comes with Internet Information Server (IIS) 4.0 and other
components such as Microsoft Message Queue. Even though MTS
can be installed alongside these Option Pack components, it is also
capable of being used independently.

Installing MTS
Whether you are running the setup program from the Internet or
from CD, installation is the same. First you must consider how
MTS will be used for your application. More particularly, your deci-
sions will depend on how clients will be using your Transaction
Server components. For example, if your application will be a dis-
tributed Windows application in which the client is using a standard
Windows program that will be communicating with your compo-
nents across the network, then it is not necessary to install IIS. The
same holds true if the client using your components will run them
on the same machine as MTS. However, you might be using MTS
to house components that will be used in an Internet or Intranet
application. In this case, it is typical to install IIS alongside MTS.

18 002-8 CH 15 3/1/99 8:32 AM Page 741

742 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The only exception to this is when the MTS components will be
called remotely by the IIS machine. In either case, MTS installs
relatively easily (see Figure 15.2).

Interface
MTS Object

Interface
MTS Object

MTS Runtime Environment

Windows Application

HTML

Web Server

F IGU R E 15 .2
MTS fits into an all Windows environment
or a Web environment seamlessly.

Of course your installation might encompass a combination of these
elements. For example, although the primary client interface might
be Web-based, the Web server will be running remotely and will be
calling your component through DCOM. Occasionally you may
need to provide access via the Web and through networked Windows
programs to your components. An application might be designed in
this way in order to separate user activity from administrative activity.
However, adding and removing Option Pack components at a later
date is a painless process.

Installation Options
The Option Pack provides you with three installation options that
determine which MTS components are installed:

á Minimal. The Minimal installation will install the MTS
runtime environment and the MTS Explorer.

á Typical. Typical installations install everything in the
Minimal installation along with the core documentation for
MTS.

18 002-8 CH 15 3/1/99 8:32 AM Page 742

Chapter 15 UNDERSTANDING THE MTS DEVELOPMENT ENVIRONMENT 743

á Custom. Custom installation allows you to install the docu-
mentation geared for developers as well as samples to help in
the development process.

The steps involved in installing MTS include the following:

S T E P B Y S T E P
15.1 Installing MTS Without Other Option Pack

Components

The MTS portion of the Option Pack installation is
simple, consisting of only a few steps:

1. Start the installation program from the CD or from the
Internet.

2. Choose the type of installation you want. If you will not
be installing other Option Pack components, choose cus-
tom and deselect every check box including the one for
MTS (see Figure 15.3).

3. Select the Transaction Server component but do not check
the check box. While it is selected, click on the Show
Sub-components button.

F IGURE 15 .3
Deselecting all components allows you to add
only the components you want and their depen-
dent components.

18 002-8 CH 15 3/1/99 8:32 AM Page 743

744 Par t I VISUAL BASIC 6 EXAM CONCEPTS

4. Check all three check boxes (see Figure 15.4). Transaction
Server Core Components correspond to the components
associated with a Minimum Install. Transaction Server
Core Documentation corresponds to a Typical install.
Notice that core documentation includes documentation
for the Administrative features of MTS. If you want docu-
mentation for development, it is available only by selecting
a Custom install and checking the Transaction Server
Development option.

5. Click OK. Notice that many of the other Option Pack
components are automatically checked. This is to be
expected because MTS is dependent on some of these
components.

6. Click Next to finish the installation.

SETTING UP SECURITY ON THE
SYSTEM PACKAGE

The System package included in every MTS installation is unique
because it contains components used internally by MTS. The secu-
rity settings associated with the System package determine who may
administer the MTS installation and who may look up information
about the components available on the server.

Because MTS security is tightly integrated with Windows NT secu-
rity, any security settings associated with the System package will
apply to users running the MTS Explorer utility. Also, MTS Explorer
security settings are enforced on both the local MTS machine and
remote machines. In regard to the System package, two security roles
or levels are available. The first is the role of Administrator who has
access to any feature provided by the MTS Explorer. This includes
items such as creating, modifying, and deleting MTS packages. The
Reader, the second security role defined for the System package, gives
the user the ability to browse the hierarchy of objects presented in the
MTS Explorer. However, the Reader cannot modify, install or delete
packages, or change any properties of components in general.

F IGU R E 15 .4
All three Transaction Server Components are
relevant to the developer.

18 002-8 CH 15 3/1/99 8:32 AM Page 744

Chapter 15 UNDERSTANDING THE MTS DEVELOPMENT ENVIRONMENT 745

To take advantage of these two security roles, they must be mapped
to an existing NT User or Group. The functionality of the roles are
thus provided for only the group assigned to it.

Mapping a user to the Administrator role takes place in the
following steps:

S T E P B Y S T E P
15.2 Mapping a User to the Administrator Role of

the System Package

1. From the Start Menu, go to Programs\Windows NT 4.0
Option Pack\Transaction Server and select Transaction
Server Explorer.

2. From the Microsoft Transaction Server folder in the left
pane of the Explorer, expand the Computers folder by
double-clicking it.

3. Double-click the My Computer icon.

4. Double-click the Packages Installed folder to see the list of
MTS packages currently installed on the server. It includes
the System package (see Figure 15.5).

N
O

T
E Default Administration Access It is

very important to note that by default
no user is mapped to either role. The
implications of this may not be readily
apparent but are nevertheless cru-
cial. If a role has no user associated
with it, then anyone has access to all
MTS Explorer functions associated
with that role. In other words, any
user on the network can do all the
administrative tasks available from
MTS Explorer in a default installation
of MTS due to the fact that the
Administrator of the System package
has no user mapped to it.

F IGURE 15 .5
The System Package is a part of every MTS
installation.

5. Select the System package. Notice that there are two folders
in the right pane: Components and Roles.

18 002-8 CH 15 3/1/99 8:32 AM Page 745

746 Par t I VISUAL BASIC 6 EXAM CONCEPTS

6. Open the Roles folder by double-clicking on it. You will
now see both Administrator and Reader roles.

7. Double-click the Administrator role.

8. Open the Users folder.

9. On the Action menu, click New. You can also select the
Users folder and click the Create new object button or
right-click the Users folder and select New and then Users.

10. In the dialog box that appears (see Figure 15.6), add the
Everyone group to the role. You can use the Show Users
and Search buttons to locate a user account. If you wish,
you may add your own user account instead of the
Everyone group.

11. Click OK.

WORKING WITH MTS PACKAGES

. Create a package by using the MTS Explorer.

It is very likely that a VB developer working with MTS will be
the author of the component intended for the MTS machine.
Furthermore, it is possible that the MTS machine is different from
the developer’s workstation. Both VB and MTS provide all the tools
necessary to deploy your components in the MTS environment.

The Package and Deployment Wizard
In order to add your component to an MTS package, you must first
run the setup program for your component on the machine running
MTS. Visual Basic includes an add-in that can be used to create
setup programs. Although it can be used to provide distribution files
and a setup program for any Visual Basic project type, this chapter
will focus on using it to create the setup program for an ActiveX
DLL. It must be noted that the term ‘package’ is meant in a different
sense when in the context of the Package and Deployment Wizard.

F IGU R E 15 .6
Users and Groups from the Windows NT
Domain can be mapped to the Administrator
role for the System package.

18 002-8 CH 15 3/1/99 8:32 AM Page 746

Chapter 15 UNDERSTANDING THE MTS DEVELOPMENT ENVIRONMENT 747

If you have used the Setup Wizard from previous versions of Visual
Basic, the Package and Deployment Wizard will be very familiar:

S T E P B Y S T E P
15.3 Add the Package and Deployment Wizard to the

Add-Ins Menu

The first step in using the Package and Deployment Wizard is to
make sure that the add-in is enabled:

1. From the Visual Basic development environment, go to
the Add-Ins menu and select the Add-In Manager menu
item.

2. From the Available Add-Ins list, select Package and
Deployment Wizard.

3. While the Package and Deployment Wizard is selected,
click both the Loaded/Unloaded check boxes and the
Load on Startup check box in the lower-right corner of
the dialog box.

4. Click OK.

5. Click on the Add-Ins list again, and notice that the
Package and Deployment Wizard now shows up as an
item in the menu.

Once the Package and Deployment Wizard is available in the Add-
Ins menu, you are ready to create a setup program for your ActiveX
DLL. The wizard simplifies this process by reading your project in
an intelligent manner. It checks for DLL dependencies, references to
other COM components, as well as file dependencies related to any
ActiveX controls used in your project. If your component needs
additional files to function properly (such as local databases, INI
files, text files, etc.) and they are not detected by the wizard, you
may manually add them. The Package and Deployment Wizard is
best explained through a step by step example:

18 002-8 CH 15 3/1/99 8:32 AM Page 747

748 Par t I VISUAL BASIC 6 EXAM CONCEPTS

S T E P B Y S T E P
15.4 Use the Package and Deployment Wizard to

Create a Setup Program

1. Before you start the Package and Deployment Wizard, you
must have already compiled your DLL. If you choose not
to compile, the wizard will direct you to do so. It’s a good
idea to save the project before proceeding. After this has
been done, select the Package and Deployment Wizard
from the Add-Ins menu.

2. Click on the button that is labeled Package (see Figure 15.7).

3. If you did not save your project before the wizard was
started, the wizard will prompt you with a warning that
the source files are newer than the compiled DLL. You can
choose to have the wizard recompile, but if you had just
recompiled this would not be necessary and you could
click the No button.

4. The next dialog box allows you to select the package type.
You will be presented with three choices (see Figure 15.8):

• Standard Setup Package

• Internet Package

• Dependency File

5. Select the Standard Setup Package. The Internet Package is
used to distribute software such as ActiveX controls via the
Web. A dependency file is used to document the file
dependencies of your project. This could be necessary if
your project becomes a subproject of another project. For
example, your project might be an ActiveX DLL that will
be referenced by another Standard EXE project. In this
case, the EXE depends on your DLL and any subsequent
file in the DLL’s dependency list.

6. After you have selected the Standard Setup Package item,
click on the Next button to go to the Package Folder
screen. Here you will specify the path to the setup files.
Notice that it defaults to the same path as your DLL in a
Package folder.

F IGU R E 15 .7▲
The wizard allows you to create setup files for
your Visual Basic project and provides you with
means to deploy them.

F IGU R E 15 .8▲
For an ActiveX DLL, select Standard Setup
Package.

18 002-8 CH 15 3/1/99 8:32 AM Page 748

Chapter 15 UNDERSTANDING THE MTS DEVELOPMENT ENVIRONMENT 749

7. Click Next.

8. The resulting dialog box asks if you want to create a folder
called Package. Click Yes.

9. The next window shows the Included Files. These are all
the files that the wizard detected as necessary to support
your DLL. Notice that you can manually add more files
by clicking the Add button. See Figure 15.9.

10. Click Next.

11. The Cab Options window allows you to select how the
setup package will be created. You have the choice
between a Single cab, suitable for a network distribution,
or Multiple cabs, suited for floppy distribution.

12. Make sure that Single cab is selected and click Next.

13. The next screen allows you to type in the title that is dis-
played in the setup program as it is running. Click Next.

14. The Start Menu Items window makes it possible for you
to have the setup program add Start Menu items. Since
this will be a DLL, it is not necessary to add anything.

15. Click Next.

16. The Install Locations window allows you to select the tar-
get location of your program. Click Next.

17. The wizard will then prompt you to check if your DLL
should be installed as a shared file. Since this is a DLL,
it’s probably a good idea to check it off. Basically, the
operating system will keep a usage count of the DLL if it
is a shared file. In other words, if more than one setup
program adds that DLL to the system, the usage count is
incremented accordingly. If an application using the DLL
is uninstalled, the operating system will keep the DLL in
place if the usage count has not reached zero.

18. With your DLL’s check box selected, click Next.

19. The wizard will create a setup script with corresponding
entries for every setup option you chose. The title of this
script is displayed in the Finished window.

F IGURE 1 5 .9
These files will be included on all clients who
use the setup program.

18 002-8 CH 15 3/1/99 8:32 AM Page 749

750 Par t I VISUAL BASIC 6 EXAM CONCEPTS

20. To complete the process, click the Finish button. The wiz-
ard will then package your DLL and all support files into
a single CAB file. When it is complete, it will show you a
Packaging Report screen.

21. Click the Close button on the report screen and then the
Close button on the wizard.

Creating a Package by Using the MTS
Explorer
Once you have a component or set of components intended for use
in MTS, the first step is to create a package. This is done through
the MTS Explorer, a Microsoft Message Console snap-in available
whenever you install MTS from the Option Pack (see Figure 15.10).
All features of the MTS Explorer are available both locally and
remotely. This is especially handy if your development machine is
different from the machine that is running MTS.

The MTS Explorer is available in the Start Menu by opening
Programs\Windows NT 4.0 Option Pack\Transaction Server\
Transaction Server Explorer. After MTS is installed, the MMC will
have an entry for Microsoft Transaction Server directly off the
Console Root in the left pane. After you expand the Microsoft
Transaction Server folder, the list of MTS servers available for
administration is in the Computers folder. By default no remote
servers are listed. Local MTS configuration can be performed
through the My Computer item, a child of the Computers folder.

F IGU R E 15 .10
All administrative actions related to MTS are
performed through the MTS Explorer.

18 002-8 CH 15 3/1/99 8:32 AM Page 750

Chapter 15 UNDERSTANDING THE MTS DEVELOPMENT ENVIRONMENT 751

If you expand the local computer or any remote computer listed in
the MTS Explorer, you get a list of the primary administrative areas
of a given MTS installation.

á Packages Installed. All actions related to MTS packages for
the select computer are performed here.

á Remote Components. Here you can specify components to
run on remote computers.

á Trace Messages. This item allows you to view messages
generated by the Distributed Transaction Coordinator (DTC).

á Transaction List. This displays individual transactions
currently in process and information about them.

á Transaction Statistics. Both statistics about current
transactions and past transactions are displayed here. This
window can be used to answer performance related questions.

The focus of this chapter is on packages. For more information
about the other items in the MTS Explorer, see the Microsoft
Transaction Server Administrator’s Guide, part of the online help in
Transaction Server.

By double-clicking on the Packages Installed folder, the list of cur-
rently installed packages appears below in the left pane as well as in
the right pane of the Explorer. The list of packages on a default
MTS installation will depend on which Option Pack components
were installed. Minimally, the list will always include the System and
the Utilities packages that are both MTS system related packages. As
previously discussed, the System package includes components used
internally within MTS while the Utilities package includes compo-
nents that allow your client to use some of the more complicated
transactional features of MTS.

Creating a new package from the MTS Explorer can be done in one
of two ways:

á An empty package can be created. You will be required to add
components at a later time.

á A prebuilt package can be created. This is an existing MTS
package that already has components that have been exported.
Adding a pre-built package will also add the files and registry
entries associated with the components.

18 002-8 CH 15 3/1/99 8:32 AM Page 751

752 Par t I VISUAL BASIC 6 EXAM CONCEPTS

After you are finished developing components intended for use on an
MTS machine, you will most likely start with an empty package. To
create an empty package on MTS, you must execute the following
steps:

S T E P B Y S T E P
15.5 Creating an Empty Package on MTS

1. From the MTS Explorer, make sure the computer that
you are using is listed in the left pane and that its icon is
expanded.

2. Click on the Packages Installed folder. From the Action
menu, select New and then select Package. Alternatively,
while Packages Installed folder is selected, you can right-
click on it, select New, and select Package. A third way to
do this is click on the New Object button on the toolbar.

3. The Package Wizard is activated. Notice that you now can
choose between creating an empty package or installing a
prebuilt package (see Figure 15.11).

4. Click on the button next to Create an empty package. The
wizard will prompt you to enter a name for the package.

5. Enter a name for the package and click Next.

6. The next dialog box is Set Package Identity. This allows
you to define the security context for which the package
will run. Further explanation of this concept will be cov-
ered in Chapter 15. Leave the default option, Interactive
User, selected and click Finish.

Assigning Names to Packages
The package name is assigned to the package when it is first created.
The name of the package does not affect the functionality in any way;

F IGU R E 15 .11
The Package Wizard can be used to import
existing packages or create new ones.

18 002-8 CH 15 3/1/99 8:32 AM Page 752

Chapter 15 UNDERSTANDING THE MTS DEVELOPMENT ENVIRONMENT 753

it is strictly for your own purposes. From time to time, you may need
to rename the package. Renaming a package will not affect the com-
ponents within that package or alter the security settings associated
with the package. To rename a package, follow these steps:

S T E P B Y S T E P
15.6 Renaming a Package

1. From the MTS Explorer, double-click on the Packages
Installed folder of the MTS computer whose package you
want to rename.

2. In the right pane, right-click on the package you are
renaming and select Properties.

3. The Properties dialog box is shown (see Figure 15.12).

4. You will see the name of the package in the upper text box
on the General tab. Type the new name of the package.

5. Click OK.

After the package is renamed, the new name immediately appears in
the MTS Explorer.

Assign Security to Packages
MTS provides a method of security known as Role-based security
(for more information see Chapter 15). Before the security features
of MTS can be exploited, a package must first be configured to use
security. Although we will not look at the details of how to use Role-
based security until the next chapter, there is one security configura-
tion setting available in the package properties worth reviewing.
Though Role-based security is handled at the component level, not
the package level, it still must be activated at the package level. To
achieve this, you must enable Authorization tracking by executing
the following steps:

F IGURE 15 .1 2
Properties of a package including the name can
be set from the Properties window.

18 002-8 CH 15 3/1/99 8:32 AM Page 753

754 Par t I VISUAL BASIC 6 EXAM CONCEPTS

S T E P B Y S T E P
15.7 Enabling Authorization Tracking

1. Select the Package from the MTS Explorer for which you
want to enable Role-based security.

2. Right-click on the package and select Properties.

3. Click on the tab labeled Security (see Figure 15.13).

4. Click on the check box labeled Enable authorization
checking.

5. Click OK.

6. Right-click on the package and select Shut down. This
will cause the component settings to be refreshed, and
security settings will be active.

Another very important security setting is the Identity setting. This is a
setting assigned at the package level that determines the security con-
text under which the components in the package will be running. In
other words, the components will be identified as the user in this prop-
erty for any action it takes. This includes network calls, file handles,
database connections, and so on. The user assigned to the Identity set-
ting can be any valid local or NT domain user, or it can automatically
be set to whomever is interactively logged onto the computer. So, for
example, if the Package identity is assigned to the Administrator
domain account, then components will be capable of doing anything in
the enterprise that the Administrator can. Alternatively, if you choose a
package that will use the identity of the logged in user, there is the pos-
sibility that the user might not have the appropriate rights on the net-
work needed by a member component such as file permissions or
database permissions. In this case, unexpected errors can occur, so it is a
good idea to consider the implications of the Identity settings.

If you right-click on a package and select Properties, the Identity set-
ting is under the Identity tab, as in Figure 15.14.

One important thing to note is that MTS does not verify that the
password assigned to the user listed in the Identity dialog box is cor-
rect. If the wrong password is entered and a user attempts to use a
component in this package, a runtime error will occur.

F IGU R E 15 .13
The Security tab in the package properties
allows you to enable Role-based security.

18 002-8 CH 15 3/1/99 8:32 AM Page 754

Chapter 15 UNDERSTANDING THE MTS DEVELOPMENT ENVIRONMENT 755

Exporting and Importing Existing
Packages
In a distributed environment, it is very possible that you will have
more than one MTS Server running identical packages. In fact, this
is directly tied into the scalability of MTS. As an n-Tier application
grows and there is more user activity, you may need to partition the
middle-tier. In other words, load balancing can be achieved by
adding additional physical servers. Each MTS Server can be config-
ured with identical packages and identical security. Client computers
can easily be switched from using one computer to another. This is
extremely helpful because you can design the installation of your
application to efficiently correspond to the design of your network.

MTS makes it easy to copy a package from one server to another
through built-in Export and Import tools. Both of these tools center
around a package file (that has an extension of .pak). The package
file describes the components to be Imported as well as any MTS
settings associated with the originating package. One nice feature of
the Export and Import wizards is that you can perform either
remotely. In other words, you don’t have to be sitting at the machine
with the source package to create a package file and vice versa.

Exporting an existing MTS package will copy the DLL files for each
component in the package so they can be imported by another MTS
server. Exporting a package is explained as follows:

F IGURE 15 .1 4
The Identity settings for the package define
which NT security context package components
will run locally and on the network.

18 002-8 CH 15 3/1/99 8:32 AM Page 755

756 Par t I VISUAL BASIC 6 EXAM CONCEPTS

S T E P B Y S T E P
15.8 Exporting a Package

1. From the MTS Explorer, double-click the computer that
contains the package you intend to export.

2. Click on the MTS package you want to export.

3. From the Action menu, select Export. Like most opera-
tions in the Microsoft Message Console, you can do the
same thing through a different means by right-clicking on
the package while it’s selected and then selecting Export.
Either way will take you to the Export Package dialog box
shown in Figure 15.15.

4. Type in or browse to the destination path where you want
the package file and related files to be copied.

5. With the desired path in the text box, click the Export
button. If there are no errors, the wizard will display a
message box indicating the export was successful.

6. Click OK.

Now if you browse to the path, you will find a PAK file with what-
ever title you gave it and all the DLLs for each component in that
package. Also, you will find a directory with the names of clients.
For more information on the contents of the clients’ directory, see
Chapter 16, “Developing MTS Applications.”

Now the package file can be imported into another server. A synop-
sis of the steps necessary to perform an import follows:

S T E P B Y S T E P
15.9 Importing a Package

1. From the MTS Explorer, double-click the computer for
which you want to import a package.

2. Click on the Packages Installed folder.

3. Right-click New, then select Package to again display the
Package Wizard.

F IGU R E 15 .15
To export a package, it is necessary to know
only the destination of your package file.

18 002-8 CH 15 3/1/99 8:32 AM Page 756

Chapter 15 UNDERSTANDING THE MTS DEVELOPMENT ENVIRONMENT 757

, F IGURE 15 .1 6
The Select Package Files dialog box allows you
to browse to previously existing package files
and import them into your MTS machine.

F IGURE 15 .1 7▲
The path listed will be the path used by the
MTS runtime environment.

4. This time, click the button labeled Install prebuilt
packages.

5. Select the package file by clicking the Add button and
browsing to the location of your source PAK file. You can
add more than one package at a time (see Figure 15.16).

6. Click Next.

7. The next screen allows you to choose the security context
in which your package will run. For now leave this as
Interactive User. More information regarding package
identity will be covered in Chapter 16.

8. The final screen shows you the path to the component
files on the target machine. Most likely, it will be
C:\Program Files\MTS\Packages (see Figure 15.17).

9. Click Finish. You may now use the MTS Explorer to
browse to the package on the destination server. All com-
ponents from the package on the source server should also
exist on the destination server.

18 002-8 CH 15 3/1/99 8:32 AM Page 757

758 Par t I VISUAL BASIC 6 EXAM CONCEPTS

This chapter provided a first look at the Microsoft Transaction
Server. Here is a summary of key topics that should be understood
in preparation for the Designing and Implementing Distributed
Applications with Microsoft Visual Basic 6.0 exam:

á Understand the high-level features and benefits of MTS. This
will provide the foundation you need to successfully develop
both MTS clients and components.

á List the platform requirements and limitations for MTS instal-
lations. Also know how MTS is distributed by Microsoft.

á Perform an installation of MTS.

á Choose the appropriate MTS installation options and know
which ones are important for the developer.

á Set up system package security. Use the default roles for the
system package to allow administrative access to an MTS
installation.

á Use the Package and Deployment Wizard. Understand how to
create a deployment package for an ActiveX component
intended to run on an MTS machine.

á Create MTS packages with the MTS Explorer.

á Rename existing packages using the MTS Explorer.

á Enable the package’s Authorization tracking so Role-based
security will be active.

á Understand that any components in a package will run with the
NT security privileges for the user specified in the identity settings.

á Export and Import packages. Be familiar with how to move a
package and all of its associated support files and settings to
another MTS system.

The intention of this chapter is to familiarize the developer with the
MTS environment. Although some fundamental development con-
cepts were introduced, most of the material related to administrative
issues of MTS. A developer should be able to easily utilize the MTS
tools at this point, which is a fundamental skill for anyone who wants
to develop with MTS. In the next chapter, we will shift the focus to
developing both components and clients for the MTS environment.

CHAPTER SUMMARY

KEY TERMS
• Option Pack

• Package

• Package and Deployment Wizard

• System package

• Administrator role

• Reader role

• MTS Explorer

• Identity

• Package File (.PAK)

18 002-8 CH 15 3/1/99 8:32 AM Page 758

Chapter 15 UNDERSTANDING THE MTS DEVELOPMENT ENVIRONMENT 759

A P P LY YO U R K N O W L E D G E

Exercises

15.1 Install MTS

In this exercise, you will install Microsoft Transaction
Server.

Estimated Time: 25 minutes

MTS Installation can be performed from both the
Internet or from a CD. To download the Option Pack
for free, go to www.microsoft.com. It is assumed that
you will be using Windows NT Server for this and all
subsequent exercises.

After you have the setup program downloaded or have
the Option Pack CD, you can perform an installation
by following these steps:

1. Start the Microsoft Windows NT 4.0 Option
Pack setup program. When the welcome screen
appears, click Next.

2. When prompted for the installation type, choose
Custom.

3. Deselect every check box. (You will get messages
asking if you’re sure you want to do this where
the check box is a core set of Option Pack files.

4. Click on the check box for Transaction Server.
Notice that any other components that
Transaction Server depends upon are also checked.

5. Select the Transaction Server component and
click on Show Subcomponents.

6. Make sure all Transaction Server subcomponents
are checked.

7. Click OK.

8. Click Next. A dialog box will appear explaining
that it is completing installation.

9. After the files are copied, a screen with a label
that says thank you for choosing Microsoft
Software will appear.

10. Click Finish.

15.2 Create a Package

In this exercise, you will create a package using the
MTS Explorer.

Estimated Time: 10 minutes

To create a package, follow these steps:

1. From the Windows NT Explorer, select the
Programs Menu from the Start Menu and expand
the Windows NT 4.0 Option Pack.

2. From the Transaction Server submenu, open the
MTS Explorer.

3. From the MTS Explorer, double-click to expand
the Microsoft Transaction Server folder in the left
pane.

4. Expand the Computers subfolder.

5. Expand the My Computer icon.

6. Click on the Packages Installed folder.

7. While it’s selected, right-click on the Packages
Installed folder and choose New from the pop-up
menu, then Package.

8. This will bring up the Package Wizard. Click on
the button labeled Create an Empty Package.

9. You will be prompted for a name for the new
package. In the textbox, type Pubs Components.

10. Click Next.

18 002-8 CH 15 3/1/99 8:32 AM Page 759

760 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

11. Next, you will set the package identity. From the
account frame, click on This User.

12. Click the Browse button to the right of the User
text box.

13. A list of local or domain users will be displayed.
If you know the Administrator’s password, select
Administrator. Otherwise, select the user account
you utilized to log on to your current Windows
NT session.

14. In the Password text box, type the password for
the account you selected in the previous step.

15. Click Finish.

15.3 Export an MTS Package

Here you will learn how to create an MTS package file
by exporting an existing package.

Estimated Time: 5 minutes

To export the package created in previous exercises, do
the following:

1. Start the MTS Explorer.

2. From the My Computer icon, select the Packages
Installed folder, then select the package called
Pubs Components.

3. From the Action menu on the toolbar, select
Export.

4. When you are prompted for the path to which
you are exporting, type C:\Packages\pubs.pak.

5. Click Export.

6. A message box will inform you that the package
was successfully exported.

7. Click OK.

15.4 Import an Existing Package

This exercise addresses importing an existing package
into an MTS computer.

Estimated Time: 5 minutes

In this exercise, we will import the package we exported
in the last exercise. First we will delete the package and
then import it through the following steps:

1. Start the MTS Explorer.

2. Select the Pubs Components package.

3. From the Action menu, select Delete.

4. A dialog box will appear asking if you are sure
you want to delete Pubs Components.

5. Click on the Yes button.

6. Select the Packages Installed folder in the MTS
Explorer.

7. Right-click the Packages Installed folder, then
select New, Component.

8. Click on the button labeled Install pre-built
packages.

9. The Select Package Files dialog box appears.
Click on the Add button.

10. Browse to C:\Packages and double-click the
pubs.pak file.

11. On the Select Package Files window, click the
Next button.

12. The Identity dialog box appears. Set the same
identity values that were set in Exercise 15.2.

13. Click Next.

14. The Installation Options window shows the path
where the component files will be saved.

18 002-8 CH 15 3/1/99 8:32 AM Page 760

Chapter 15 UNDERSTANDING THE MTS DEVELOPMENT ENVIRONMENT 761

A P P LY YO U R K N O W L E D G E

15. Click Finish.

16. Notice that the Pubs Components package
reappears in the MTS Explorer.

Review Questions
1. What is the minimum service pack that should

be installed if you want to run Microsoft
Transaction Server under Windows NT Server?

2. How do you ensure that the developer documen-
tation is included when you install MTS?

3. After a default installation, who may access the
administrative functions of an MTS?

4. How can you be sure that all support files for a
component are available on a server running
MTS before you add the component to a
package?

5. What option must be selected to create a new
package from the MTS Explorer for the first
time?

6. When can a name be assigned to a package?

7. How do you determine which components are
imported if you are importing a package from a
PAK file?

8. How does the operating system determine what
permissions apply to an object when it is run-
ning in the MTS environment?

Exam Questions
1. You are setting up MTS in a development envi-

ronment for testing purposes. Because you do
not have an NT Server available, you decide to
install it on a Windows 95 machine. How can
you ensure that you will be able to call the MTS
components that are running on the Windows
95 system remotely?

A. Use a custom installation type which will
install support for remote applications.

B. MTS objects running on a Windows 95
machine cannot be called remotely.

C. Be sure to install DCOM support for
Windows 95.

D. Install the Remote Automation manager on
the system.

2. You are installing the Windows NT 4.0 Option
Pack and choose a Typical install. Which MTS
components will not be installed to your system?
Pick all that apply.

A. MTS runtime environment

B. MTS Explorer

C. MTS core documentation

D. MTS development samples

E. MTS development documentation

3. A junior developer in your organization is devel-
oping a client program that will be accessing your
MTS objects. You have been instructed by your
MIS Manager not to allow the junior developers
to modify packages on the MTS machine.

18 002-8 CH 15 3/1/99 8:32 AM Page 761

762 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

However, they need to be able to look at the con-
tents of the server and of individual packages.
What’s the best solution to this problem?

A. Do not modify the default installation. It will
meet every requirement listed above.

B. This can be done by setting MTS Explorer
read permissions for the junior developer and
full control to senior developers.

C. Add the junior developer’s user account to the
Reader role and users who require administra-
tive rights to the Administrator role of the
Utility package.

D. None of the above.

4. You are using MTS to run objects that will be
called by your Internet Information Server
through ASP. After some time, you have com-
pleted the ActiveX DLL that will provide these
objects. What package type should you choose
when using the Package and Deployment Wizard
to create the appropriate setup package for your
ActiveX DLL project?

A. Standard Setup Package

B. MTS Package

C. Internet Package

D. Dependency File

5. You are implementing MTS in a distributed
environment. In order to balance server load,
you decide to duplicate a package onto four sep-
arate servers. Currently the package is already
running on one of the three servers, and it con-
tains 15 components. Which option must you
use when creating the package, and what file
must exist for you to complete the process on
the other three systems?

A. Create a new remote component. Be sure to
transfer each of the components in your pack-
age to the remote server.

B. Create a package file using the Package and
Deployment Wizard. Run the setup on each
of the three servers which will automatically
import the components.

C. Select the option for a pre-built package. You
must have already exported the package to a
.vbr file.

D. Select the option for a pre-built package. You
must have already exported the package to a
.pak file.

6. You are developing a client application that uses
an MTS component. The object that you are
instantiating does not have any logon of which
you are aware; however, you are receiving a run-
time error indicating a password is incorrect.
What could be causing this?

A. You are not logged on to the domain.

B. The package’s identity settings are set to use
the local user account.

C. The package’s identity settings have the wrong
password for the account the package is iden-
tifying.

D. The package’s identity settings need to be
using an account with administrator privileges.

7. From which folder in the MTS Explorer can you
add new packages?

A. My Computer

B. Packages

C. Packages Installed

D. Components

18 002-8 CH 15 3/1/99 8:32 AM Page 762

Chapter 15 UNDERSTANDING THE MTS DEVELOPMENT ENVIRONMENT 763

A P P LY YO U R K N O W L E D G E

8. You are configuring an MTS package for secu-
rity. So far, you have successfully created roles,
added users, and assigned them to components.
What is the final step that you need to take to
activate your security settings?

A. Stop and restart the Transaction Server service.

B. Rerun the Export wizard again on your
package.

C. Rerun the client setup package on all clients.

D. Enable authorization checking.

E. Enable impersonation.

Answers to Review Questions
1. To run Transaction Server in Windows NT, you

are required to have at least Service Pack 3
installed. See “Configuring a Server to Run MTS.”

2. Choose a custom install and be sure to select the
option under Transaction Server that includes
the developer documentation. Developer docu-
mentation is not included by default. See
“Installing MTS.”

3. Anyone can administer an MTS machine
immediately after it is installed. In order to
limit access, you must first add users to the
Administrator role for the system package. For
more information, see “Setting Up Security on
the System Package.”

4. The Package and Deployment Wizard can be
used to install the component, all its dependent
support files, and any necessary registry settings
on the target MTS server. See “The Package and
Deployment Wizard.”

5. Create an Empty Package from the Package
Wizard. See “Creating a Package by Using the
MTS Explorer.”

6. A package can be named when it is created or
renamed at any time. For more information, see
“Assigning Names to Packages.”

7. By default when you import a package from a
package file, all of the components that were in
the package when it was exported will be
imported. For more information, see “Exporting
and Importing Existing Packages.”

8. The operating system uses the values from the
identity tab to determine how to apply permis-
sions to any activity performed by an MTS
object. See “Assign Security to Packages.”

Answers to Exam Questions
1. C. Windows 95 requires DCOM support to be

installed if you intend to call MTS objects on it
from a remote machine. DCOM support is not
built into Windows 95 but can be downloaded
for free from Microsoft. For more information,
see “Configuring a Server to Run MTS.”

2. D, E. A typical installation of the Option Pack
will install the MTS runtime environment and
everything you need to perform administrative
tasks on your MTS machine, which includes the
MTS Explorer and the core documentation. The
only thing a Typical Installation lacks is the devel-
oper samples and documentation, which can only
be installed through a custom installation. For
more information, see “Installing MTS.”

18 002-8 CH 15 3/1/99 8:32 AM Page 763

764 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

3. D. None of the answers are correct. In order to
limit a user from accessing the MTS Explorer to
do administrative tasks, the user should be added
to the Reader role of the System package.
Additionally, their user account, or any NT
group of which they are a member, must not be
mapped to the Administrator role. For more
information, see “Setting Up Security on the
System Package.”

4. A. A standard setup package. The Package and
Deployment Wizard from VB allows you to cre-
ate a setup package to register your component
on the MTS machine and install all necessary
support files. The Internet Package is for creating
setup packages that can be downloaded and exe-
cuted from an Internet Browser. There is no
MTS Package option. Dependency File option
creates a dependency file used in setup programs
for clients who use the DLL. See “The Package
and Deployment Wizard.”

5. D. The easiest way to duplicate a package across
multiple MTS systems is to export it to a PAK
file and then import that PAK file on each of the
target systems. For more information, see
“Exporting and Importing Existing Packages.”

6. C. When identity settings are configured and a
package is configured to use an NT user account,
the password for that account is not verified. If
the wrong password is entered, then a runtime
error will occur for any clients who call the
component. See “Assign Security to Packages.”

7. C. Add new packages from the Packages Installed
folder in the MTS Explorer. See “Creating a
Package by Using the MTS Explorer.”

8. D. For Role-based security to take effect, autho-
rization tracking must be enabled. This
is done from the security tab in the package
properties window. For more information, see
“Assign Security to Packages.”

18 002-8 CH 15 3/1/99 8:32 AM Page 764

OBJECT IVES

16C H A P T E R

Developing MTS
Applications

The Designing and Implementing Distributed
Applications with Microsoft Visual Basic 6.0 exam lists
the following objectives regarding MTS development:

Configure a client computer to use an MTS
component (70-175).

• Create packages that install or update MTS
components on a client computer.

. Although the code to call an MTS component is
essentially identical to that used to call a local com-
ponent, it does assume that certain steps have been
taken to prepare the client. The client is required to
have local type library information and to know the
name of the MTS computer for which it will be
calling. This chapter discusses how to meet this
requirement.

. The MTS Explorer provides a way to create a single
executable that will install all the files and Registry
entries necessary to call the MTS component
objects remotely from the client computer. Beyond
creating the first client package, one should under-
stand the necessity of updating the client as changes
are made to the MTS components and how this
can be done easily through tools provided in MTS.

Add components to an MTS package (70-175).

• Set transactional properties of components.

• Set security properties of components.

. When a VB developer has completed a COM com-
ponent, the component must be added to an MTS
package to run it in the MTS runtime environment.

. If a component that will be used on Transaction
Server will be using transactions, then it must be
configured properly at the server side. Because
transactions are associated with COM objects,
which are not data sources themselves, it is impor-
tant to understand how MTS will enlist the under-
lying data providers into transactions that have
been initiated at the component level.

19 002-8 CH 16 3/1/99 8:33 AM Page 765

OBJECT IVES OUTL INE

Design and create components that will be
used with MTS (70-175).

. When developing a component specifically for
MTS, a developer will probably want to take advan-
tage of features made available by the MTS runtime
environment. In particular, the ObjectContext
object and all its methods are available as the means
to take advantage of the MTS.

Use role-based security to limit use of an MTS
package to specific users (70-175).

• Create roles.

• Assign roles to components or component
interfaces.

• Add users to roles.

. MTS provides a method of security known as role-
based security to enable administrators to determine
the availability of components to clients. You
should understand how the security features are
integrated into the Windows NT security model.

. Know how to create roles from the MTS Explorer
that can be used for security purposes. Be sure that
you understand the relationship between roles and
packages.

. After a role is created, it can be used to limit access
to entire components in MTS, or even to specific
component interfaces.

. Adding users to roles enables you to map Windows
NT users to roles created in MTS. Be sure that you
understand the steps it takes to do this.

Calling MTS Components from Visual
Basic Clients 768

Creating Packages that Install or
Update MTS Components on a Client 769

Configuring a Client Computer to
Use an MTS Component 771

Developing MTS Components with
Visual Basic 772

Understanding the MTS Runtime
Environment 773

Adding Components to an MTS Package 775

Using Transactions 777

Understanding MTS Client Development 780

Understanding MTS Security 781

Using Role-Based Security to Limit
Use of an MTS Package to
Specific Users 781

Creating and Adding Users to Roles 782

Assigning Roles to Components or
Component Interfaces 784

Setting Security Properties of
Components 785

Chapter Summary 787

19 002-8 CH 16 3/1/99 8:33 AM Page 766

STUDY STRATEGIES

. Run the code samples in your own environment.
Create similar applications to supplement the
samples in the book. This will help you get the
feel for the development paradigm in MTS.

. Practice client deployment by creating your own
components and adding them to MTS. Export
client packages and run them on a test client.
Also, experiment with the implications of mak-
ing changes to an MTS component. After run-
ning the client package, make changes to your
MTS component(s) and move the changed
component up to the MTS Server. Observe how
the changes affect the operation of the client.

. Look beyond the requirements of the exam.
Although MTS-related requirements appear
several times on the exam guide, they only
scratch the surface of what’s possible with MTS.

MTS is a complete subject of study in itself.
The more experience you have with some of the
advanced features that are not requirements
for the VB exam, the better you will understand
what is on the exam. Research the Transaction
List and Transaction Statistics dialog boxes
that are available in the MTS Explorer. This will
help you get an idea of how a transaction-
enabled component is running in the MTS
environment.

. Run tests on MTS security in your own environ-
ment. Try to create a situation in which you
know security is violated, and observe the
resulting message(s).

19 002-8 CH 16 3/1/99 8:33 AM Page 767

768 Par t I VISUAL BASIC 6 EXAM CONCEPTS

INTRODUCTION

One of the nice things about developing for MTS is that client code
that calls an MTS component is fairly similar to code that calls local
in-process or out-of-process components. However, a few things do
change. A handful of internal methods are available to a component
when it is running in the MTS environment that will affect the
design of the client. If the underlying data source supports transac-
tions, a business component can be designed to take advantage of
them with little effort by the developer. This chapter covers these
features, which happen to be the most important features of
Transaction Server.

Because MTS provides an enterprise solution, it brings enterprise
requirements along with it. This is definitely illustrated in the area of
security. This chapter examines several options and features provided
by MTS to help ensure that your components and clients are running
in a secure environment.

CALLING MTS COMPONENTS FROM
VISUAL BASIC CLIENTS

. Configure a client computer to use an MTS component.

It has already been said—in so many words—that calling an MTS
component does not require a huge learning curve for the developer.
The reason for this is that the details of where the component is run-
ning are by and large hidden from the developer. MTS components
are always COM objects. Previous chapters provided examples of
developing with a variety of COM objects such as ActiveX controls,
in-process ActiveX DLLs, and ActiveX EXEs that run in a separate
process from the caller. Although these types of COM objects might
differ subtly, developing with them is essentially the same. That is, in
VB terms, it entails working with properties, methods, and events.

Knowledge of COM objects easily transfers to MTS objects. Also,
like other COM object types, the operating system handles the
details of how the object is instantiated. Again, if you create an
instance of an object that is in a DLL, you don’t need to know
the location of the DLL, or even that the object is in a DLL.

19 002-8 CH 16 3/1/99 8:33 AM Page 768

Chapter 16 DEVELOPING MTS APPLICATIONS 769

After your project has a reference to the component, you need only
to write the code to create the instance of the object by its familiar
classname. COM services, which are integrated into the operating
system, will do the work of looking up the class information in the
Registry and executing the appropriate code in the appropriate DLL.
This is true if the object is contained in a component implemented
in the form of an EXE or an OCX.

The same principle applies to COM objects in an MTS setting.
Rather than look for a local DLL or EXE file, however, it will make
the call to a Transaction Server (which could be the local machine
or a remote machine) and the Transaction Server will handle the
request to instantiate the object. The first step for the developer who
is already familiar with calling COM objects is to learn how to
enable a client computer to call MTS objects.

Creating Packages That Install or
Update MTS Components on a Client
When a client calls an MTS component, it is likely that the compo-
nent will be running on another machine on the network. However,
the client must maintain certain information about the component
locally. For example, the name of the computer where MTS and the
component are running is stored in the local Registry. That way,
when a call is made to the component, the COM services know to
forward the call to the appropriate server.

An example of information stored locally, which is more relevant to
the developer, is the Components type library. As explained in previ-
ous chapters, the type library contains details about the properties,
methods, and events exposed by the component’s interface. All the
benefits associated with the type library in local components also
apply to an MTS component. If a component is registered as a
remote MTS component, for example, the VB developer can still
take advantage of syntax checking, auto-list members, and other fea-
tures in VB related to early binding. Also, having the type library
local makes information about the methods, properties, and events
of component running on an MTS machine readily available. Tools
designed for viewing type library information, such as the Object
Browser in Visual Basic, work in the same manner for MTS objects
as they do for local objects.

19 002-8 CH 16 3/1/99 8:33 AM Page 769

770 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The developer who wants to make calls to the MTS object is faced
with the problem of bringing all the previously described compo-
nents to the local developer machine. Luckily, MTS provides a sim-
ple way to configure the client computer whenever an MTS package
is exported. You will recall from the preceding chapter that exporting
a package is a simple process performed from the MTS Explorer. In
addition to exporting a PAK file that can be imported into another
MTS machine, the Package Export Wizard also creates a package to
automate the configuration of clients. The client package is a single
executable program that does the following:

á It adds all appropriate and necessary settings related to the
component’s class information to the client’s Registry.

á The type library for each component in the package is copied
to a local directory.

á If the MTS computer is a not the same as the client, all the
necessary Registry information to call the components
remotely will be added.

The steps to create the client package are exactly the same as those to
export an MTS package.

S T E P B Y S T E P
16.1 Creating a Client Package

1. From the MTS Explorer, double-click the computer that con-
tains the package for which you want to create a client package.

2. Click on the MTS package.

3. From the Action menu, choose Export. Again, you can
right-click on the package while it is selected and then
select Export if you want to. Either way will bring you to
the Export Package dialog box shown in Figure 16.1.

4. Type in or browse to the destination path where you want
the package file to be copied.

5. With the desired path in the text box, click the Export
button. If there are no errors, the wizard will display a
message box indicating that the export was successful.

6. Click OK.

F IGU R E 16 .1
The Export wizard used to export an MTS pack-
age will also build a client installation package.

19 002-8 CH 16 3/1/99 8:33 AM Page 770

Chapter 16 DEVELOPING MTS APPLICATIONS 771

After these steps are complete, the client package is ready to go. If
you want to verify the work that was done, all you have to do is
locate the PAK file that was exported from the Windows Explorer.
The client package will be found in a subdirectory called Clients,
which will be adjacent to the PAK file.

Configuring a Client Computer to Use
an MTS Component
There are two reasons you would run the executable client package:

á If you intend to develop with the components from the MTS
package

á If you intend to run a client program that is going to use com-
ponents from the MTS package

Essentially, after you execute the client package program on the
client computer, the MTS components will be registered. If it is a
VB developer machine, VB projects can reference the MTS compo-
nent like they would any other COM object. If it is a Web server
that supports COM through some scripting mechanism, such as
Active Server Pages or Cold Fusion, the MTS object will be available
to any server-side script. If the computer is a Windows machine that
will be running Win32 software that makes calls to the MTS object,
it will contain all the necessary configuration. Whatever the reason,
configuring the client is easy.

S T E P B Y S T E P
16.2 Configuring the Client

1. The first thing that must be done is to locate the client
package. The executable for the client package will always
be in a directory called Clients, which will be in the same
path as the PAK file that was exported by the Export
Wizard. By default, the name of the executable will be
identical to the name of the PAK file (except, of course,
the extension will be .EXE).

2. Run the executable program.

continues

19 002-8 CH 16 3/1/99 8:33 AM Page 771

772 Par t I VISUAL BASIC 6 EXAM CONCEPTS

3. A dialog box will briefly appear indicating that files are
being copied.

4. After the last file is copied, the client configuration is
done.

After the client package is complete, a few changes can be observed
in the system. First, the Add/Remove Program Properties control
panel will contain a new listing named Remote Application. This
listing has the name of the package appended to it. Figure 16.2
shows the Add/Remove control panel for a client that has three MTS
client packages installed. This can be used to uninstall the client
package if there is a need to do so.

Note that it is common for the package to undergo many changes
from the time it is first created. Each time a change is made that will
affect clients—for example, if more components are added or new
interfaces are added to existing components—the client package will
have to be exported again. Also, the client package will need to run
on any client workstation that uses it again. It is not necessary to
uninstall the existing client package because any new versions of it
that are executed will automatically replace the old one. The number
of entries in the Add/Remove Program Properties control panel will
not increase because new versions of the client package are used to
update the system.

DEVELOPING MTS COMPONENTS
WITH VISUAL BASIC

. Design and create components that will be used with MTS.

Now that you have had an introductory look at what it takes to
enable development of a client, it is time to turn to the development
of an MTS component. Programmers who have previous experience
developing COM components should slide into MTS component
development with very little difficulty. In general, the same principles
behind the development of ActiveX components can all be applied to
developing a component for MTS. As long as the component is com-
piled as a DLL, it will run in the MTS runtime environment.

F IGU R E 16 .2
This dialog box reveals that the client computer
can use components in the IRSC Components,
MTSNEW, and Pubs Components packages.

continued

19 002-8 CH 16 3/1/99 8:33 AM Page 772

Chapter 16 DEVELOPING MTS APPLICATIONS 773

Understanding the MTS Runtime
Environment
A careful look at the MTS runtime environment will help to make the
distinctions necessary to develop an MTS-specific component. When
a client calls an MTS object, the object does not receive those calls
directly. Instead, an MTS process stands between the client and the
object. This architecture allows MTS to provide the following services:

á Automatic management of object instances

MTS will automatically track all instances of objects, no mat-
ter how many clients are using the objects. Related to this fea-
ture, MTS provides the component developer with control
over how long an object’s associated resources are kept alive.

á Automatic management of processes and threads

Depending on the thread model used by the component, MTS
will create threads as necessary to ensure that object code exe-
cutes efficiently.

á Distributed, atomic transactions for underlying data sources

MTS allows objects to take advantage of the transaction features
provided by the underlying data services. A transaction is said to
be atomic when all the work done in association with the trans-
action is done as a group. In other words, if any single aspect of
the transaction fails, the entire transaction is rolled back.

á Built-in user security

MTS provides a simple way for security to be applied to MTS
components by taking advantage of underlying Windows NT
security structures.

MTS objects that run on the local machine of the client may run in-
process or in separate processes configured by the server. If the object
will be running on a remote MTS machine, MTS must run it in a
server process. Packages in which components will run in-process are
referred to as Library Packages. If the components in the package are
to be run out of the client process, the package is referred to as a
Server Package. Exactly how the component will run can be config-
ured in MTS Explorer from the package’s Properties dialog box.
Figure 16.3 shows the Activation tab, which is part of the Properties
window of a package in MTS Explorer.

F IGURE 16 .3
The Activation tab enables you to choose which
activation type should be applied to the pack-
age. This in turn will determine whether its
components will run in-process or as separate
processes.

19 002-8 CH 16 3/1/99 8:33 AM Page 773

774 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Context Object
As previously noted, MTS will track object instances, allow a transac-
tion to be associated with the object, and keep track of security.
Internally, MTS does this through what is known as a Context object.
Every MTS object will always have a Context object. Context objects
are created and associated with an MTS object automatically by the
MTS runtime environment. The Context object is used by MTS to
identify any transaction that the MTS object is participating in. It is
directly involved with committing or rolling back the transactions.
Furthermore, it also maintains the state of security properties.

From a component developer’s perspective, the presence of the
Context object introduces unique elements into COM component
development. In particular, by taking advantage of the functionality
available in the Context object, a component can be designed to be
stateless. In other words, an object can be designed to release any
resources it is using for internal variables, properties, ODBC connec-
tions, and so on. This is something that is usually done when a
transaction is either completed or when it fails. This is a departure
from the way other COM components (said to be stateful) are devel-
oped. Stateful objects retain resources until the object is destroyed.
Hence, stateless objects provide the most scalable solution. With
stateless objects, clients can create an instance of an object and use
the object to perform transactions. Because the object’s resources are
released when the transaction is complete, there is no cost in not
immediately destroying the object. Of course, there are implications
for the client as well, in that any properties lose their values when
the transaction is complete.

Resource Dispensers
Another core topic that helps the developer to understand the run-
time environment is, what’s known as, a Resource Dispenser. A
Resource Dispenser manages shared states for components. In other
words, if components have similar uses for the same resource, such
as a global property or database connection, they can share it. An
important example is the ODBC Resource Dispenser. The ODBC
Resource Dispenser provides components with two key benefits:

á Components will automatically share ODBC connections,
which greatly reduces what is traditionally considered a huge
cost for enterprise applications.

19 002-8 CH 16 3/1/99 8:33 AM Page 774

Chapter 16 DEVELOPING MTS APPLICATIONS 775

á If the MTS component is configured to use a transaction, the
activity performed by the ODBC connections on behalf of the
component will automatically be enlisted in the transaction.

In a nutshell, the ODBC Resource Dispenser helps to provide a reliable
infrastructure that frees the developer to focus on the business logic.

A second example of a Resource Dispenser is the Shared Property
Manager. By default, each instance of an object is isolated from
other instances of the same object. In other words, properties
exposed by objects are only accessible to the client that instantiated
the object. The Shared Property Manager provides a standard way
for developers to allow MTS objects from different clients to share
property information with each other. This way, a developer can cir-
cumvent the default isolation provided to each instance of an object.

Adding Components to an
MTS Package
. Add components to an MTS package.

After you have created your empty package, it follows that you will
be adding components to the package. Keep in mind that for a
COM component to be compatible with MTS, it must be compiled
as an ActiveX DLL. A component can be added to a package in a
couple of ways:

á Component Wizard. The Component Wizard guides you
through the process of adding a component Step by step.
Within the Component Wizard, you can add components
that are either already registered on the machine or you can
install a new component. In the latter case, the Component
Wizard automatically registers the ActiveX DLL’s class infor-
mation for you.

á Drag and drop. The MTS Explorer enables you to drag a
DLL from the Windows Explorer that contains the components
you want to add onto the package in the window. If the DLL
you are dragging is unregistered, the MTS will register it for you.

19 002-8 CH 16 3/1/99 8:33 AM Page 775

776 Par t I VISUAL BASIC 6 EXAM CONCEPTS

It is quite possible for a component to be added to multiple pack-
ages. You might find that separate MTS applications might have dif-
ferent security needs, but that they use the same components.
Putting the same component into separate packages will meet this
requirement.

To use the Component Wizard to add a component that is already
registered, you must execute the following steps:

S T E P B Y S T E P
16.3 Adding a Component That Is Already Registered

1. From MTS Explorer, double-click to expand the com-
puter that contains the package you will be adding a
component to.

2. Double-click and expand the target package. You will see
that there are two subfolders off of the package. These
subfolders are standard to all packages in MTS. The Roles
subfolder relates to security settings (see Chapter 15,
“Understanding the MTS Development Environment”).

3. Select the Component subfolder. From the Action menu,
choose New, and then choose Component. Alternatively,
with the Component subfolder selected, you can right-click
to get the same menu in the form of a pop-up menu, or
you can click on the New Object button from the toolbar.

4. The Component Wizard first asks whether you want to
install a new component or to install components that are
already registered, as in Figure 16.4. If the MTS machine
is also the development machine, it is likely that the com-
ponent will already be registered.

5. Click on the import component(s) that are already regis-
tered button.

6. This brings you to the Choose Components to Import
window. The wizard will then build a list of all the regis-
tered components, as in Figure 16.5. Depending on the
number of components that you have registered, this
could take a few seconds or more than a minute. Notice
that only in-process components are listed.

F IGU R E 16 .4
The Component Wizard guides you through the
process of adding components to a package.

19 002-8 CH 16 3/1/99 8:33 AM Page 776

Chapter 16 DEVELOPING MTS APPLICATIONS 777

7. By default, only the names of the components are listed.
You can select the Details check box, and the path to the
associated file that contains the file will be displayed as
well as the Class ID of the component.

8. Select the component you wish to add. You can add as
many components that are registered as you wish by
holding the Ctrl key down as you select them.

9. After you finish adding components, click on the Finish
button.

Using Transactions
If a component uses a Resource Dispenser that supports transactions,
such as the ODBC Resource Dispenser, the transactional features of
MTS can be exploited. MTS automates the details of implementing
transactions. Essentially, transactions are initiated by the runtime
environment rather than through code. MTS components can be
configured to support transactions.

Setting Transaction Properties of
Components
Transaction properties can be set for an MTS component in two
ways: through either the MTS Explorer, or from the Visual Basic 6.0
development environment. The MTS Explorer provides the following
four different settings for a component to have transaction support:

á Requires a transaction. If this setting is selected, the compo-
nent must always participate in a transaction. If the client already
has a transaction associated with it, the object context will inherit
the pre-existing transaction. Otherwise, MTS will begin a new
transaction when the object is instantiated by the client.

á Requires a new transaction. This setting causes an MTS to
begin a new transaction every time an object is created, regard-
less of whether the client already has a transaction. This option
ensures that an object always has its own transaction associated
with it.

F IGURE 1 6 .5
In-process components that are registered on
the MTS machine will be listed by name or
class ID.

19 002-8 CH 16 3/1/99 8:33 AM Page 777

778 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á Supports transactions. Objects created from a component
with this setting will be more flexible in that they might inherit
a transaction or they might execute without a transaction. This
is determined by the state of the client at instantiation time of
the object. If the client already has a transaction in process, the
object will use the transaction. If no transaction is present in
the client’s context, the object will not use a transaction either.

á Does not support transactions. The object will never use
transactions in its execution. Even if the client has a transaction,
the object will still run outside the context of the transaction.

To use MTS Explorer to set the level of transaction support for a
component, execute the following steps:

S T E P B Y S T E P
16.4 Setting the Level of Transaction Support for a

Component

1. From the MTS Explorer, double-click the computer that
contains the component for which you want to set trans-
action support properties.

2. Double-click the package that contains the component.

3. Double-click the Components folder and select the appro-
priate component.

4. Right-click on the component and choose Properties.

5. Click on the Transaction tab (see Figure 16.6).

6. Set one of the options in the Transaction Support frame.

7. Click OK.

Alternatively, transaction properties can be set from within
the Visual Basic development environment. VB6 exposes the
MTSTransactionMode property for all classes in an ActiveX DLL
project. Because MTS components are always ActiveX DLLs, the
MTSTransactionMode property is not available in any other type of
project. After a component has been compiled with the appropriate

F IGU R E 16 .6
The Transaction Support option can be set
through the component’s Properties dialog box
in MTS Explorer.

19 002-8 CH 16 3/1/99 8:33 AM Page 778

Chapter 16 DEVELOPING MTS APPLICATIONS 779

MTSTransactionMode property value, it is no longer necessary to
address the transaction properties from the MTS Explorer. It is also
worth noting that the component will ignore the MTSTransactionMode
property if it is not run in MTS. The possible values for the
MTSTransactionMode are as follows:

á NotAnMTSObject This setting is for components that will not
run in MTS.

á NoTransactions This setting is equivalent to the MTS
Explorer setting of Does Not Support Transactions.

á RequiresTransaction This setting is equivalent to the MTS
Explorer setting of Requires a Transaction.

á UsesTransaction This setting is equivalent to the MTS
Explorer setting of Supports Transactions.

á RequiresNewTransaction This setting is equivalent to the
MTS Explorer setting of Requires a New Transaction.

After the transaction support for a component has been set, every-
thing will be in place for a transaction to be started. Depending on
the option selected, the transaction will be initiated when the object
is instantiated, or it will be instantiated without a transaction.
Committing or canceling a transaction is another matter, however.
MTS provides the means to these actions through an object’s
Context object. The Context object supports transaction features
through two methods: SetComplete and SetAbort.

If the SetComplete method of an object’s context is called from
within the component, a couple of things will happen:

á The transaction initiated by the object will be committed.

á The object will release all its current resources, including
memory used for properties and variables.

If SetAbort is called, the transaction will be rolled back and resources
will be released. It is precisely the use of these methods that turns a
regular COM object into a stateless MTS-specific object.

It can easily be seen that calls to these methods must be carefully
placed. Generally, SetComplete is called at the end of a method that
performs some action on a database, and the action executes success-
fully. SetAbort might be called if the method fails for any reason.

19 002-8 CH 16 3/1/99 8:33 AM Page 779

780 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The following code shows an example of a simple object method
that uses SetComplete and SetAbort:

Public Name As String

Public Sub AddName()
Dim oContext As ObjectContext

On Error GoTo ErrorHandler

Set oContext = GetObjectContext()

‘<code to insert name into database>

oContext.SetComplete
Set oContext = Nothing
Exit Sub

ErrorHandler:
‘<code to notify client of error>
oContext.SetAbort
Set oContext = Nothing

End Sub

In the preceding sample code, the class exposes a single property
called Name. When the AddName method is called, the object will
attempt to add the name to the database. If all the code in the
AddName method executes successfully, the object calls SetComplete,
which will instruct MTS to commit the transaction and release
the resources associated with this object. If for any reason an error
occurs, the error handler will notify the caller of the error and
call SetAbort. The MTS runtime environment will roll back the
transaction and release the object’s resources.

UNDERSTANDING MTS CLIENT
DEVELOPMENT

The way that MTS handles transactions and resources certainly has
implications for the client. On the whole, the syntax for coding a
client does not change. It is extremely important, however, for a
client developer to know the inner workings of the MTS object it is
calling. The client developer needs to be aware of exactly which
methods will call SetComplete or SetAbort. Because it is possible that
an MTS object was designed to be stateless, the unaware developer
could be in for a big surprise when properties lose their values or
when methods fail because they depend on some internal variable
whose contents have been erased.

19 002-8 CH 16 3/1/99 8:33 AM Page 780

Chapter 16 DEVELOPING MTS APPLICATIONS 781

UNDERSTANDING MTS SECURITY

. Use role-based security to limit use of an MTS package to
specific users.

MTS provides built-in security for components through what is
known as roles. A role corresponds to a user, group, or any combi-
nation of users and groups. Chapter 15 provided limited exposure
to how roles can be used to secure MTS components. If you recall,
when MTS was installed, one of the first configuration tasks was
adding appropriate users to the Administrator role for the System
package. Administrator role membership determined who was
able and who was unable to administer a given MTS machine.
Similarly, roles can be used to apply security to other MTS pack-
ages as well.

Using Role-Based Security to Limit Use
of an MTS Package to Specific Users
In its default state, an MTS package is not very secure, and therefore
its member components are not secure. Any client on the network
can use components in a package after it is first created. This could
potentially be dangerous if the components expose business-critical
functionality, such as performing financial transactions or providing
access to proprietary data. Also, components might be built to per-
form administrative actions for an enterprise system. It is easy to see
the need for securing MTS objects.

Adding security is a painless process. For components to be secured,
the following three things must happen:

á Roles must be created for the package that contains
components that require security.

á Roles must be assigned to the components that need to be
secured.

á Authorization checking must be enabled for the package.

Windows 95 and Role-Based
Security Role-based security
depends heavily on the security fea-
tures built in to Windows NT. For
this reason, many of the related
features in the MTS Explorer are
disabled if MTS is running on
Windows 95.

W
A

R
N

IN
G

19 002-8 CH 16 3/1/99 8:33 AM Page 781

782 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Creating and Adding Users to Roles
The first step in adding security to a component is to create a role.
After the role had been created, users and groups from the NT
domain can be added and removed at the will of the MTS
administrator.

It probably comes as no surprise that roles are created with the MTS
Explorer. The following steps enable you to create a role:

S T E P B Y S T E P
16.5 Creating a Role

1. From the MTS Explorer, double-click the computer that
contains packages that need security.

2. Double-click the package for which you need to create
roles. You will see a Roles folder directly off of the package
in the hierarchy represented in the left pane.

3. Double-click on the Roles folder. By default, no roles will
exist if this is a new package.

4. Right-click on the Roles folder, choose the New menu
item, and then choose the Roles submenu item.
Alternatively, you can select the same menu item from the
Action menu while the Roles folder is selected, or you can
click on the Create New Object button from the toolbar.

5. A dialog box appears asking you for the name of the role
to be created (see Figure 16.7).

6. Type in the name of the role.

7. Click OK.

You will probably want to add users to the role after it is created.
Mapping users to a role allows them to use any of the components
or component interfaces that have been allowed for the given role.
The following steps show you how to do this:

F IGU R E 16 .7
Creating a role just required you to assign a
name to the new role.

19 002-8 CH 16 3/1/99 8:33 AM Page 782

Chapter 16 DEVELOPING MTS APPLICATIONS 783

S T E P B Y S T E P
16.6 Mapping Users to a Role

1. From the Roles folder in a package, double-click the role
you want to add users to. This will expand it.

2. A Users folder will be directly off of the role in the
hierarchy. Select the Users folder.

3. Right-click on the Users folder, and choose New User.
The Add Users and Groups to Role dialog box appears
(see Figure 16.8).

4. Notice that, by default, only groups from the local com-
puter and the domain are shown. If you want to assign a
specific user, you can click on the Show Users button; the
list of valid users from the domain will be appended to the
group list.

5. Select a user or group from the list.

6. Click the Add button. Notice that the user or group is
added to the Add Names list. You can add as many users
and groups as you wish.

7. After you have finished adding to the role, click OK.

8. Each user and group that you added will now be repre-
sented by an icon in the right pane of the Explorer.

Keep in mind that users and groups can be added and removed from
roles at anytime. Additionally, if you have more complicated security
requirements, you may choose to create many roles. It is quite possi-
ble for a user to be a member of more than one role. You might, for
example, define a role for the members of management that will be
less restricted from certain interfaces or components. Likewise, a role
for general users that is not assigned access to everything might be
necessary. In a case like this, a department manager might be a
member of both roles. This particular individual would be able to
access any component or interface to which either of the roles has
been assigned.

F IGURE 16 .8
Adding users and groups is done through a
standard NT domain user list.

19 002-8 CH 16 3/1/99 8:33 AM Page 783

784 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Roles can be used for either programmatic security or declarative
security. Programmatic security requires the component developer to
write code that implements any needed security. On a basic level,
knowledge of only two methods is needed: IsSecurityEnabled and
IsCallerInRole. Both of these methods are methods of the
ObjectContext and return a Boolean value. IsSecurityEnabled will
return False if the component is not running in a server process. In
other words, if the MTS component is running in the process of the
caller, role checking is not available. If IsSecurityEnabled is True,
IsCallerInRole can be used. Essentially, this method will require the
programmer to know which roles exist on the MTS Server. The
IsCallerInRole takes the name of the role as an argument and
returns a value of True if the caller is a member of the role. Other
than that, it is up to the component programmer to write the logic
that implements any security inside the component. The following
code snippet is an example of how to use these methods to imple-
ment programmatic security:

Dim oContext As ObjectContext
Set oContext = GetObjectContext()

If oContext.IsSecurityEnabled Then
‘Check if caller is in role
If Not oContext.IsCallerInRole(“Sales”) Then

‘ Code to Raise error
End If

End If

In the example code, the component will check whether the caller is
a member of the role named Sales. If he is not, some kind of error is
raised back to the caller.

Declarative security does not require additional coding. Instead, roles
are assigned to components, and MTS checks whether callers are one
of these roles.

Assigning Roles to Components or
Component Interfaces
After the roles are in place, the next step to implement declarative
security is to associate these roles with specific components or compo-
nent interfaces. When a role is assigned to a component, MTS will
honor members of the role whenever they request to use an object
from the component. If a user who is not a member of any of the roles
makes a request for object instantiation, the request will be denied.

19 002-8 CH 16 3/1/99 8:33 AM Page 784

Chapter 16 DEVELOPING MTS APPLICATIONS 785

For any component or component interface, any number of roles
can be assigned at the discretion of the administrator of the MTS
Server.

The following steps enable you to assign a role to a component:

S T E P B Y S T E P
16.7 Assigning a Role to a Component

1. Expand the package that contains the component to
which you want to assign a role(s).

2. In the Components folder, expand the component.

3. You will see two folders off of the components. Expand the
one titled Role Membership. By default, no roles are
assigned to a component when it is first added to a package.

4. With the Role Membership folder selected, click on the
Action menu, choose New, and then choose Role. This
brings up the Select Roles window shown in Figure 16.9.

5. From the Roles frame, select the roles you want to assign
to the component. You may simultaneously select as many
roles as you want by clicking on each one.

6. Click OK.

7. Now the Role Membership folder will contain an object
for each role that was assigned to it.

Setting Security Properties of
Components
To ensure that role-based security is enabled, authorization checking
must be enabled first. Chapter 15 discussed how to enable authoriza-
tion checking for a package through the package’s properties. When
this is done, roles are checked for every component in the package.

F IGURE 16 .9
Role membership enables you to assign a role
to a component.

N
O

T
E Components With More Than One

Interface Some MTS components
might export more than one interface.
When you assign a role to a compo-
nent, it enables users in that role to
use only the default interface of the
component. If the component has
additional interfaces, you must
remember to assign roles to each
interface as desired. This is done in
the exact same way as assigning
roles to components, except the Role
Membership folder will be a child of a
specific interface. Additional inter-
faces are listed in the Interfaces
folder off of the component.

19 002-8 CH 16 3/1/99 8:33 AM Page 785

786 Par t I VISUAL BASIC 6 EXAM CONCEPTS

An alternative to this is to enable authorization checking for a spe-
cific component. This allows for more flexibility in security check-
ing. Rather than checking for role membership for all components,
MTS will only check for components with authorization checking
enabled. To enable authorization checking at the component level,
execute the following steps:

S T E P B Y S T E P
16.8 Enabling Authorization Checking for a

Component

1. From the MTS Explorer, expand the package that contains
the component you want to enable authorization checking
for.

2. Select the component from the list of components in the
Components folder.

3. From the Action menu, choose Properties.

4. From the Properties menu, click on the Security tab.

5. Make sure that the Enable Authorization Tracking check
box is checked.

6. Click OK. Now MTS will check for role membership for
only this component.

This chapter covered two very important subjects. First, you looked
at some key concepts and implementation details for developing
both MTS client applications and MTS components. Second, you
looked at the security model provided by Microsoft Transaction
Server. Now that your reading is complete, here is a list of the key
topics that you should absorb:

á Know how to create client setup packages. Be familiar with
the process to create them, as well as why they are necessary.

CHAPTER SUMMARY

KEY TERMS
• Atomicity

• Context object

• Declarative security

• Library package

• MTS client package

• ODBC Resource Dispenser

19 002-8 CH 16 3/1/99 8:33 AM Page 786

Chapter 16 DEVELOPING MTS APPLICATIONS 787

á Know how to execute the steps to update client settings when
components change on the MTS Server. Also related to this,
know how to uninstall a client package.

á Registry settings and type library information for the MTS
object are stored locally on the client. This allows for develop-
ment using MTS components and for using the components
at runtime.

á Add components to a package. Remember that only ActiveX
DLLs can be used with MTS. Know how to add components
that are registered on the local system and how to add those
that are not registered.

á The Transaction options must be set on the MTS Server for a
component to ensure that the component and its underlying
data providers will either participate or not participate in a
transaction.

á Role-based security can be used to map users from an NT
domain account database to an MTS role.

á Roles are created at the package level, but they can be assigned
as members of individual components in the package or
individual component interfaces.

á Be sure you understand how to create roles, add users, and
assign them to components from the MTS Explorer.

Other related concepts were mentioned in this and the preceding
chapter, such as DCOM and building Web-based applications. Both
of these topics go hand in hand with MTS. After you have built
your first ActiveX DLL, it is a natural progression to move that DLL
to the enterprise with MTS. Likewise, after you have objects run-
ning in an MTS environment, you have the foundation for a Web
application. In upcoming chapters, more details on how to do this
are provided through the topics of both ASP and DCOM.

CHAPTER SUMMARY

KEY TERMS

• Programmatic security

• Resource Dispenser

• Role

• Server package

• SetAbort

• SetComplete

• Shared Property Manager

• Transaction

19 002-8 CH 16 3/1/99 8:33 AM Page 787

788 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Exercises
These exercises assume that you have completed the
exercises in Chapter 15.

16.1 Add a Simple Component

This exercise covers the process of creating a simple
ActiveX DLL and adding it to an MTS package.

Estimated Time: 30 minutes

In this exercise, we will first develop a very basic
ActiveX DLL to use so that we can practice adding a
component to an MTS package. It assumes that you
are already familiar with the ActiveX DLL development
process:

1. Start by creating a new ActiveX DLL. The Project
name should be PubsComponent. The class name
should be Author. The class module should have
the following code:

Private msFirstName As String
Private msLastName As String

Public Property Get FirstName() As String
FirstName = msFirstName

End Property
Public Property Let FirstName(sGivenFirstName
➥As String)

msFirstName = sGivenFirstName
End Property

Public Property Get LastName() As String
LastName = msLastName

End Property
Public Property Let LastName(sGivenLastName
➥As String)

msLastName = sGivenLastName
End Property

2. After you have finished creating the class, save the
project in the path C:\Pubs Component.

3. Compile it into a DLL and put it in the same
folder.

4. Start the MTS Explorer.

5. Click the My Computer icon and expand the
Packages Installed folder.

6. Double-click the Pubs Components package that
was created in the preceding exercise.

7. Select the Components folder.

8. Right-click on the Components folder, select
New, and then select Component.

9. Click the button labeled Import component(s)
that are already registered.

10. The list of components will probably take a few
moments to build. When it appears, scroll down
until you find PubsComponent.Author.

11. Click on PubsComponent.Author.

12. Click Finish.

13. The component will be represented as an icon in
the right-hand pane, as shown in Figure 16.10.

F IGURE 16 .1 0
Components for a package are represented as icons in the
Components folder of a package.

19 002-8 CH 16 3/1/99 8:33 AM Page 788

Chapter 16 DEVELOPING MTS APPLICATIONS 789

A P P LY YO U R K N O W L E D G E

16.2 Export a Client Installation Executable
From an MTS Package

This exercise covers creating a client setup package
from an existing MTS package.

Estimated Time: 5 minutes

In this exercise, you will create a client setup package.
The package can be used to set up a client computer
to develop applications that make calls to the compo-
nents in the MTS package that you export. If you plan
to develop MTS components that will be called by a
Web server through a scripting environment such as
ASP, the client package can be used to configure and
enable the Web server to create instances of objects in
your component. The steps involved in creating this
setup package are as follows:

1. Start the MTS Explorer.

2. Click the My Computer icon in the left pane.

3. Expand the Packages Installed folder.

4. Select the package named Pubs Components that
was created in exercises in Chapter 15.

5. Right-click on the package and select Export.
This causes the Export wizard to display.

6. In the text box provided for the path to the
package file to be created, type the following:
C:\Packages\pubs.PAK.

7. Click on the Export button. If you completed
the exercises from Chapter 15, you will probably
be asked whether you want to overwrite files.
These are the files that were exported in previous
exercises. Click OK.

8. A dialog box will appear telling you that the
package was successfully exported. Click OK.

9. Open up the Windows NT Explorer.

10. Browse to C:\Packages. Notice that there is a
subfolder called Clients.

11. Open the Clients subfolder. You will see an
application called PUBS.EXE. This is the client
package created by your export.

16.3 Configure a Client to Use an MTS
Component

You learn how to set up a client to be able to make calls
to an MTS component in this exercise.

Estimated Time: 10 minutes

In this exercise, you will run the client executable that
you exported in the preceding exercise. You will also
examine some of the effects it has on the client system.

1. Open the Windows NT Explorer and browse to
C:\Packages\clients.

2. Run the application called PUBS.EXE. A brief
message will appear telling you that files are being
copied to your local system.

3. After the copy is complete, open the Control Panel.

4. Run the Add/Remove Programs control panel
applet.

5. In the list of installed software, scroll down until
you see Remote Application Pubs Components
(remove only). This shows that your client set
package was installed.

6. Click Cancel.

7. Open the MTS Explorer.

8. Select the My Computer icon, right-click, and
select Refresh All Components. This will ensure
that MTS is using the most recently compiled
version of any ActiveX DLLs that have been
added to all its packages.

19 002-8 CH 16 3/1/99 8:33 AM Page 789

790 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

9. Start an instance of Visual Basic 6.

10. When prompted to create a new project, select
Standard EXE and click Open.

11. From the Project menu, choose References.

12. Scroll down the Available References list and
select the PubsComponent item. Make sure the
check box is selected.

13. Click OK.

14. On the main form of your project, add a single
command button.

15. In the Click event of the button, type the
following code:

Private Sub Command1_Click()

Dim oAuthor As PubsComponent.Author

Set oAuthor = New Author
oAuthor.FirstName = “Elvis”
MsgBox oAuthor.FirstName

End Sub

16. Run your project.

17. Click the command button. You should see a
message box with the text Elvis.

This exercise demonstrates how easy it is to call an
MTS component. After the client setup package has
been run on the client, the fact that a call is being
made to an MTS object is invisible to the developer.

16.4 Develop a Component That Uses
Transactional Features of MTS

This exercise walks you through creating an ActiveX
DLL that uses the Context object when running in an
MTS environment. You also set transaction options for
the component.

Estimated Time: 30 minutes

In this exercise, you will expand the Author object cre-
ated in exercises from Chapter 15 to perform database
activity. Then you will modify the component on the
MTS Server to initiate a transaction.

N
O

T
E Prerequisites for Being Able to Run

the Component For the component
to run, you must have a SQL Server
with the Pubs database available.
Also, you must have an ODBC data
source called PUBS that is pointed to
the Pubs database of your SQL
Server. If you do not, you can still do
the exercise for practice without modi-
fication; you just won’t be able to run
the component.

1. Start an instance of Visual Basic 6. When the
New Project dialog box appears, select the
Existing tab.

2. Browse to C:\Pubs Component and select
PubsComponent.vbp.

3. Click Open.

4. Open the Author class module. Verify that the
code is as follows:

Private msFirstName As String
Private msLastName As String

Public Property Get FirstName() As String
FirstName = msFirstName

End Property
Public Property Let FirstName(sGivenFirstName
➥As String)

msFirstName = sGivenFirstName
End Property

Public Property Get LastName() As String
LastName = msLastName

19 002-8 CH 16 3/1/99 8:33 AM Page 790

Chapter 16 DEVELOPING MTS APPLICATIONS 791

A P P LY YO U R K N O W L E D G E

End Property
Public Property Let LastName(sGivenLastName
➥As String)

msLastName = sGivenLastName
End Property

5. From the Project menu, choose References.

6. Set a reference to the Microsoft Transaction
Server type library.

7. Set a reference to the Microsoft ActiveX Data
Objects 2.0 library.

8. Declare a module-level variable called cnPubs
with a type of ADODB.Connection.

9. In the Class Initialize event, add the follow-
ing code to open an ODBC connection to the
Pubs database:

Private Sub Class_Initialize()
Set cnPubs = new ADODB.Connection
cnPubs.ConnectionString =

➥“DSN=Pubs;UID=sa;PWD=;”
cnPubs.Open

End Sub

10. Create a method that adds a new author record
in the Pubs database with the values of the
FirstName and LastName property for appropriate
columns. The code to do this is as follows:

Public Sub AddAuthor()
Dim oContext As ObjectContext
Dim cmdAdd As ADODB.Command
Dim sSQL As String

On Error GoTo ErrorHandler

Set oContext = GetObjectContext

sSQL = “INSERT authors VALUES (“ & _
“‘001-01-0001’,” & _
“‘“ & LastName & “‘,’” & _
FirstName & “‘,” & _
“default,” & _
“null, “ & _
“null, “ & _
“null, “ & _

“null, “ & _
“0)”

Set cmdAdd = New ADODB.Command
cmdAdd.ActiveConnection = cnPubs
cmdAdd.CommandText = sSQL
cmdAdd.Execute

oContext.SetComplete

Exit Sub
ErrorHandler:

oContext.SetAbort
Err.Raise Err.Number, Err.Source,

Err.Description
End Sub

11. Save your project.

12. Make sure the Binary Compatibility is set from
your Project Properties.

13. Compile the project.

14. Start the MTS Explorer. From the My Computer
icon, right-click and select Refresh All
Components.

15. Open the Pubs Components package, expand the
Components folder, and select
PubsComponent.Author.

16. Right-click on PubsComponent.Author and choose
Properties.

17. From the Transaction tab, select the Requires a
Transaction option. This ensures that anytime a
client creates and instance of the object, it will
always use a transaction.

16.5 Create Roles for a Package

In this exercise, you get experience using the MTS
Explorer to create a new role in a package.

Estimated Time: 10 minutes

19 002-8 CH 16 3/1/99 8:33 AM Page 791

792 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

To create a role for the Pubs Components package,
follow these steps:

1. Start the MTS Explorer.

2. Expand My Computer, Packages Installed, Pubs
Components, and select the Roles folder.

3. With the Roles folder selected, go to the Action
menu and choose New. Then choose Role.

4. The New Role dialog box appears. Type in
Employees.

5. Click OK.

6. Again, create another role for the same package
by performing the same action, except this time
name the role Managers.

7. Click OK.

16.6 Assign Users to Roles

This exercise runs you through assigning users to the
roles that were created in the preceding exercise.

Estimated Time: 5 minutes

In this exercise, you will assign users to the roles that
you just created in Exercise 16.5.

1. From the MTS Explorer, go to the Roles folder
for the Pubs Component package.

2. Double-click the Employee’s role.

3. Select the Users subfolder of the Employee’s role.

4. From the Action menu, choose New, and then
choose User.

5. From the User list, double-click on the Everyone
group.

6. Click OK. The Everyone group is now mapped
to the Employee role. Now any network user can
create any component that has the Employee role
assigned to it.

16.7 Assign Roles to Components

In this exercise, you will use the roles created in previ-
ous exercises and assign them to existing components.

Estimated Time: 5 minutes

1. From the MTS Explorer, expand My Computer
in the left pane.

2. Expand the Packages Installed folder.

3. Expand the Pubs Components folder.

4. Expand the Components folder.

5. Double-click on PubsComponents.Author. You will
see two subfolders of the component: Interfaces
and Role Membership.

6. Select the Role Membership folder.

7. Right-click on the Role Membership folder and
select New. Then select Role.

8. Select the Employees role from the list of valid
roles for the package.

9. Click OK. Now the Employees role has been
assigned to the component.

Review Questions
1. When coding a client application that will be

calling an MTS component, what special consid-
erations need to be followed?

19 002-8 CH 16 3/1/99 8:33 AM Page 792

Chapter 16 DEVELOPING MTS APPLICATIONS 793

A P P LY YO U R K N O W L E D G E

2. For what reason would you run a client setup
package that has been exported from an MTS
package?

3. What happens if you drag an ActiveX DLL file
from the Windows Explorer onto a package in
the MTS Explorer?

4. What mechanism does MTS use to keep track of
current transactions for an object?

5. What does it mean for a transaction to be
atomic?

6. When a component has been configured to
support transactions, what does this mean?

7. At what level in the MTS hierarchy are roles
stored?

Exam Questions
1. You are trying to run a freshly installed applica-

tion that uses a remote MTS object. Upon
startup, you receive the following message:

Error 429, Cannot create ActiveX object.

Which of the following might fix the problem?

A. Remove the application and reinstall

B. Run the client setup package to ensure that
the MTS components are registered

C. Install MTS on the local system

D. None of the above

2. You have just added a new component to an exist-
ing package. From your developer NT
Workstation, you run the client setup package
again. From Visual Basic, you can create objects
from the components that were previously installed;

however, you still cannot create objects from the
newly added component. What is the most likely
cause of your problem?

A. You did not reboot the client system.

B. You have to run MTS locally.

C. Your system does not have support for
DCOM.

D. You did not export the MTS package to
ensure that the client setup package would
include the necessary support files to access
the new components.

3. Which of the following are valid options for
adding components to an existing package?

A. Drag and drop the DLL file from Windows
Explorer onto the package in MTS Explorer.

B. Use the Package wizard to install a pre-built
package, and import select components from
a PAK file.

C. Right-click on the Components folder from
the package that you want to install the com-
ponent into, and select New. From here,
either install a component already registered
or browse to a DLL if it is not registered.

D. Run the setup program for the component.

E. None of the above.

4. Which of the following types of COM components
can be added to an MTS package? (Choose one.)

A. ActiveX DLLs

B. ActiveX EXEs

C. ActiveX documents

D. All of the above

19 002-8 CH 16 3/1/99 8:33 AM Page 793

794 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

5. Which of the following actions will ensure that
your component will always participate in a
transaction?

A. Start the DTC service on the MTS machine

B. Begin a transaction using ADO from the
client application

C. Set the transaction support option to Requires
a Transaction for the component in MTS

D. Set the transaction support option to
Supports Transactions for the component
in MTS

6. Which of the following methods will cause a
transaction to be committed?

A. SetComplete

B. SetCommit

C. SetAbort

D. CommitTrans

7. Your application makes a call to an MTS object
that is supposed to update a record in a SQL
Server on your network. After running it, you
notice that all the property values are empty;
when you query the data, however, the modifica-
tions were not reflected in the data. Which of the
following explanations is most likely?

A. The object is hung.

B. The object called the SetAbort method of its
Context object.

C. The object called the SetComplete method of
its Context object.

D. The object called the RollbackTrans method
of its Context object.

8. From which folder in the MTS Explorer is it
possible to create roles?

A. Packages Installed

B. Packages

C. Roles Installed

D. Roles

E. Security

9. What types of NT accounts can be added to
roles?

A. Computer

B. Users

C. Groups

D. Components

E. All of the above

10. You are working with a component that exposes
two interfaces. The default interface is intended
to be available to all users, however the methods
in the secondary interface provide access to sensi-
tive data. What can you do through MTS to
ensure that your component is properly secured?

A. Nothing. You can only provide security at the
package level. Components inherit their secu-
rity from their parent packages.

B. Nothing. You can only provide security at the
component level. Interfaces inherit their secu-
rity from their parent components.

C. Separate roles can be assigned to the default
and any secondary interface.

D. None of the above.

19 002-8 CH 16 3/1/99 8:33 AM Page 794

Chapter 16 DEVELOPING MTS APPLICATIONS 795

A P P LY YO U R K N O W L E D G E

Answers to Review Questions
1. In general, the coding of a client application that

calls MTS components is no different from a
client application that calls other types of COM
objects. There are no special considerations. The
only thing that needs to be done before coding
begins is that the client has to be configured to
allow the developer to reference the MTS com-
ponent. See “Configuring a Client Computer to
Use an MTS Component.”

2. A client setup package would be run on a
machine if the machine will be used for develop-
ing with the components in the MTS package,
or if it will be running software that uses the
components in this package. This is true for both
Windows client software and Web servers that
will call the component. See “Creating Packages
That Install or Update MTS Components on a
Client.”

3. Dragging and dropping an ActiveX DLL onto a
package in the Explorer will cause it to be added
to that package. If the component is not regis-
tered, it will automatically be registered on the
machine that is running MTS. See “Adding
Components to an MTS Package.”

4. MTS uses an object’s Context object to store
information about current transactions. See
“Setting Transaction Properties of Components.”

5. A transaction is atomic when all operations
included in the transaction must execute success-
fully for the changes to be committed. If for any
reason a part of the transaction fails, the whole
transaction is rolled back. See “Understanding
the MTS Runtime Environment.”

6. When a component that supports transactions is
created, it may be enlisted in a transaction if the
client already has a transaction in progress. If no
transaction is present, however, objects from the
component will be instantiated without a transac-
tion. See “Setting Transaction Properties of
Components.”

7. Roles are stored at the package level. Any compo-
nent within the package can use a role from the
package to apply security. If separate packages
have identical needs with regard to a given role,
the role must be created for each package. See
“Using Role-Based Security to Limit Use of an
MTS Package to Specific Users.”

Answers to Exam Questions
1. B. If a client workstation is running software that

makes calls to MTS components, it is important
to run the client setup package on the worksta-
tion. For more information, see “Configuring a
Client Computer to Use and MTS Component.”

2. D. Anytime you modify the contents of a pack-
age, such as by adding new components, you
must re-export the package. This will cause the
client setup package to be rebuilt to support the
changes and additions to the package. For more
information, see “Creating Packages that Install
or Update MTS Components on a Client.”

3. A, C. New components can be added to an existing
package by either dragging and dropping the DLL
file for the component onto the package in MTS
Explorer or by starting and using the Component
wizard. From within the Component wizard, you
can either add components that are already registered
or browse to DLLs using the Windows Explorer.

19 002-8 CH 16 3/1/99 8:33 AM Page 795

796 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

For more information, see “Adding Components
to an MTS Package.”

4. A. MTS components must be in the form of an
ActiveX DLL. For more information, see “Adding
Components to an MTS Package.”

5. C. Setting the Transaction Support option to
Requires a Transaction, causes your component to
always participate in a transaction. For more
information, see “Setting Transaction Properties
of Components.”

6. A. SetComplete, which is a method of the Context
object of any MTS object, will cause a transac-
tion to commit. For more information, see
“Setting Transaction Properties of Components.”

7. B. The SetAbort method of the Context object
will cause a transaction to be rolled back.

Therefore, any changes that the component made
on any ODBC data sources within the body of
the transaction will automatically be rolled back.
For more information, see “Setting Transaction
Properties of Components.”

8. D. Roles are created from the Roles folder, which
is a child of the package in MTS Explorer. For
more information, see “Creating and Adding
Users to Roles.”

9. B, C. Standard user and group accounts from the
local or domain account database can be added to
a role. For more information, see “Creating and
Adding Users to Roles.”

10. C. Role-based security can be assigned to compo-
nent interfaces, which allows more granularity
and flexibility. For more information, see
“Assigning Roles to Components or Component
Interfaces.”

19 002-8 CH 16 3/1/99 8:33 AM Page 796

OBJECT IVES

17C H A P T E R

Internet Programming
With IIS/WebClass and

DHTML Applications

This chapter helps you prepare for the exam by cover-
ing the following objectives:

Create dynamic Web pages by using Active
Server Pages (ASP) and Web classes (70-175).

. The first objective essentially requires you to know
the fundamentals of IIS applications, which are
new with VB6. IIS applications are server-side
applications that enable you to use VB itself to
enhance the ASP technology. ASP (Active Server
Pages) are themselves enhanced HTML pages that
contain script that will be read by the Web server
(Microsoft’s Internet Information Server).

Create a Web page by using the DHTML Page
Designer to dynamically change attributes of
elements, change content, change styles, and
position elements (70-175 and 70-176).

. The second objective requires knowledge of
DHTML (Dynamic HTML) applications, also new
with VB6. Whereas IIS applications are server-side
applications, DHTML applications are client-side
applications that run along with HTML pages in
the user’s browser. With DHTML application
development in VB, you can manipulate the con-
tents of a Web page as visual elements on a form-
like designer (the DHTML Page Designer). This is
similar to existing Web authoring tools, such as
FrontPage. You get additional power, however, from
the VB environment, which gives you the power of
VB in client-side processing of Web pages.

20 002-8 CH 17 3/1/99 8:35 AM Page 797

OUTL INE STUDY STRATEGIES

WebClass Applications 799

Creating a Simple ASP Page 800

IIS (WebClass Designer) Applications
in VB 803

DHTML Applications 818

Creating a Web Page With the DHTML
Page Designer 818

Modifying a DHTML Web Page and
Positioning Elements 819

Chapter Summary 826

. Make sure you have access to an Internet
Information Server (if you are developing under
Windows NT) or Personal Web Server (if you are
developing with Windows 95/98). Check
Microsoft’s Web site for details. Exercise 17.1
shows you how to set up a virtual directory with
Internet Information Server so that you can do
Web development.

. Become familiar with basic ASP syntax and
development procedures, as discussed in this
chapter and in Exercise 17.2.

. Create an IIS application. Refer to the discus-
sion in this chapter and in Exercises 17.3
through 17.7.

. Create a DHTML application. Refer to the dis-
cussion in this chapter and to Exercises 17.8
and 17.9.

20 002-8 CH 17 3/1/99 8:35 AM Page 798

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 799

INTRODUCTION

The two exam objectives covered in this chapter deal with two types
of application that are new to VB6. Both of these application types
(the IIS application and the DHTML application) help you to create
more powerful applications for the World Wide Web.

WEBCLASS APPLICATIONS

To understand where a VB IIS application can fit in to Web devel-
opment, consider the following basic facts about Internet Web page
architecture:

á HTML (Hypertext Markup Language) is the standard language
recognized by all Internet Web browsers (such as Internet
Explorer or Netscape). HTML files reside on a server. A browser
requests the HTML file from a server when the user navigates to
a particular Web page representing the HTML file. The server
sends the file to the browser, and the browser interprets the
HTML script inside the file to display the Web page to the user.

á ASP (Active Server Pages) is a technology that Microsoft pro-
vides as a supplement to its Web server, Microsoft Internet
Information Server (IIS). ASP provides an enhancement to the
HTML language that allows IIS (or any other Web server that
can understand ASP) to dynamically change the HTML that it
sends to browsers.

The end product of ASP is still standard HTML, recognizable
by all browsers. All ASP processing takes place on the server
and so is completely transparent to browsers, which only see
the standard HTML pages produced by ASP.

á VB WebClass applications (also known as IIS applications) are
essentially an enhancement to the technology of Active Server
Pages (ASP) that enable a VB programmer to use the power
and ease of the VB programming environment to create appli-
cations that run with ASP.

The following sections first give an overview of ASP alone and then
proceed to discuss how you can create VB IIS applications to
enhance the ASP environment.

20 002-8 CH 17 3/1/99 8:35 AM Page 799

800 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Creating a Simple ASP Page
Listing 17.1 illustrates a simple ASP file that you could create in a
folder on your Web server.

LISTING 17.1

AN ASP FILE

<HTML>
<BODY>
ASP-generated section follows:

<%

‘GET THE CURRENT TIME AS A FORMATTED STRING
Dim sTime
sTime = Now

‘OUTPUT TIME INFORMATION IN HTML TEXT
Response.WritesTime
Response.Write “
”

‘INITIALIZE ASP CLASS OBJECTS TO GET
‘INFORMATION ABOUT THE E: DRIVE
Dim objFileSys, objDrives, objDrive
On error Resume Next
Set objFileSys = _

Server.CreateObject(“Scripting.FileSystemObject”)
Set objDrives = objFileSys.Drives
Set objDrive = objDrives(“F”)

‘OUTPUT VOLUME INFORMATION IN HTML TEXT
Response.Write “The Volume Label In Drive ”
Response.Write objDrive.DriveLetter
Response.Write “ is ”
Response.Write objDrive.VolumeName
Response.Write “
”

’CLEAN UP OBJECTS
Set objDrives = Nothing
Set objFileSys = Nothing
Set objDrive = Nothing

%>
End of ASP-generated section
</BODY>
</HTML>

Note the following features of an ASP file, as illustrated in
Listing 17.1:

20 002-8 CH 17 3/1/99 8:35 AM Page 800

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 801

á Besides the enhanced ASP features, an ASP file also contains
normal HTML script. In the preceding listing example, note
the beginning and ending <BODY> and <HTML> tags, as well as
the HTML text with bold formatting (…) tags toward
the beginning and end of the file. Any normal HTML script
outside the ASP delimiters (as discussed in the next point) will
pass through to the end user’s browser as-is.

á The ASP-specific portions of the file are delimited by the
<%…%> pair of tags. Everything between this pair of tags is
interpreted by ASP and then gets stripped out before it reaches
the end-user’s browser.

á The ASP portion of the file is written in VBScript, which is
basically a subset of VB. You should recognize the VB syntax
of the ASP code in the example.

á Note the use of CreateObject, which allows the VBScript code
to instantiate COM objects from classes registered on the Web
server machine. Chapter 10, “Instantiating and Invoking a
COM Component,” discusses programming with existing
COM components in more detail. The capability to instantiate
components inside an ASP script is the key to launching
WebClass applications, as discussed in the following sections.

á ASP provides several built-in object classes not found in the
VB environment. The example uses two of these object classes,
the Response object and the Scripting.FileSystemObject class.

á In the ASP section of the file, you use the Response object’s
Write method to generate HTML code that will be embedded
in the final HTML file that the server sends to the browser. All
arguments to the Response object are string literals or variables,
as shown in the example.

The sample ASP file of Listing 17.1 would produce an end result on
client browsers that would look like Figure 17.1.

If end users chose the View Source option on the browser to see the
HTML code behind the page, they would see something very close
to Listing 17.2.

20 002-8 CH 17 3/1/99 8:35 AM Page 801

802 Par t I VISUAL BASIC 6 EXAM CONCEPTS

LISTING 17.2

INTERNET INFORMATION SERVER GENERATED THIS PURE

HTML CODE FROM THE ASP FILE AND SENT IT TO THE

BROWSER

<HTML>
<BODY>
ASP-generated section follows:

11/28/98 12:08:16 AM
The Volume Label In Drive F is
➥VSE600ENU2

End of ASP-generated section
</BODY>
</HTML>

Notice that Listing 17.2 shows no trace of the ASP code. Instead, it
shows only the basic HTML code that was in the file outside of the
ASP section and the output of the Response.Write method from the
ASP section. The Web server stripped out all the ASP code before
transmitting the page to the browser.

F IGU R E 17 .1
How the ASP file appears on a browser.

20 002-8 CH 17 3/1/99 8:35 AM Page 802

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 803

IIS (WebClass Designer) Applications
in VB
Although ASP is a very useful and powerful server-side extension of
HTML, it’s still quite limited and somewhat clumsy to program when
compared with the possibilities of even a simple VB application.

Microsoft therefore introduced the IIS application in VB6 so that
you can leverage your VB knowledge in ASP applications.

A VB IIS application is basically an in-process (DLL) COM compo-
nent that runs with Internet Information Server as its client. An IIS
application also requires the presence on the server of a Microsoft
runtime DLL, MSWCRUN.DLL, as well as other files that you used
to create your project and any supporting files (such as graphics) that
your Web pages need. You can use Package and Deployment wizard
to create a setup package for deployment on a Web server.

The end user needs no special additional setup when you implement
and deploy IIS applications, because IIS applications run entirely on
the server. By the time the result of an IIS application reaches a
user’s browser, it is just a standard HTML Web page with no special
processing requirement from the browser’s point of view.

The following sections discuss the nature of IIS applications and
how you can create them.

Overview of IIS Application Architecture
Some of the new elements that you will get to know when program-
ming a VB IIS application include the following:

á WebClass objects. WebClass objects are enhanced Class
objects that you create with the WebClass Designer in an IIS
application. Each WebClass object provides a Web page to its
client. The Web page provided by the WebClass is based on an
associated HTML template (see the following item). You pro-
gram the WebClass object to dynamically create the Web page
from the HTML template based on its own internal logical
decisions and on information sent back from the end user.

You can also create HTML programmatically to be sent to the
browser by using the Write method of the WebClass’ Response
object.

20 002-8 CH 17 3/1/99 8:35 AM Page 803

804 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á HTML templates. An HTML template, as just mentioned,
is the basis for the Web page that a WebClass dynamically cre-
ates. You create an HTML template as a normal HTML page
using an HTML editor or text editor.

á WebItems. A WebItem is an IIS application object that pro-
vides one or more custom events for a WebClass.

á ASP host page. An ASP host page provides an instantiated
WebClass object to the server. Users must point their browsers
to the ASP host page’s URL to use the associated WebClass.

The host page’s only job is to call CreateObject to instantiate
your WebClass object. You do not have to create the IIS appli-
cation’s ASP host pages, because VB automatically creates a
host page for each WebClass when you run or compile your
IIS project.

The following sections discuss the use of these elements.

Creating and Programming a WebClass
WebClasses are the major components of an IIS application. Each
WebClass in the IIS application project has its own designer in the
VB IDE. A WebClass corresponds to a single Web page that your
application will provide to browsers.

When you begin a new IIS application, VB automatically inserts a
designer for the first WebClass object (WebClass1). You can add
designers for more WebClass objects to the IIS project by choosing
Project, Add WebClass from the VB menu. Note that when you save
your IIS projects, each WebClass gets saved in its own designer file
(extension .DSR).

As mentioned in the preceding section, there are two ways that you
can furnish Web page output to client browsers from a WebClass:

á Use Response.Write to send HTML directly to the client.

á Use an HTML template file and modify its substitution tags in
the WebClass project.

20 002-8 CH 17 3/1/99 8:35 AM Page 804

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 805

Sending HTML Text Directly to the Client
When you add a WebClass designer to an IIS project (either as
the first default WebClass or as a WebClass that you add from the
Project menu), VB automatically puts some default code in the
WebClass’ Start event procedure, as shown in Listing 17.3.

LISTING 17.3

DEFAULT START EVENT PROCEDURE CODE IN A NEW

WEBCLASS DESIGNER

Private Sub WebClass_Start()

‘Write a reply to the user
With Response

.Write “<html>”

.Write “<body>”

.Write “<h1>WebClass1’s Starting
➥Page</h1>”

.Write “<p>This response was created in the Start
➥event of WebClass1.</p>”

.Write “</body>”

.Write “</html>”
End With

End Sub

The WebClass’ Start event, as you might imagine, runs the first
time that an end user initiates a copy of your WebClass by navigat-
ing to the host ASP page.

Note that the default code in the Start event calls the Write method
of the Response object. The Response object is in charge of sending
information back to the browser. The information to be sent will be
HTML code that the browser will then see as a Web page.

To examine the appearance of the unmodified default page sent
back by the WebClass, just run your project as soon as you have cre-
ated it. The first time that you run a WebClass project, you will see
the Debugging tab of the Project Properties dialog box as shown in
Figure 17.2. Normally, you will leave the default options as they are
(that is, run the component using the default browser), and just
click the OK button.

20 002-8 CH 17 3/1/99 8:35 AM Page 805

806 Par t I VISUAL BASIC 6 EXAM CONCEPTS

After you have passed beyond the Save dialog box for the project’s
files, your browser (typically, Internet Explorer when you develop
with Visual Studio) will display the page created by the calls to
Response.Write in the WebClass’ Start event procedure, as shown
in Figure 17.3.

F IGU R E 17 .2.
The first time you run an IIS application in the
VB IDE, you see the Debugging tab.

F IGU R E 17 .3.
Viewing the default page in your browser.

Note that the Browser’s Address box (indicating the URL of the
current page) points to an ASP file with the same name as your
WebClass. VB automatically generated the ASP file when you ran
the project in the IDE. As mentioned previously, the function of the
ASP is to host the WebClass object that you are programming. The
ASP file will be distributed with your project when you use Package
and Deployment Wizard to create a setup package. You will not
want to modify the ASP file, because VB would only overwrite it
the next time that you try to run your application from the VB
environment or distribute it with Package and Deployment Wizard.

20 002-8 CH 17 3/1/99 8:35 AM Page 806

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 807

If you choose the View, Source option from IE’s menu, you will see
the HTML code that your browser received, as shown in Listing 17.4.

LISTING 17.4

HTML SOURCE CODE SENT TO THE BROWSER BY THE

DEFAULT START EVENT PROCEDURE’S CODE IN WEBCLASS1

<html><body><h1>WebClass1’s Starting
➥Page</h1><p>This response was created in the Start
➥event of WebClass1.</p></body></html>

You are seeing the HTML that the Start event procedure of the
WebClass generated with calls to Response.Write.

Microsoft’s idea in providing you with the default code in the Start
event procedure is that you can modify the default calls to
Response.Write to suit your own purposes, as shown in Listing 17.5.

LISTING 17.5

CUSTOMIZED START EVENT PROCEDURE OF A WEBCLASS

Private Sub WebClass_Start()

‘Write a reply to the user
With Response
.Write “<html>”
.Write “<body>”
.Write “Page accessed at: “ & Format(Now, “hh:mm”)
.Write “<h1>Order Entry

➥system</h1>”
.Write “<p>Make your initial selection from the list.</p>”
.Write “</body>”
.Write “</html>”

End With

End Sub

Of course, such simple modifications as shown in Listing 17.5, no
matter how many lines of pure HTML code they might include,
would not take full advantage of an IIS application’s capabilities. You
might as well just create an HTML page or an ASP page with a text
editor or Web authoring tool.

20 002-8 CH 17 3/1/99 8:35 AM Page 807

808 Par t I VISUAL BASIC 6 EXAM CONCEPTS

You can use VB’s more advanced processing and logic to create
dynamic HTML code (as illustrated in the line that includes the
current time in Listing 17.5).

To take full advantage of the IIS application’s possibilities, however,
you will want to avail yourself of two more advanced IIS application
features:

á The capability to associate an HTML template with each
WebClass object.

á The capability to use WebItems to define and process custom
events associated with the HTML code for a WebClass.

The following sections discuss these techniques.

Programming With an HTML Template
You can associate a WebClass object with an existing HTML file.
This file then becomes the HTML template for the WebClass.

To associate an HTML template with a WebClass, follow these steps:

S T E P B Y S T E P
17.1 Associating an HTML Template With a

WebClass Object

1. Use a text editor or HTML editor to create a standard
HTML file in a different directory from your project.

2. Make sure that you have saved your IIS project before
proceeding.

3. In your IIS project, open the WebClass designer and
right-click on HTML Template WebItems to bring up the
shortcut menu.

4. On the shortcut menu, choose Add HTML Template to
bring up the File Browse dialog box.

5. Navigate to and select the HTML file.

6. Double-click the WebClass designer to bring up its Code
window. Comment out or delete the default code in the
Start event procedure.

20 002-8 CH 17 3/1/99 8:35 AM Page 808

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 809

7. In the Start event procedure of the WebClass designer,
write a line of the form:

TemplateName.WriteTemplate

where TemplateName is the name within the project of
the HTML template that you just added. (If you did
nothing to change it, the default name will be Template1.)

8. If you run the application now, you will see your default
HTML page displayed in the browser.

At its simplest, an HTML template can contain ordinary, HTML-
standard code. The WebClass would just pass such a file through to
client browsers, adding no more functionality. As you might imagine,
this would be a gross under-use of the potential of the HTML template.

The true power of an HTML template lies in the extra functionality
that it can give to a WebClass in your IIS application. You can
enhance normal HTML functionality in several ways with an
HTML template:

á You can embed special substitution tags in the HTML file and
replace those tags with your own programmatically determined
values before submitting the HTML to the client browser.

á You can associate any standard HTML tag that uses a URL
(such as an IMG tag that refers to an image file location) with
an event in your WebClass.

The following two sections discuss these features.

Substitution Tags
You can use substitution tags in IIS applications to easily add increased
power to Web application development by making your pages more
dynamic.

To use substitution tags with an HTML template, you need to
perform two general activities:

á Place substitution tags in the HTML template file.

á Write code in the IIS project in the corresponding template
object’s ProcessTag event procedure to substitute programmati-
cally determined content for the substitution tags.

N
O

T
E Editing the HTML Template File

Although you added the HTML tem-
plate from a different directory, VB will
make a copy of the file in the project
directory. You should edit the copy in
the project directory after you have
added the file to the project.

20 002-8 CH 17 3/1/99 8:35 AM Page 809

810 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á Make sure that you have included a call to the WriteTemplate
method of the template object in the WebClass’ Start event
procedure, as mentioned earlier in the section titled
“Programming with an HTML Template.”

The following paragraphs discuss these activities in more detail.

You embed substitution tags in a WebClass’ HTML template file in
places where you would like to dynamically control the contents of
the file. For instance, you might want to make certain text dynamic,
or perhaps certain HTML formatting such as font size or back-
ground color.

Listing 17.6 shows a snippet of HTML code without any substitution
tags.

LISTING 17.6

STANDARD HTML CODE

<HTML>
<HEAD>
<TITLE>BACKCOLOR DEMO</TITLE>
</HEAD>
<BODY bgColor=#6496AF>
<FONT Color=#0FF64
<H1>HTML Template demo</H1>
Hello from Beijor
</BODY>
</HTML>

Listing 17.7 shows the same snippet with substitution tags.

LISTING 17.7

HTML CODE WITH WEBCLASS SUBSTITUT ION TAGS

<HTML>
<HEAD>
<TITLE>BACKCOLOR DEMO</TITLE>
</HEAD>
<BODY bgColor=<WC@BACKCOLOR>BGColor</WC@BACKCOLOR>>
<FONT Color=<WC@FORECOLOR>ForeColor</WC@FORECOLOR>
<H1>HTML Template demo</H1>
<WC@GREETING>Greeting</WC@GREETING>
</BODY>
</HTML>

20 002-8 CH 17 3/1/99 8:35 AM Page 810

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 811

Note that all substitution tags in the HTML template for a WebClass
begin with the same prefix (WC@ in the example). The WebClass uses
the prefix to identify substitution tags so that it can process them in
the corresponding template object’s ProcessTag event.

You treat the substitution tags syntactically just like you would stan-
dard HTML formatting tags (using the <TAG>TagValue</TAG> paired
format).

Listing 17.8 shows the text of the ProcessTag event procedure for a
WebClass template object.

LISTING 17.8

THE PROCESSTAG EVENT PROCEDURE

Private Sub tmpMyFirst_ProcessTag _
(ByVal TagName As String, _

TagContents As String, _
SendTags As Boolean)

Select Case UCase$(TagName)
Case UCase$(tmpMyFirst.TagPrefix) & “GREETING”

TagContents = “Hello from Beijor”
Case UCase$(tmpMyFirst.TagPrefix) & “FORECOLOR”

TagContents = “#0FF64” ‘a dark green
Case UCase$(tmpMyFirst.TagPrefix) & “BACKCOLOR”

TagContents = “#6496AF” ‘a blue-gray
End Select
SendTags = False

End Sub

The particular event procedure of this example would in fact process
the tags of Listing 17.7. When the WebClass prepares to send the
HTML template to a browser, it reads all the substitution tag pairs
and passes one pair at a time to the ProcessTag event. The
ProcessTag event procedure takes three parameters:

á TagName is the parameter that gives the name of the tag that is
being processed.

á TagContents is the parameter that enables you to both read the
current contents of the tag and to change the contents.

á SendTags is a Boolean parameter that enables you to determine
whether the substitution tags get reprinted in the HTML output.

N
O

T
E Prefixes for Substitution Tags By

default, a WebClass template uses
the prefix shown in the example of
Listing 17.7, “WC@.”

You can choose a different prefix for
the substitution tags by setting the
template object’s TagPrefix property to
the desired prefix. Microsoft recom-
mends that you use prefixes made up
of two alphabetic characters and a
third distinctive character such as “@.”

20 002-8 CH 17 3/1/99 8:35 AM Page 811

812 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Doing so would enable you another level of tag processing.
You will usually let this parameter take its default value of
False.

Creating and Programming Custom
WebItems
You can associate tags in the HTML code returned by the WebClass
with custom WebItem objects of the WebClass, and thus define
special events that your IIS application can react to.

To implement a WebItem, follow these steps:

S T E P B Y S T E P
17.2 Implementing a WebItem

1. Right-click the Custom WebItems folder in the IIS project
window’s left-hand pane to bring up the shortcut menu.

2. Choose Add Custom WebItem from the shortcut menu.

3. Type the name you want for the custom WebItem.

4. In the Start event of the WebClass, generate HTML code
that uses the URLFor function to create a hyperlink for the
new WebItem. The user can click the hyperlink to invoke
the WebItem’s event. Listing 17.9 shows an example of
how to use the URLFor function to embed a custom URL
for your WebItem event in the HTML that you send to
the browser.

LISTING 17.9

FRAGMENT OF A WEBCLASS_START EVENT PROCEDURE

THAT USES THE URLFOR FUNCTION TO EMBED A
REFERENCE TO A CUSTOM WEBITEM IN HTML CODE

RETURNED TO THE BROWSER

Private Sub WebClass_Start()

With Response
‘...preliminary stuff...
‘...
‘...

20 002-8 CH 17 3/1/99 8:35 AM Page 812

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 813

.Write “<A HREF=””” & _
URLFor(SvcExcellent) & _
“””>Excellent
”

‘...more stuff...
‘...
‘...

End With

End Sub

The call to URLFor in the example assumes that the pro-
ject contains a custom WebItem known as SvcExcellent.
The HTML returned to the browser would contain a
URL computed for the WebItem that would work from
the user’s location. As far as the user’s browser is con-
cerned, the hyperlink would be a normal link imple-
mented with the <A HREF=… tag format in HTML.

5. Double-click the new WebItem to add code to its
Respond event procedure. The code that you put here will
react to the user’s choice in some manner. Perhaps the
code will make an entry in a database on the server,
perhaps it will send an email to someone in your organiza-
tion, or perhaps it will send a new page to the user’s
browser by calling the WriteTemplate method of an
HTML template. Listing 17.10 shows one such possible
use of a WebItem’s Respond event.

LISTING 17.10

USING A WEBITEM’S RESPOND EVENT TO SET SOME

CLASS-LEVEL VARIABLES AND SEND A TEMPLATE TO

THE USER, AND THE USE OF THOSE VARIABLES IN THE

PROCESSTAG EVENT PROCEDURE OF THE TEMPLATE

Private Sub SvcExcellent_Respond()
strServiceColor = POORCOLOR
strServiceDescription = “Poor service.”
tmpSurvey.WriteTemplate

End Sub

Private Sub tmpSurvey_ProcessTag(ByVal TagName As String,
➥TagContents As String, SendTags As Boolean)

continues

20 002-8 CH 17 3/1/99 8:35 AM Page 813

814 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Select Case UCase$(TagName)
Case UCase$(tmpSurvey.TagPrefix) & “GREETING”

TagContents = strServiceDescription
Case UCase$(tmpSurvey.TagPrefix) & “FORECOLOR”

TagContents = “#0FF64” ‘a dark green
Case UCase$(tmpSurvey.TagPrefix) & “BACKCOLOR”

TagContents = strServiceColor
End Select
SendTags = False

End Sub

In the example of Listing 17.10, the Respond event sets some
Private variables of the WebClass and then calls the WriteTemplate
method of the HTML template. The ProcessTag event procedure of
the template then uses the variables to dynamically change the
appearance of the Web page sent to the browser.

Custom Events for WebItems
Each custom WebItem that you define automatically gets its own
Response event, as discussed in the preceding section.

You can, however, define one or more events of your own for a
WebItem. You can then embed calls to these events in the HTML
code that you return to a browser by using a slightly different syntax
for the URLFor function from that discussed in the preceding section.

To implement a custom WebItem event, take the following steps:

S T E P B Y S T E P
17.3 Implementing a Custom WebItem Event

1. After you have created a custom WebItem, right-click it in
the IIS project and choose Add Custom Event from the
resulting ShortCuts menu.

LISTING 17.10

USING A WEBITEM’S RESPOND EVENT TO SET SOME

CLASS-LEVEL VARIABLES AND SEND A TEMPLATE TO

THE USER, AND THE USE OF THOSE VARIABLES IN THE

PROCESSTAG EVENT PROCEDURE OF THE TEMPLATE

continued

20 002-8 CH 17 3/1/99 8:35 AM Page 814

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 815

2. A new event will be added to the WebItem and will appear
underneath the WebItem in the tree with a lightning-bolt
icon. It will have a generic name, which you can change
by right-clicking the event item and choosing the Rename
option from the shortcut menu.

3. You can embed an invocation of the event in the HTML
code that you return to the browser by using the URLFor
function in the Start event procedure of the WebClass.

This technique is similar to that discussed in step 4 in the
preceding section. However, the syntax that you will use
with the URLFor function differs slightly from that of the
preceding example. In the case of a custom event, you
must pass the URLFor function two arguments rather than
just one. The first argument will still be the name of the
WebItem, and the new second argument will be a string
giving the name of the custom event.

Listing 17.11 gives a fragment of code from a WebClass’
Start event procedure that uses the URLFor function to
embed a hyperlink to a WebItem’s custom event,

LISTING 17.11

CODE IN WEBCLASS_START THAT EMBEDS A HYPERL INK

FOR A CUSTOM EVENT OF A WEBITEM IN THE HTML
RETURNED TO THE BROWSER

With Response
.Write “<A HREF=””” & _

URLFor(SvcResponse,”Excellent”) & _
“””>Excellent
”

End With

The code assumes that a custom event named Excellent
belongs to a WebItem named SvcResponse.

4. You would use a similar technique to that discussed in
step 5 in the preceding section to react to the user’s acti-
vation of the event’s hyperlink. Instead of writing code in
the Respond event (as the preceding example shows), you
would rather write code in the event procedure named for
the custom event that you yourself had defined.

20 002-8 CH 17 3/1/99 8:35 AM Page 815

816 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Dynamic Events for WebItems
You can get even more flexibility than either the Respond event of a
WebItem or a custom WebItem event provides: You can program
with dynamically defined WebItem events.

Dynamic WebItem event names are unknown at design time. The
names of these events come from information that your code embeds
in the HTML sent to the user’s browser at runtime. You detect the
firing of a custom event in the UserEvent event procedure of the
WebItem. UserEvent receives one string parameter, EventName.
EventName contains, of course, the dynamic name of the custom event.

To implement a dynamic event, follow these steps.

S T E P B Y S T E P
17.4 Implementing a Dynamic Event

1. You can embed a two-argument call to URLFor in the
WebClass_Start event procedure, as in step 3 of the pre-
ceding section. Instead of hard-coding an existing event’s
name for the second argument to URLFor, however, you
can pass a string for which you have defined no event as
the second argument. This string can be either a hard-
coded literal string or a string variable. This technique will
dynamically vary the name of the event that fires when the
user clicks the associated hyperlink.

2. In the WebItem’s UserEvent procedure, you can vary the
reaction to the user’s choice of the hyperlink based on the
contents of the EventName parameter. In Listing 17.12, a
Select Case structure in the UserEvent procedure traps for
various dynamically generated event names and reacts dif-
ferently, according to the name of the event.

20 002-8 CH 17 3/1/99 8:35 AM Page 816

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 817

LISTING 17.12

TRAPPING DYNAMICALLY DEFINED EVENTS IN THE

USEREVENT PROCEDURE

Private Sub Service_UserEvent(ByVal EventName As String)

Select Case UCase$(Trim$(EventName))

Case “AVERAGE”
strServiceColor = AVERAGECOLOR
strServiceDescription = “Average service.”
tmpMyFirst.WriteTemplate

Case “EXCELLENT”
strServiceColor = EXCELLENTCOLOR
strServiceDescription = “Excellent service.”
tmpMyFirst.WriteTemplate

Case “FAIR”
strServiceColor = FAIRCOLOR
strServiceDescription = “Fair service.”
tmpMyFirst.WriteTemplate

Case “GOOD”
strServiceColor = GOODCOLOR
strServiceDescription = “Good service.”
tmpMyFirst.WriteTemplate

Case “POOR”
strServiceColor = POORCOLOR
strServiceDescription = “Poor service.”
tmpMyFirst.WriteTemplate

End Select

End Sub

A common example of the power of dynamic events would be to
generate an event whose name is based on the key field of a database
record. Code in the UserEvent procedure would detect this event
name representing the key field and use it to perform a lookup on
the data. For a full discussion of this technique, see the Case Study
for this chapter.

20 002-8 CH 17 3/1/99 8:35 AM Page 817

818 Par t I VISUAL BASIC 6 EXAM CONCEPTS

DHTML APPLICATIONS

Previous sections of this chapter covered the IIS application develop-
ment project, which is a server-side Web development technology
new with VB6.

This section turns to a second Web development technology that is
also new with VB6, the DHTML project. Unlike an IIS application,
an application created with DHTML runs client side, in the envi-
ronment of the end user’s Web browser.

A DHTML page is implemented as an ActiveX DLL and support files
that are transferred to the machine where the user’s browser resides.

The object model for DHTML pages includes the following:

á BaseWindow—Represents the browser and displays (but does
not contain) the Document.

á Document—Represents the HTML page viewed in the browser
and contains the DHTMLPage and HTML elements.

á DHTMLPage—Represents the DHTML runtime environment.

á HTML elements—Individual elements of HTML functionality
that reside on the HTML page. Such elements can either be
defined by sets of HTML tags, or as HTML controls that you
place on the DHTML Page Designer’s surface from the
ToolBox. In a VB DHTML application, programmers can
manipulate HTML elements in much the same way that they
manipulate control objects in standard VB applications.

Creating a Web Page With the DHTML
Page Designer
To begin programming with a DHTML project, you need to take
the following steps:

S T E P B Y S T E P
17.5 Preparing to Program With a DHTML Project

1. In the VB IDE, create a new project whose type is
DHTML Application.

20 002-8 CH 17 3/1/99 8:35 AM Page 818

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 819

2. By default, the new project will provide you with a
Modules and a Designers folder. You will mostly work
with the Designers folder when adding DHTML func-
tionality.

3. The Designers folder by default contains a single designer.
You can double-click the designer to bring up its window,
which appears in two panes to the left of the Project
Explorer.

The left-hand pane of the DHTML Page Designer gives a schematic
tree view layout of the elements in the DHTML page. The Document
object lies at the root, and under the Document object lie all the
other objects that belong to the DHTML page as elements.

The right-hand pane of the DHTML Page Designer is a visual
design surface for the page. You can type text and place objects from
the ToolBox on this surface, as discussed in the following section.

Refer to Figures 17.7, 17.8, and 17.9 in Exercise 17.8 for illustra-
tions of the DHTML Page Designer’s panels.

Modifying a DHTML Web Page and
Positioning Elements
To place text on a DHTML page, you can just position your cursor in
the design-time pane (the right-hand pane) of the DHTML Page
Designer and begin typing. As you type, you are actually defining the
text of an HTML page that will be stored with the DHTML Designer.

Every time that you press the Enter key as you type, you will define
a new Paragraph element in the underlying HTML. A Paragraph ele-
ment is a section of HTML that is surrounded by a <P>…</P> pair of
tags. The basic function of the paragraph tags is to instruct the
browser to set off the element from other elements (usually by
adding an extra carriage return at the end of the displayed element).

The first element of the paragraph tag pair (the <P>) can contain a
great deal of additional information about the formatting of the
entire object, however. A complete Paragraph element might look
like the following in the underlying HTML code:

20 002-8 CH 17 3/1/99 8:35 AM Page 819

820 Par t I VISUAL BASIC 6 EXAM CONCEPTS

<P id=CustomerSurvey style=”BORDER-BOTTOM-STYLE: double;
➥BORDER-LEFT-STYLE: double; BORDER-RIGHT-STYLE: double;
➥BORDER-TOP-STYLE: double; COLOR: #ff00ff; FONT-FAMILY:
➥serif”>Customer
➥Survey</P>

The DHTML Page Designer acts like a Web authoring tool in that
it enables you to just type text while it provides all the underlying
formatting information for the Paragraph tags. You can use a word
processor–like interface with toolbar items and menus to format the
text and thus change the Paragraph tags, as well as inner HTML tags.

The inner HTML tags go inside the Paragraph tags and control for-
matting attributes of the text, such as boldface, italic, and underscore.

You can keep track of the paragraph objects that you place on the
DHTML Designer’s surface, as well as any internal formatting tags,
by checking the left-hand pane of the DHTML Page Designer and
opening the tree of objects under the Document object.

You can add user interface objects to the DHTML page from the
ToolBox, just as you do for a standard VB application. However,
these objects are not the standard controls that you are used to from
VB development. Instead, the objects in the DHTML application’s
ToolBox represent elements of the HTML interface. Placing such an
object on the DHTML Page Designer surface creates HTML code
to implement the object.

When you place a DHTML object on the designer’s surface, you
will position the object either in a relative or absolute position.

When you place an object in a relative position, it will show up
attached to the currently selected Paragraph object. If other objects
already belong to the current Paragraph, the object will appear at the
end of the list. Objects placed in relative positions will adjust their
positions on the screen of the end user’s machine according to the
screen’s physical capabilities.

When you place an object in an absolute position, it will always
show up exactly as you positioned it on the designer’s surface.
Absolute position gives you more control over the exact placement of
an object, but it also deprives your page of flexibility in adjusting to
different environments.

20 002-8 CH 17 3/1/99 8:35 AM Page 820

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 821

DHTML Events
A DHTML application supports numerous events, many of them
quite analogous to those of a standard VB application. In fact, the
names of many DHTML events are formed from the names of the
corresponding standard VB events, but prefixed by the word on. For
example, some common DHTML events are as follows:

á onclick Corresponds to VB’s Click event.

á onmouseup Corresponds to VB’s MouseUp event.

á onkeypress Corresponds to VB’s KeyPress event.

Several other DHTML events correspond to VB standard events in
functionality, but have different names:

á onfocus Corresponds to VB’s GotFocus event.

á onblur Corresponds to VB’s LostFocus event.

Two of the DHTMLPage object’s events (Load and Unload) are useful for
managing critical moments in the lifetime of a DHTML page. Here
is a brief account:

á Load Occurs during the loading of the page to the browser. If
the loading is asynchronous, the Load event occurs after the
first HTML element is created. If the loading is synchronous,
the Load event occurs after the last HTML element is created.

á Unload Occurs during the unloading of the page from the
browser, before any HTML elements have been destroyed.

Two other events, Initialize and Terminate, are generally less useful
than Load and Unload. Initialize happens before all objects are
loaded on the page (and so you can’t trust object references to work
here). Terminate, on the other hand, happens after all objects have
been unloaded (so it’s too late to check object settings).

Navigating Between DHTML Pages and
Persisting State
If you wish to programmatically navigate between DHTML pages in
your application, you need to manipulate the BaseWindow object.
This is only logical because, as you will recall, BaseWindow represents
the browser—and the browser does the navigating between pages.

20 002-8 CH 17 3/1/99 8:35 AM Page 821

822 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Assume, for instance, that you supply the user with a button to
click. The button takes the user to another DHTML page furnished
by your application. In the button’s onclick event procedure, you
might write the line:

BaseWindow.Navigate “CustSurvey_CSMain.html”

This causes the browser to navigate to the indicated page. Note the
name of the page in the string: It is formed from the project name
and an underscore and the name of the page with an html extension.
(This is the name of the temporary file created for the page on the
user’s browser.)

You may also want to persist data between calls to the same page, or
to pass information between pages. Once again, you will call on the
browser to help you with its Property Bag. You use the PutProperty
method to write information to the Property Bag.

Suppose, for example, that you wanted to save information about
the state of a particular element on the DHTML page, just before
navigating to another page. You would make up an appropriate
property name, and then you would store a string value to that
property. The code for doing so might look like this:

If optChoiceGreen.Checked Then
PutProperty BaseWindow.Document, “optColor”, “Green”

End If

In the example, the programmer has invented a property named
optColor and stored the value “Green” to this property. Note that the
call to PutProperty required three arguments:

á Object for which you are storing the property

á Name of the property

á Value of the property

Later in vthe same session, the page may be reloaded. If you want to
retrieve the information that was stored for the optColor property,
you could put a call to GetProperty in the Load event of the
DTHTMLPage object:

stroptColor = GetProperty(BaseWindow.Document, “optColor”)

By using PutProperty and GetProperty in tandem, you can cause
information about a page to become persistent across multiple
sessions.

20 002-8 CH 17 3/1/99 8:35 AM Page 822

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 823

Changing DHTML Element Attributes and
Content
DHTML Web page elements have four runtime properties that
enable you to manipulate the page’s underlying HTML and thus the
attributes and contents of the object as displayed on the Web page:

á OuterHTML represents all the HTML tags and text used to
define an object, including the outer HTML tags that define
the object as an entity on the page, such as <P>…</P> tags. The
contents of the first member of the <P>…</P> tag pair also
includes important information such as extended formatting
instructions for the object and, most importantly, the object’s
ID that you assigned in the DHTML Page Designer. If you
replace OuterHTML without repeating the ID, you will effec-
tively destroy the object’s ID, making it impossible to manipu-
late the object in code afterward during the same session.

á OuterHTML is most useful if you want to examine all the HTML
that goes into the definition of the object.

á InnerHTML refers to inner HTML tags and text. In other
words, InnerHTML doesn’t include the HTML tags and
formatting instructions in the element’s <P>…</P> pair.
If you assign an element’s InnerHTML property, you will replace
inner HTML tags and text inside the element’s outer HTML
tags with new inner tags and text.

á InnerText represents the text inside all HTML tags. If you
assign an element’s InnerText property, you will replace the
inner HTML tags and the text inside the element’s HTML
tags with straight text. Existing outer HTML tags will be left
untouched.

á OuterText represents the text and any carriage returns supplied
by the outer HTML tags.

To illustrate the use of these properties, assume that you have placed
a Paragraph element with ID CustomerSurvey on the Designer sur-
face and typed as its text Customer Survey. Further assume that you
have used the DHTML Page Designer’s toolbar to assign it a font of
Courier, a font size of 4, and to make it appear in bold and italic.
The four properties would then have the following characteristics:

20 002-8 CH 17 3/1/99 8:35 AM Page 823

824 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á The OuterHTML property would include all the HTML tags that
identify the object, and might look like this:

<P id=CustomerSurvey style=”BORDER-BOTTOM-STYLE: double;
➥BORDER-LEFT-STYLE: double; BORDER-RIGHT-STYLE: double;
➥BORDER-TOP-STYLE: double; COLOR: #ff00ff; FONT-FAMILY:
➥serif”>Customer
➥Survey</P>

á The InnerHTML property might look like this:

Customer
➥Survey

á The OuterText property would include the contents of
InnerText, and a carriage return.

á The InnerText property would include just this:

Customer Survey

You will find that InnerHTML and InnerText are the most useful
properties of the four if you want to change attributes.

To follow the preceding example, the line of code

CustomerSurvey.InnerText = “Client Survey”

would destroy all existing inner tags and text and replace them with
the simple text, “Client Survey”.

The line of code

CustomerSurvey.InnerHTML = “<U>Client Survey</U>”

would destroy all existing inner tags and text and replace them with
the HTML tags and text “<U>Client Survey</U>”.

Note that if you attempted to assign HTML tags and text to the
InnerText property, the tags would end up displaying as literal text.

Changing DHTML Element Style
The Style object is a property of all DHTML objects except for the
Document object. It contains over 80 properties that enable you to
manipulate the appearance of an element. Following is a brief
sampling of those 80+ properties:

á BorderColor is a string like the string used for the Color
property.

á BorderStyle is a string whose possible values are “none,”
“solid,” “double,” “groove,” “ridge,” “inset,” and “outset.”

20 002-8 CH 17 3/1/99 8:35 AM Page 824

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 825

á Color is a string whose format is either one of the accepted
color descriptions for the browser (examples would be “black,”
“red,” “yellow,” “slategray,” and many others for an IE environ-
ment) or strings representing a hex number (examples would
be “#FF0000” for pure red, “#00FF00” for pure green,
“#0000FF” for pure blue, and “#FF00FF” for purple).

á FontFamily is a string giving the name of a valid system font
group. Some possible values are “serif,” “cursive,” and “sans-
serif.”

á Visibility is a string indicating visibility of the object, and its
most common possible values are “hidden” and “visible” (a
third value, “inherited,” works if the object is the child of
another object).

As you can see from the preceding brief list, Style properties having
the same names or similar names to properties of standard VB con-
trols usually don’t work in exactly the same way. VB constants that
you may be used to assigning to standard control properties won’t
work here. There is typically a set of strings that you must use
instead, which you can learn from the online documentation.

NEEDS
Your company’s salespeople in the field connect
to your server over the Internet from their lap-
tops. Each salesperson needs to see information
on individual customer orders.

REQU IREMENTS
The usage scenario for your solution could con-
tain the following items:

• The user will see an initial Web page that
lists customers available in your company’s
Sales database. Each customer ID is dis-
played as a hyperlink.

CASE STUDY: DISPLAYING CUSTOMER SALES INFORMATION

• When the user chooses one of the cus-
tomer ID hyperlinks, a second Web page
shows a summary of all the customer’s cur-
rent orders.

D ES IG N SPEC I F IC AT IO N S
Here is a general outline of how you can create
an IIS project to implement this scenario:

1. Create an IIS project with two WebClasses,
one for the Web page representing the cus-
tomer list and one for the Web page giving
a list of a single customer’s sales orders.

20 002-8 CH 17 3/1/99 8:35 AM Page 825

826 Par t I VISUAL BASIC 6 EXAM CONCEPTS

CASE STUDY: DISPLAYING CUSTOMER SALES INFORMATION

3. In the UserEvent procedure for the Customer
WebItem, check the value of the EventName
parameter. It should represent one of the
Customer ID’s chosen on a hyperlink from
the table from the first WebClass’ page.
Use the Customer ID to open a second
recordset of all the sales orders for the
customer whose ID was chosen.

4. Call the WriteTemplate method of the sec-
ond page. In the Start event procedure for
the second page, use the Respond method
to write sales order details to the browser
in the form of a dynamic HTML table.

2. In the customer list WebClass, open an
ADO recordset that points to Customer
data. Loop through the customer records,
creating an HTML table entry for each cus-
tomer that you want to display. As part of
each HTML table entry, create a dynamic
URL using the URLFor function. The URLFor
function will point to a custom WebItem,
Customer, which you will create in the IIS
page. The URLFor’s second argument will be
the Customer record’s unique key, which will
therefore define a dynamic event on the
custom Web Item.

This chapter covered the following topics:

á The creation of IIS (WebClass) applications

á An overview of ASP (Active Server Pages)

á The creation of DHTML applications

CHAPTER SUMMARY

KEY TERMS
• ASP

• DHTML

• DHTML

• HTML

• IIS (Internet Information Server)

• IIS Application

• WebClass

• WebItem

20 002-8 CH 17 3/1/99 8:35 AM Page 826

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 827

A P P LY YO U R K N O W L E D G E

Exercises

17.1 Enabling Microsoft Internet Information
Server for ASP and VB IIS Designer
Applications with WebClasses

Although installing IIS and establishing a virtual direc-
tory for your Web server development are not required
VB exam objectives, you won’t be able to do any ASP
or IIS application development (and therefore won’t be
able to do exercises 17.2 through 17.7) unless you have
IIS in place on your NT Server.

and finally the option for Internet Service
Manager. This will run the Microsoft
Management Console utility.

3. Add a virtual directory to your default Web site
or to the other Web site that you plan to use for
your development.

4. The alias that you give to the virtual directory
will be the name of the directory that users must
enter in their browsers under the Web site name
to navigate to your production development files.

5. After entering an alias for the virtual directory,
you need to specify a physical folder that exists
on the server to associate with the virtual direc-
tory. This physical directory will be the location
where you place your deployment files for the
applications that you build in the following exer-
cises. For purposes of the exercises, you can place
the VB source code and other source files in the
same directory as the deployment files.

6. When the New Virtual Directory wizard prompts
you for access permissions on the virtual direc-
tory, you must specify at least Read and Script
Access. If not, users will not be able to browser to
and use your Web applications.

17.2 Creating a Simple ASP Page

This exercise is for those who are unfamiliar with ASP.
In the exercise, you create a bare-bones ASP page.

Estimated Time: 20 minutes

1. Use Notepad or some other text editor to create
and save a file named MYFIRST.ASP in the phys-
ical folder for the virtual Web directory that you
created in Exercise 17.1. After you have finished,
the contents of the file should look like this:

N
O

T
E Users of NT Workstation and

Windows 95 and Above Can Use
Personal Web Server If you aren’t
developing in an NT Server environ-
ment, but are using NT Workstation or
Windows 95 or above, you can use
Personal Web Server to emulate the
IIS environment of an NT Server.

Also note that NT Option Pack as dis-
cussed below can be installed on
Windows 95 and above.

Estimated Time (excluding time to obtain NT 4.0
Option Pack): 15 minutes

1. Make sure that you have installed NT Server 4.0
Option Pack on your NT Server machine. If you
don’t have the Option Pack, you can get it from
the Microsoft Web site (URL may vary, so do a
keyword search for the Option Pack). This step
and the following step will possibly be different
in the future after NT 5.0 is released.

2. On the server machine, select the program group
of the Windows NT 4.0 Option Pack, the sub-
group for Microsoft Internet Information Server,

20 002-8 CH 17 3/1/99 8:35 AM Page 827

828 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

<HTML>
<BODY>
<%

Dim sTime
sTime = Now
Response.Write sTime
Response.Write “
”
Response.Write “
”
Dim objFileSys, objDrives, objDrive

On error Resume Next
Set objFileSys =

➥Server.CreateObject(“Scripting.FileSystem
➥Object”)

Set objDrives = objFileSys.Drives
For Each objDrive in objDrives

If objDrive.DriveLetter > “B” Then
Response.Write “The Volume Label

➥In Drive”
Response.Write

➥objDrive.DriveLetter
Response.Write “ is “
Response.Write

➥objDrive.VolumeName
Response.Write “.
”

End If
Next
Set objDrives = Nothing
Set objFileSys = Nothing

%>
</BODY>
</HTML>

2. The preceding code illustrates several basic facts
about ASP pages:

• Use the <%…%> tag pair to demarcate ASP
code in the HTML page. Everything outside
of these tags in the file is interpreted as stan-
dard HTML.

• VBScript doesn’t use variable typing. All
objects and variables are declared without the
As clause and are therefore of type Variant.

• The ASP environment has some object class
types of its own, such as the Response object
and the Scripting.FileSystem object illus-
trated here.

• You can use the Write method of the
Response object to create HTML in the final
output of the page.

3. Open your Web browser and type in the URL to
the file to display it, as illustrated at the begin-
ning of this chapter in Figure 17.1.

4. If you want to, you can continue to experiment
with the ASP code in this page by stopping the
browser and editing the file.

17.3 Creating a Basic IIS Application With
WebClasses

In this exercise, you begin an IIS application and
become familiar with the IIS Designer environment.
You should save this exercise, because you will build on
it in the following exercise.

Estimated Time: 10 minutes

1. Begin a new VB IIS application.

2. Open the Code window for the WebClass’ Start
event procedure to examine it. Run the applica-
tion, accepting the default choices on the Project,
Properties Debugging tab (see Figure 17.2 earlier
in this chapter). Examine the appearance of the
page in your browser.

3. In your browser, view the HTML source code
behind the browser display. Notice that the
browser sees standard HTML code as generated
by the Response.Write method in the WebClass’
Start event procedure.

4. Return to Design mode by closing the browser
and then stopping the application.

5. Customize the application’s Start event proce-
dure. Modify the text in the existing calls to
Response.Write and add your own HTML items
with new calls to Response.Write.

20 002-8 CH 17 3/1/99 8:35 AM Page 828

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 829

A P P LY YO U R K N O W L E D G E

6. Use some of VB’s processing power to help create
the HTML output in the Start event by insert-
ing a line such as

.Write “Page accessed at: “ & Format(Now,
➥“hh:mm”)

within the lines that write to the body of the
HTML text. Your modifications to the Start
event procedure might look like those shown ear-
lier in this chapter in Listing 17.5.

7. Run the project again to examine its appearance
in your browser.

8. Make sure you save the project, because you will
use it as a basis for the next two exercises.

17.4 Enhancing an IIS Application With an
HTML Template and Substitution Tags

This exercise builds on the result of Exercise 17.3 and
illustrates the use of substitution tags with an HTML
template in an IIS application.

Estimated Time: 25 minutes

1. Start with the IIS project that you created in
Exercise 17.3.

2. Use a text editor such as Notepad to create a
simple standard HTML (extension .HTM) file
in a different directory from the directory where
your application’s project files are stored. The
contents of the file should look like Listing 17.6
shown earlier in this chapter. After you have fin-
ished creating the file, save the file with the name
MYFIRSTIIS.HTM.

3. In the VB IIS project, make sure that the
WebClass designer is open and right-click on
HTML Template WebItems to bring up the
shortcut menu, as shown in Figure 17.4.

4. Choose Add HTML Template from the shortcut
menu to bring up the File Browse dialog box, and
then navigate to and select the *.HTM file that
you created in step 2. A new item will appear in
the Designer object tree under the HTML
Template WebItems folder. Right-click the item
and choose Rename from the shortcut menu.
Rename the item as tmpMyFirst.

F IGURE 17 .4▲
The HTML Template WebItems shortcut menu.

F IGURE 17 .5▲
Renaming an HTML Template WebItem.

20 002-8 CH 17 3/1/99 8:35 AM Page 829

830 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

5. Navigate to the code for the Start event proce-
dure of the WebClass. Add the following line at
the beginning of the Start event procedure’s code:

tmpMyFirst.WriteTemplate

Rerun the application and observe the page’s
appearance in the Web browser. Stop the browser
and the application in VB and experiment with
different strings for background and font colors.

6. With the browser and the application stopped,
right-click the template object in the Designer
and choose Edit HTML Template from the
shortcut menu. Change the contents of the
HTML page to look like Listing 17.7 shown ear-
lier in this chapter. Make sure that you save and
close the text editor that you used for the HTML
page before going on to the next step.

7. Enter code in the Template item’s ProcessTag
procedure as follows. If you want to, substitute
your own values for the three TagContents values
(the background and foreground colors and the
greeting message).

Private Sub tmpMyFirst_ProcessTag _
(ByVal TagName As String, _
TagContents As String, _
SendTags As Boolean)

Select Case UCase$(TagName)
Case UCase$(tmpMyFirst.TagPrefix) &

➥“GREETING”
TagContents = “Hello from Angkor

➥Wat”
Case UCase$(tmpMyFirst.TagPrefix) &

➥“FORECOLOR”
TagContents = “#0FF64” ‘a

➥dark green
Case UCase$(tmpMyFirst.TagPrefix) &

➥“BACKCOLOR”
TagContents = “slategray” ‘a

➥blue-gray
End Select
SendTags = False

End Sub

8. Run the application and view its changed
appearance in the browser.

9. Stop the browser and application. Experiment by
inventing and inserting new tag pairs in the
HTML file and then adding references to those
tags in the ProcessTags event procedure.

17.5 Implementing Custom WebItem
Respond Events

This exercise builds on the results of the preceding
exercise to illustrate the use of the Respond event for
custom WebItems.

Estimated Time: 40 minutes

1. Edit the HTML page for the HTML Template
WebItem tmpMyFirst so that it looks like the
following (changes are in italic):

<HTML>
<HEAD>

<TITLE>SURVEY RESULT</TITLE>

</HEAD>
<BODY BGColor=<WC@BACKCOLOR>BGColor</
➥WC@BACKCOLOR>><FONT Color=<WC@FORECOLOR>
➥ForeColor</WC@FORECOLOR>

<H1>SURVEY RESULT</H1>

<WC@GREETING>
Greeting
</WC@GREETING>
</BODY>
</HTML>

Note that the only changes are the Title and the
addition toward the middle of the file of the
header line with the text SURVEY RESULT. Make
sure to save the file and close the editor after you
have finished.

2. Right-click the Custom WebItems folder in the
IIS designer window’s left-hand pane and choose

20 002-8 CH 17 3/1/99 8:35 AM Page 830

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 831

A P P LY YO U R K N O W L E D G E

Add Custom WebItem from the shortcut menu,
as shown in Figure 17.6

.Write “<A HREF=””” & _
URLFor(SvcAverage) & _
“””>Average
”

.Write “<A HREF=””” & _
URLFor(SvcGood) & _
“””>Good
”

.Write “<A HREF=””” & _
URLFor(SvcExcellent) & _
“””>Excellent
”

.Write “</body>”

.Write “</html>”
End With

End Sub

6. In the General Declarations section of the
WebClass, declare some Classwide constants and
variables, as follows:

Option Explicit
Option Compare Text
Const POORCOLOR = “#99F600”
Const FAIRCOLOR = “#FF0000”
Const AVERAGECOLOR = “#00AAFF”
Const GOODCOLOR = “#000FF0”
Const EXCELLENTCOLOR = “#FFFFAA”
Private strServiceColor As String
Private strServiceDescription As String

7. Put code in the Respond event procedures of the
WebItems that you created in steps 3 and 4, as
follows:

Private Sub SvcAverage_Respond()
strServiceColor = AVERAGECOLOR
strServiceDescription = “Average

➥service.”
tmpMyFirst.WriteTemplate

End Sub

Private Sub SvcExcellent_Respond()
strServiceColor = EXCELLENTCOLOR
strServiceDescription = “Excellent

➥service.”
tmpMyFirst.WriteTemplate

End Sub

Private Sub SvcFair_Respond()
strServiceColor = FAIRCOLOR
strServiceDescription = “Fair service.”
tmpMyFirst.WriteTemplate

End Sub

F IGURE 17 . 6
The Custom WebItems shortcut menu.

3. After adding the WebItem, type the name
SvcAverage and press Enter.

4. Repeat Steps 2 and 3 four more times, adding
WebItems named, respectively, SvcExcellent,
SvcFair, SvcGood, and SvcPoor.

5. Completely change the WebClass_Start event
procedure so that it now reads as follows:

Private Sub WebClass_Start()

‘Write a reply to the user
With Response

.Write “<html>”

.Write “<body>”

.Write “<h1>Survey</h1>”

.Write “<p>How good is our
➥service?</p>”

.Write “<A HREF=””” & _
URLFor(SvcPoor) & _
“””>Poor
”

.Write “<A HREF=””” & _
URLFor(SvcFair) & _
“””>Fair
”

20 002-8 CH 17 3/1/99 8:35 AM Page 831

832 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Private Sub SvcGood_Respond()
strServiceColor = GOODCOLOR
strServiceDescription = “Good service.”
tmpMyFirst.WriteTemplate

End Sub

Private Sub SvcPoor_Respond()
strServiceColor = POORCOLOR
strServiceDescription = “Poor service.”
tmpMyFirst.WriteTemplate

End Sub

8. Modify the contents of the ProcessTag event pro-
cedure as follows (modified lines are in italic):

Private Sub tmpMyFirst_ProcessTag _
(ByVal TagName As String, _
TagContents As String, _
SendTags As Boolean)

Select Case UCase$(TagName)
Case UCase$(tmpMyFirst.TagPrefix) &

➥“GREETING”
TagContents =

➥strServiceDescription
Case UCase$(tmpMyFirst.TagPrefix) &

➥“FORECOLOR”
TagContents = “#0FF64” ‘a

➥dark green
Case UCase$(tmpMyFirst.TagPrefix) &

➥“BACKCOLOR”
TagContents = strServiceColor

End Select
SendTags = False

End Sub

Note that you modified the lines that set the tags
for greeting and background color. The values of
these tags will now derive from the Classwide
variables and constants that you defined in step 6.
The values of these variables, in turn, were set in
one of the Respond event procedures that you
programmed in step 7. Recall that each of the
Respond event procedures calls the WriteTemplate
method of the HTML Template object, and thus
force the Template to display and therefore also
cause the ProcessTags event procedure to run.

9. Run the application. When the initial page
appears in the browser, select one of the choices
that correspond to the custom WebItems. Note
the behavior of the application. Press the
browser’s Back button to return to the initial page
and make a different choice.

17.6 Implementing Custom Events for
WebItems

This exercise builds on the results of the preceding
exercise to illustrate how you can create custom events
for WebItems.

Estimated Time: 40 minutes

1. Use the project of exercise 17.5 as the basis for
this exercise.

2. Add a custom WebItem and name it Service.

3. Add five events to the WebItem (either right-click
the new WebItem and choose Add Event, or
choose the lightning-bolt icon from IIS Designer
toolbar). Name the events Average, Excellent,
Fair, Good, and Poor.

4. Write code in the event procedures as follows.
Note that it is the same code that you wrote in
the Respond event procedures of the individual
WebItems in step 7 of exercise 17.5, so you can
paste it from those event procedures if you like.

Private Sub Service_Average()
strServiceColor = AVERAGECOLOR
strServiceDescription = “Average

➥service.”
tmpMyFirst.WriteTemplate

End Sub

Private Sub Service_Excellent()
strServiceColor = EXCELLENTCOLOR
strServiceDescription = “Excellent

➥service.”
tmpMyFirst.WriteTemplate

End Sub

20 002-8 CH 17 3/1/99 8:35 AM Page 832

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 833

A P P LY YO U R K N O W L E D G E

Private Sub Service_Fair()
strServiceColor = FAIRCOLOR
strServiceDescription = “Fair service.”
tmpMyFirst.WriteTemplate

End Sub

Private Sub Service_Good()
strServiceColor = GOODCOLOR
strServiceDescription = “Good service.”
tmpMyFirst.WriteTemplate

End Sub

Private Sub Service_Poor()
strServiceColor = POORCOLOR
strServiceDescription = “Poor service.”
tmpMyFirst.WriteTemplate

End Sub

5. Modify the WebClass’ Start event procedure as
follows (changes are in italic):

Private Sub WebClass_Start()

‘Write a reply to the user
With Response

.Write “<html>”

.Write “<body>”

.Write “<h1>Survey</h1>”

.Write “<p>How good is our
➥service?</p>”

.Write “<A HREF=””” & _
URLFor(Service,

➥“Poor”) & _
“””>Poor
”

.Write “<A HREF=””” & _
URLFor(Service, “Fair”)

➥& _
“””>Fair
”

.Write “<A HREF=””” & _
URLFor(Service,

➥“Average”) & _
“””>Average
”

.Write “<A HREF=””” & _
URLFor(Service, “Good”)

➥& _
“””>Good
”

.Write “<A HREF=””” & _
URLFor(Service,

➥“Excellent”) & _
“””>Excellent
”

.Write “</body>”

.Write “</html>”
End With

End Sub

Note that the difference from the preceding exer-
cise consists in the fact that the calls to URLFor
now use two arguments rather one. The first
argument is the name of the WebItem, Service.
The second argument is a string that tells which
custom event of the WebItem to fire.

6. Run the application and note that it functions
the same as before.

17.7 Implementing Dynamic WebItem Events

This exercise builds on the results of the preceding
exercise to illustrate how you can implement com-
pletely dynamic WebItem events whose names are
defined at runtime.

Estimated Time: 20 minutes

1. Use the project of exercise 17.6 as the basis for
this exercise.

2. Delete the custom events for the Service
WebItem. Note that their event procedures’ code
still remains in the project under General
Procedures.

3. Run the application and note that clicking the
various anchors in the browser now yields blank
screens for each item.

4. Add the following code to the UserEvent proce-
dure of the Service WebItem:

Private Sub Service_UserEvent(ByVal EventName
As String)

Select Case UCase$(Trim$(EventName))

Case “AVERAGE”
strServiceColor = AVERAGECOLOR
strServiceDescription = “Average

➥service.”
tmpMyFirst.WriteTemplate

20 002-8 CH 17 3/1/99 8:35 AM Page 833

4. Select the first line (“This is a VB DHTML
Demo Page”) and use the formatting tools at the
top of the screen (see Figure 17.8) to assign a font
size of 4 to the text and to make it appear bold.

Assign a font size of 3 and bold to the lines that
read “First Topic” and “Second Topic.”

Assign a font size of 2 to the lines that read
“First Topic text” and “Second Topic text.” Do
not make them boldface.

5. Expand the left-hand pane of the Designer and
fully expand all the nodes of the tree under the
Document object to examine their contents, as
shown in Figure 17.9.

834 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Case “EXCELLENT”
strServiceColor = EXCELLENTCOLOR
strServiceDescription =

➥“Excellent service.”
tmpMyFirst.WriteTemplate

Case “FAIR”
strServiceColor = FAIRCOLOR
strServiceDescription = “Fair

➥service.”
tmpMyFirst.WriteTemplate

Case “GOOD”
strServiceColor = GOODCOLOR
strServiceDescription = “Good

➥service.”
tmpMyFirst.WriteTemplate

Case “POOR”
strServiceColor = POORCOLOR
strServiceDescription = “Poor

➥service.”
tmpMyFirst.WriteTemplate

End Select

End Sub

Note again that the code in each CASE branch is
the same as the code in the old event procedures.

5. If you run the application again, this time you
will note that clicking on the items in the
browser calls up the appropriate display.
Although the events no longer exist in the pro-
ject, the UserEvent procedure receives the cus-
tomized event name formed by the calls to URLFor
in the WebClass_Start event procedure and can
correctly detect which event has fired.

17.8 Creating and Modifying a Web Page
with the DHTML Page Designer

In this exercise, you use VB’s DHTML Page Designer
to create a Web page.

Estimated Time: 45 minutes

1. Begin a new DHTML application project.

2. In the Project Explorer, open the Designers folder
and double-click the DHTMLPage1 object to bring
up its Designer.

3. In the right-hand pane of the Designer, type the
text shown in Figure 17.7.

F IGURE 1 7 .7
Text to type in DHTML Designer for Exercise 17.8.

20 002-8 CH 17 3/1/99 8:35 AM Page 834

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 835

A P P LY YO U R K N O W L E D G E

7. Add two Option objects and two TextField objects
to the DHTML page, as shown in Figure 17.11.

F IGURE 17 . 8▲
Using the formatting toolbar to assign attributes to text with
the DHTML Page Designer.

F IGURE 17 . 9▲
The objects contained in the Document of the DHTML page.

F IGURE 1 7 .10▲
Assigning a unique ID to an element of the DHTML page.

6. Assign a unique ID to the main title by selecting
it, pressing F4 to bring up the Properties win-
dow, and typing MainText as the ID property’s
value, as shown in Figure 17.10. Assign IDs to
the other paragraph elements as follows:
FirstTopicTitle, FirstTopicText,
SecondTopicTitle, SecondTopicText.

F IGURE 17 .1 1▲
Adding elements from the Toolbox to the DHTML page.

8. Assign property values to the new elements as
shown in Table 17.1. Note that the two Option
controls take the same name. Giving them the
same name will include them in the same Option
group and so will guarantee that only one Option
in the group can be selected at any given time.

20 002-8 CH 17 3/1/99 8:35 AM Page 835

836 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

TABLE 17.1

VALUES TO ASSIGN TO CONTROL PROPERTIES

IN EXERCISE 17.8

Control type Property Value

Option ID optDisplay1

Name optDisplay

Checked True

Option ID optDisplay2

Name optDisplay

Checked False

TextField ID txfldDisplay1

ReadOnly True

Value Display Style 2

TextField ID txfldDisplay2

ReadOnly True

Value Display Style 2

9. Write the following code in the DHTML page’s
event procedures:

Private Sub DHTMLPage_Load()

txtfldDisplay1.Style.BorderStyle = “none”
txtfldDisplay2.Style.BorderStyle = “none”

End Sub

Private Function optDisplay1_onclick() As
➥Boolean

FirstTopicTitle.Style.Color = “black”
FirstTopicText.innerHTML =

➥FirstTopicText.innerText
optDisplay1_onclick = True

End Function

Private Function optDisplay2_onclick() As
➥Boolean

FirstTopicTitle.Style.Color = “red”
FirstTopicText.innerHTML = “” &

➥FirstTopicText.innerText & “”
optDisplay2_onclick = True

End Function

10. Save and run the project. Accept the default
Debugging options for the project (the project
will run in your default browser). Click back and
forth on the Option controls and note the behav-
ior. Note the lack of borders around the runtime
instances of the TextField objects (caused by
adjusting the BorderStyle property in the Load
event procedure of the page). Experiment with
the code and rerun.

17.9 Navigating Between Pages in a DHTML
Project

In this exercise, you code a DHTML application to
navigate between Web pages.

Estimated Time: 25 minutes

1. Use the same project that you created for Exercise
17.8.

2. From the VB ToolBox in the DHTML Designer,
add a Button control to the bottom of the form.
Change the ID property of the button to
btnDetails and the Value property to Details…
(see Figure 17.12).

3. Double-click the button to view the Code win-
dow for its onclick event procedure. Enter the
following code:

Private Function btnDetails_onclick() As
➥Boolean

If optDisplay1.Checked Then
PutProperty BaseWindow.Document,

➥“DisplayStyle”, “1”
Else

PutProperty BaseWindow.Document,
➥“DisplayStyle”, “2”

20 002-8 CH 17 3/1/99 8:36 AM Page 836

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 837

A P P LY YO U R K N O W L E D G E

End If
BaseWindow.navigate

➥“DHTMLProject_DHTMLPage2.html”
End Function

4. Add the following code to the DHTMLPage_Load
event procedure (recall that the first two lines
already exist from the preceding exercise):

Private Sub DHTMLPage_Load()
txtfldDisplay1.Style.BorderStyle = “none”
txtfldDisplay2.Style.BorderStyle = “none”

Dim strDisplaystate As String
strDisplaystate =

➥GetProperty(BaseWindow.Document,
➥“DisplayStyle”)

If Val(strDisplaystate) <= 1 Then
Call optDisplay1_onclick
optDisplay1.Checked = True

Else
Call optDisplay2_onclick
optDisplay2.Checked = True

End If
End Sub

F IGURE 17 . 12▲
The DHTML form for Exercise 17.9 with the added Details
button.

F IGURE 1 7 .13▲
The second DHTML page for Exercise 17.9.

5. Notice that the code of step 3 refers to a
DHTML page that doesn’t exist yet. Add the
DHTML page from the Project menu and allow
it to keep the default name of DHTMLPage2.
Navigate to the new DHTML page.

6. Position your cursor in the right-hand pane of
the DHTML Designer and press the Enter key
twice to produce two Paragraph elements.
Change the ID property of the first paragraph to
YourMessage and the second Paragraph’s ID prop-
erty to YourMessage1.

7. Select the second paragraph element and add a
Button control to the page from the ToolBox (the
new control will be included in the second para-
graph element). Change the Button’s ID property to
btnMain and its Value to Main Page. The completed
visual interface should look like Figure 17.13.

8. Enter the following code into the button’s
OnClick event procedure and the Page_Load event
procedure:

20 002-8 CH 17 3/1/99 8:36 AM Page 837

838 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Option Explicit
Private Function btnMain_onclick() As Boolean
BaseWindow.navigate
➥“DHTMLProject_DHTMLPage1.html”
End Function

Private Sub DHTMLPage_Load()
Dim strDisplaystate As String
strDisplaystate =

➥GetProperty(BaseWindow.Document,
➥“DisplayStyle”)

YourMessage.innerText = “Display style is
➥“ & Trim$(strDisplaystate)
➥End Sub

9. Test the application running it. In the browser,
click the button to bring up the second page and
observe the message. Click the button on the sec-
ond page to return to the first page. Change the
display state and repeat these actions. Note how
state is preserved with the GetProperty and
PutProperty functions.

Review Questions
1. Does an IIS (WebClass) application run on a

Web client or on a Web server? A DHTML
application?

2. What is the pair of tags that demarcate ASP code
in a Web page?

3. What does the ProcessTag event do?

4. Where can you detect the firing of a dynamically
named WebItem event in an IIS application?

5. Which object member of a DHTML page element
must you refer to in code to manipulate most of
the element’s visual formatting properties?

Exam Questions
1. Assuming that the default Tag ID for a WebClass

is WC, the proper syntax for referring to a
WebClass tag in an HTML template for that
WebClass would be:

A. <TAG>WCMYTAG=ELIZABETH</TAG>

B. <@WC>MYTAG=”ELIZABETH”</WC>

C. <@WCMYTAG>ELIZABETH</@WCMYTAG>

D. <WC<MYTAG>ELIZABETH</WC>

2. For an IIS (WebClass) application to run on an
end-user’s machine with an Internet browser, the
following files must be deployed to the user’s
machine:

A. MSWCRRUN.DLL, MVBVM60.DLL, and
compiled application’s DLL

B. Application’s DLL only

C. MSWCRRUN.DLL and compiled applica-
tion’s DLL

D. MSWCRRUN.DLL only

E. No extra files

3. Calling the WriteTemplate method will possibly
fire:

A. The WebClass_Start event

B. The Initialize event

C. The Respond event

D. The ProcessTag event

4. An HTML file that you use as an HTML tem-
plate in an IIS application:

20 002-8 CH 17 3/1/99 8:36 AM Page 838

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 839

A P P LY YO U R K N O W L E D G E

A. Should be created in a directory separate
from the project’s development directory and
will be saved in the development directory.

B. Should be created in the development direc-
tory and then saved in a separate directory.

C. Should be created in and saved in a directory
separate from the project’s development
directory.

D. Should be created in and saved in the
project’s development directory

5. You specify the substitution tag prefix for an
HTML Template WebItem:

A. Within the ProcessTag event

B. With the TagPrefix property

C. Before the <BODY> section of the HTML
template

D. Within the <BODY> section of the HTML
template

E. Individually for each substitution tag that
you use within the HTML template

6. The ProcessTag event’s first parameter specifies:

A. A delimited string containing the names of
all the WebClass tags embedded in the
HTML template’s HTML code

B. An array containing the names of all the
WebClass tags embedded in the HTML
template’s HTML code

C. A collection containing the names and values
of all the WebClass tags embedded in the
HTML template’s HTML code

D. The name of a single tag

7. To enable the firing of a custom WebItem’s
Respond event:

A. In the Start event of the WebClass, put code
such as this:

Response.Write “<A HREF=””” & _
URLFor(MyItem) & “””>MyItem
”

B. In the Start event of the WebClass, put code
such as this:

Response.Write “<A
➥HREF=MyItem>MyItem
”

C. In the Start event of the WebClass, put code
such as this:

Response.Write “<A
➥HREF=CreateObject(“MyItem”)>MyItem
➥
”

D. Insert into the HTML template itself the
HTML code:

MyItem

E. Insert into the HTML template itself the
HTML code:

MyItem

8. The UserEvent procedure:

A. Runs for all events fired for WebItems.

B. Runs only for events defined by the program-
mer within the WebClass project.

C. Runs only for events whose names were gen-
erated on-the-fly in HTML code.

D. Runs for events defined by the programmer
within the WebClass project and for events
whose names were generated on-the-fly in
HTML code, but not for any other events.

20 002-8 CH 17 3/1/99 8:36 AM Page 839

840 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

9. You can manipulate a background color of a
DHTML page TextField element named
TextField1 with the syntax:

A. TextField1.Style.Color

B. TextField1.BackColor

C. TextField1.bgColor

D. TextField1.Style.bgColor

E. TextField1.InnerHTML

10. You want to manipulate HTML text within a
DHTML page without disturbing its visible for-
matting. The segment of text that you want to
manipulate has the name txtInstructions and
the ID txtHTMLInstructions. You can change the
text by referring to:

A. txtHTMLInstructions.InnerText

B. txtHTMLInstructions.OuterText

C. txtHTMLInstructions.Text

D. txtHTMLInstructions.Style.Text

Answers to Review Questions
1. An IIS application runs on a Web server. The

Web server invokes an instance of an IIS applica-
tion to modify HTML pages that it sends to
clients. Clients have no awareness of the IIS
application. See “IIS (WebClass Designer)
Applications in VB.”

A DHTML application runs on the same
machine as the end-user’s browser (a Web client).
The DHTML application is in the form of an
ActiveX DLL that downloads with a Web page to
the browser. See “DHTML Applications.”

2. The tag pair <%…%> demarcates ASP code within a
Web page file. See “Creating a Simple ASP Page.”

3. The ProcessTag event fires each time that the IIS
application encounters a pair of substitution tags
in an HTML template. See “Substitution Tags.”

4. The UserEvent event of a WebClass fires when a
dynamically named event fires. The UserEvent pro-
cedure’s parameter gives the name of the event that
just fired. See “Dynamic Events for WebItems.”

5. You often must refer to the Style property of a
DHTML page element to make visible format-
ting changes to a DHTML page element. For
example, you must write the code

TextField2.Style.BorderStyle = “none”

to change the BorderStyle property of a
TextField object. See “Changing DHTML
Element Style.”

Answers to Exam Questions
1. C. The proper syntax for referring to a WebClass

tag in an HTML template is

<WC@MYTAG>ELIZABETH</WC@MYTAG>

assuming that WC@ is the TagPrefix for that Web
Template item. You must use an HTML tag pair
that includes the full name of the tag. The tag
pair surrounds the default initial value of the tag.
The tag name includes the Web Template item’s
TagPrefix. For more information, see the section
titled “Substitution Tags.”

2. E. No extra files are needed on the user’s machine
for an IIS application. Recall that IIS applications
run server side to help the Web browser prepare
a standard HTML page. DHTML applications,

20 002-8 CH 17 3/1/99 8:36 AM Page 840

Chapter 17 INTERNET PROGRAMMING WITH I IS/WEBCLASS AND DHTML APPLICATIONS 841

A P P LY YO U R K N O W L E D G E

of course, are a different story; they implement
an ActiveX DLL that runs client side. The files
mentioned in the other choices are either
required on the Web server only (MSWCR-
RUN.DLL and the application’s compiled DLL)
or not at all for an IIS application
(VBVM60.DLL). For more information, see the
section titled “IIS Applications in VB.”

3. D. Calling the WriteTemplate method of an
HTML template page in an IIS application will
possibly cause the ProcessTag event of the HTML
Template object to fire. Note, however, that
ProcessTag would only fire in some cases, and
then only as an indirect result of the
WriteTemplate method (when the Web server
reads the tags in the template). A is incorrect
because the WebClass_Start event has already fired
(you often place a call to WriteTemplate in the
Start event procedure). B is incorrect because,
once again, Initialize fires earlier. C is incorrect
because the Respond event procedure is the other
main place (aside from the Start event) from
where you would call the WriteTemplate method.
For more information, see the sections titled
“Programming with an HTML Template” and
“Creating and Programming Custom WebItems.”

4. A. An HTML file that you use as an HTML
template in an IIS application should be created
in a directory separate from the project’s develop-
ment directory. When you run, save, or compile
the project for the first time after adding the
template to the project, VB makes a copy of the
template in the project’s directory (the directory
where the project’s VBP file resides). For more
information, see the section titled “Programming
with an HTML Template.”

5. B. You use the TagPrefix property to specify the
substitution tag prefix for an HTML Template
WebItem. For more information, see the section
titled “Substitution Tags.”

6. D. The ProcessTag event’s first parameter specifies
the name of a single tag. The fundamental prob-
lem with the assumption behind the three incor-
rect answers (besides the fact that they are just
plain wrong) is that in reality ProcessTag fires sep-
arately for each substitution tag pair, and so only
handles one tag at a time. For more information,
see the section titled “Substitution Tags.”

7. A. To enable the firing of a custom WebItem’s
Respond event, you can place you can put code
such as

Response.Write “<A HREF=””” & _
URLFor(MyItem) & “””>MyItem
”

in the Start event of the WebClass. For more
information, see the section titled “Creating and
Programming Custom WebItems.”

8. C. The UserEvent procedure runs only for events
whose names were generated on-the-fly in
HTML code. You can create such calls with
syntax such as

Response.Write “<A HREF=””” & _
URLFor(MyItem, MyVarName) &

➥“””>MyItem
”

where MyVarName is a variable name that will cause
the firing of a like-named event. You then can write
event-handling code to detect the custom event
names in the UserEvent procedure of the WebItem.

20 002-8 CH 17 3/1/99 8:36 AM Page 841

842 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

A, B, and D are incorrect because events defined
by the programmer within the WebClass project
get their own event procedures (and so UserEvent
doesn’t fire), and the WebItem’s default event
(which you can implement by calling URLFor with
only one argument) is the Respond event. For
more information, see the sections titled
“Creating and Programming Custom WebItems,”
“Custom Events for WebItems,” and “Dynamic
Events for WebItems.”

9. A. You can manipulate a background color
of a DHTML page TextField element
named TextField1 with the syntax
TextField1.Style.Color. The exact names of
properties in such syntax can be a bit tricky to
remember because the property names for
DHTML control objects are not always the same
as the corresponding standard VB control property
names. For more information, see the section titled
“Changing DHTML Web Page Element Style.”

10. A. You can refer to the InnerText property of a
standard HTML object to change its displayed text
in a DHTML application without affecting the vis-
ible format. Answer B (OuterText) would perform
the text replacement, but it would possibly change
the visible formatting of the element, because it
would replace the HTML tags surrounding the ele-
ment. Answer C is syntactically incorrect, because
this property’s name in DHTML applications is
not Text. Answer D is syntactically incorrect,
because the property’s name is not Text, and more-
over the Style object does not give access to the
text of standard HTML objects. For more informa-
tion, see the section titled “Changing DHTML
Web Page Element Content.”

20 002-8 CH 17 3/1/99 8:36 AM Page 842

OBJECT IVES

18C H A P T E R

Using VB’s
Debug/Watch Facilities

The Debug window and the associated Debug object are
VB’s main built-in features for debugging your code at
design time.

This chapter discusses many features of both the Debug
window and the Debug object here, although only three
of them—Watch expressions and the Immediate and
Locals windows—are mentioned in the exam objectives.
It is likely that the certification exam will require knowl-
edge of some of VB’s other built-in debugging features
as well; that is why they are included here.

This chapter helps you prepare for the exam by
covering the following objectives:

Set Watch expressions during program
execution (70-175 and 70-176).

. Watch expressions enable you to monitor the
changing values of data in your application.

Monitor the values of expressions and vari-
ables by using the Immediate window (70-175
and 70-176).

• Use the Immediate window to check or
change values.

• Explain the purpose and usage for the
Locals window.

. This chapter discusses the Immediate window,
which enables you to interrogate and manipulate
your application’s environment while it is paused
during design-time execution. This chapter also dis-
cusses the Locals window, which enables you to
monitor and set the values of variables that are local
to the currently running procedure.

Given a scenario, define the scope of a Watch
variable (70-175 and 70-176).

. Watch scope enables you to refine exactly what
information you monitor and when you monitor it.

21 002-8 CH 18 3/1/99 8:37 AM Page 843

OUTL INE

Preventing Bugs 846

Using Watch Expressions and Contexts 848

Creating a Watch Expression 849

Types of Watch Expression 850

Watch Contexts 852

Using Break Mode 854

Entering Break Mode Manually 854

Stepping Through Your Code 855

Using the Watch Window 859

Entering Break Mode Dynamically 861

Using Quick Watch 863

Watching on Demand 864

Immediate Window and the Debug
Object 864

Displaying the Debug Window 864

Displaying Messages Programmatically
with the Debug Object 865

Using the Print Method 866

Formatting Debug.Print Messages 867

Displaying Data Values 869

Using the Debug.Assert Method 871

Interacting with the Immediate Window 873

Querying or Modifying Data Values 874

Testing and Executing VB Procedures 875

Using the Locals Window 877

Using the Immediate Window in Place
of Breakpoints 880

Using the MouseDown and KeyDown
Events 880

Using the GotFocus and LostFocus Events 880

Levels of Scope 881

Local Scope 882

Module Scope 883

Global Scope 884

Scope Considerations 885

Striving to Narrow the Scope 885

Performance Concerns 886

Chapter Summary 887

21 002-8 CH 18 3/1/99 8:37 AM Page 844

STUDY STRATEGIES

. The best way to prepare for the exam topics
discussed in this chapter is to complete the
exercises at the end of the chapter.

. Although Exercises 18.1, “Using the Call
Stack,” and 18.2, “Using the Debug.Print
Command,” don’t deal with explicit exam objec-
tives, they do illustrate important VB debugging
skills that you will need to be familiar with.

. Exercise 18.3, “Modifying Values in the
Immediate and Locals Windows,” addresses the
exam objective for Watch variables and its subob-
jectives for Immediate and Locals windows.

. Exercise 18.4 illustrates the Watch Scope
objective.

21 002-8 CH 18 3/1/99 8:37 AM Page 845

846 Par t I VISUAL BASIC 6 EXAM CONCEPTS

INTRODUCTION

Bugs are a fact of life. Even the most finely honed programming dis-
cipline can’t guarantee error-free code. Because you can’t absolutely
prevent bugs from being written in the first place, you have to settle
for second best by trying to stamp them out before they inadver-
tently get released into a product.

Fortunately, VB gives you a lot of opportunities to find your bugs
before you put your software into the hands of your users. The pri-
mary debugging tools in the Visual Basic programming environment
are the following three debugging windows:

á The Watch window

á The Immediate window

á The Locals window

This chapter covers the following topics:

á Bug prevention

á Watch expressions, types, and contexts

á Break mode

á The Immediate window and the Debug object

á Interacting with the Immediate window

á Locals

á When to use the Immediate window in place of breakpoints

á Levels of scope

á Scope considerations

PREVENTING BUGS

This discussion starts by testing your debugging skills by looking
at a simple problem in a loop that assigns values to an array of string
variables. The array is defined in a module as follows:

Public astrName(9) as String

21 002-8 CH 18 3/1/99 8:37 AM Page 846

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 847

Because arrays are zero-based by default, this creates an array of 10
variables in the astrName array. Assume that each of the variables is
properly assigned a value, but that you later try to display the names
in the array using this code:

Dim i as Integer
For i = 1 to 10

MsgBox “Name #” & i & “ is “ & astrName(i)
Next

As this loop executes, you begin to see a series of message boxes for
Name #1, Name #2, and so on. When you reach Name #10, how-
ever, a “subscript out of range” error message appears (assuming,
that is, that you haven’t used an advanced optimization feature to
disable array bounds checking). Obviously, something is wrong, but
what is it? After all, you know there are supposed to be 10 variables
in that array, and you are only asking to see items 1 to 10. This
hardly seems like it should give you any trouble.

This is a simple example, and if you already understand arrays, you
can spot the problem without bothering with a watch. The array
does have 10 elements, but because it is zero-based, the index values
range from 0 to 9, not 1 to 10. When the loop tried to display the
value of astrName(10), it was outside the bounds of the array.

The same person who wrote the buggy display loop might also
make this mistake in assigning values to the array:

For i = 1 to 9
astrName(i) = “Some name value”

Next

This is a little more insidious than the display loop. This assignment
loop doesn’t generate any error messages, but it is wrong nonetheless.
If the default Option Base 0 has not been changed, the first element
of the array is astrName(0), to which this loop never assigns a value.

A programmer with some VB experience will understand these prob-
lems almost at once, but that doesn’t help the beginner who wrote
the buggy code in these loops. You can use certain techniques to
help prevent these problems by making your intent clearer to others
who may later need to maintain your code. Even if no one else but
you will ever touch your code, you may benefit from these tech-
niques yourself if you ever have to resume a project that you haven’t
touched in a long while.

First, the array might have been defined by explicitly specifying its
upper and lower bounds:

Public astrName(0 to 9) as String

21 002-8 CH 18 3/1/99 8:37 AM Page 847

848 Par t I VISUAL BASIC 6 EXAM CONCEPTS

This makes it clear that the range of values begins with 0 and ends
with 9, so it should be less likely that the flawed assignment loop
above will be repeated. It also ensures that there will still be 10 ele-
ments in the array even if someone later adds Option Base 1 to the
code to change the default lower boundary of an array.

Second, additional care could be taken in the display loop by finding
out both the upper and lower boundaries of the array before trying
to access its elements:

Dim iLower as Integer, iUpper as Integer
iLower = LBound(astrName)
iUpper = UBound(astrName)
For i = iLower to iUpper

MsgBox “Name #” & i & “ is “ & astrName(i)
Next

This code is guaranteed to access each element of the array from
beginning to end. Nothing gets skipped, and the code can’t step out-
side the bounds of the array. Remember that you will need to use
this technique for safety’s sake if you use the advanced optimization
switch that disables automatic array checking (see Chapter 20,
“Compiling a VB Application”).

You can (and you should!) take preventive measures like these to
guard against potential bugs. Even simple safeguards have great
value. For instance, it is hard for working VB programmers to imag-
ine coding without being forced to declare variables via Option
Explicit, for example, and On Error Resume Next is reserved only
for extremely brief routines with their own internal error checks.
When you run into a new problem that isn’t so obvious, and you
can’t understand what’s wrong just by reading the code, you will
develop an instant appreciation for VB’s debugging aids. The first
type you will examine is the Watch expression.

USING WATCH EXPRESSIONS AND
CONTEXTS

. Set Watch expressions during program execution.

A Watch expression is essentially what its name implies; it is
an expression whose value you want to watch change while
your program runs. The expression may be simple or complex.

21 002-8 CH 18 3/1/99 8:37 AM Page 848

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 849

A simple expression might consist of a single variable. A complex
expression might perform calculations on multiple variables, or even
call functions. The only requirement is that a Watch expression must
be a legal VB expression. In other words, if you can’t use an expres-
sion in a line of code without generating a compiler error, you can’t
use it as a Watch expression either.

Creating a Watch Expression
A watch enables you to observe the value of an expression while your
code executes. To create a Watch expression, open a project and pull
down the Debug menu to choose Add Watch, as shown in Figure 18.1.

After you click on the Add Watch option, you will see the dialog box
shown in Figure 18.2.

When you create a watch, you can specify any valid VB expression.
The expression may range in complexity from the name of a single
variable to a calculation involving a series of nested function calls.
As long as it is a legal VB expression, you can monitor its value
while your code executes.

If you make a mistake when you type the expression, however, VB won’t
tell you about it. There is no Watch expression equivalent of the VB
syntax checker to tell you that you have made a mistake after you enter a
line. Consequently, it is up to you to pay close attention to ensure that
you type what you intended. If you type nonsense that VB can’t evaluate
at runtime, the Watch window will cheerfully display it for you in the
Watch window without complaint, as shown in Figure 18.3.

F IGURE 18 .1 ▲

Use the Debug menu to create a Watch expres-
sion.

F IGURE 18 .2 ▲

The Add Watch dialog box.

, F IGURE 1 8 .3
If your expression can’t be evaluated, the
Watches window says so.

The closest thing you will get to an error message is the text in the
Value column of the Watch window that says Expression not
defined in context, but you will see that message under normal cir-
cumstances anyway. That is because the mechanism that enables you
to set watches isn’t omniscient. The same rules that apply to stan-
dard VB code also govern the evaluation of a Watch expression. That

21 002-8 CH 18 3/1/99 8:37 AM Page 849

850 Par t I VISUAL BASIC 6 EXAM CONCEPTS

means that the expression being watched must be in the scope of the
currently executing code for the Watch window to report its value.

That is why you don’t get an error message in the Watch window
even if you try to set a watch for nonsense. The Watch expression is
evaluated only during runtime when VB is in Debug mode. You can,
however, enter Watch expressions when VB is in Design mode.

You don’t need to type the expression you want to watch. You can
double-click on a variable name to select it, and then drag it to
the Watch window. Likewise, if you highlight an expression, the
expression can be dragged to the Watch window. Whatever you drag
into the Watch window is automatically used to create a new Watch
expression.

If you need to edit an existing watch to fix a mistake, select it in the
Watch window, and then pull down the Debug menu to choose Edit
Watch. You can also right-click the Watch window to add, edit, or
delete a watch. Another way to delete a watch is to select it in the
Watch window and press the Delete key.

As usual, VB gives you a lot of different ways to manage the Watch
window itself. You can let the Watch window float or drag it to a
location on your screen to dock in a fixed position. Grab its title
bar with the mouse to drag it from one place to another. Double-
clicking the title bar toggles its status between docked and floating.

Types of Watch Expression
Visual Basic offers three Watch types. Each Watch type determines
a slightly different behavior for the Watch expression when you run
your code at design time.

Remember that you choose the Watch type when you add or edit
a Watch expression. The following three sections discuss these types
of Watch expression.

Watch Type Watch Expression
The default Watch type is Watch expression. This Watch type will
just list the expression’s name and value (when in scope) in the
Watch window. Whenever you want to know an expression’s current
value, you can access the Watch window with View, Watch Window.

21 002-8 CH 18 3/1/99 8:37 AM Page 850

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 851

Watch Type Break When Value Changes
If you select the Break When Value Changes Watch type in the Add
Watch dialog box, Visual Basic will enter Break mode whenever the
value of the expression changes during execution.

A Watch type of Break When Value Changes automates the process
of monitoring the variable. When you set up a watch of this type,
the Watch window (with a row listing the variable’s current value)
will come up automatically every time the variable’s value changes.

Watch Type Break When Value Is True
This Watch type causes Visual Basic to enter Break mode when the
value of the expression becomes True during execution. This type is
handy when you’re uncertain about the exact behavior of the expres-
sion and there is complicated code involved.

Unless the variable you’re monitoring is of Boolean type, you typically
won’t stipulate a variable’s name by itself in the Expression field of the
Add Watch dialog box. Instead, you will put some type of compari-
son expression involving the variable, because what you’re trying to
do here is refine how often VB will break to the Watch window.

For example, your code includes a variable that is changed inside a
loop. You are not, however, interested in having your code break
every time the variable’s value changes. You need only to know when
it takes on a certain range of values, say values greater than 100. In
that case, you might specify the following expression:

variablename > 100

Now, instead of being interrupted on every pass through the loop,
VB notifies you only when the expression evaluates to True.

Of course, observing the expression’s current value (which will be
either True or False) in the Watch window doesn’t give you much
information about the variable’s precise value. Therefore, you will
typically use this type of watch in tandem with a simple nonbreaking
watch—that is, a Watch type of Watch expression.

As an example, imagine a loop with this line:

intAccumulator = intAccumulator + SquareInt(intCounter)

You want to make sure that intAccumulator never approaches a value
that could max out the carrying capacity of the Integer type, that is
32KB. To test this, you could create two Watch expressions:

21 002-8 CH 18 3/1/99 8:37 AM Page 851

852 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á The first Watch expression’s type would be Watch expression
and the expression would be just the name of the variable,
intAccumulator.

á The second Watch expression would be of the type Break
When Expression Is True, and the expression would be some-
thing like intAccumulator >=15000. (If you waited for exactly
32KB, it would be too late!)

Therefore, when you run your application from the VB design envi-
ronment with these two watches set, you will see nothing unless
intAccumulator reaches 30,000 or more. If that ever happens, VB
will go into Break mode, the Watch window will come up, and you
will see the exact value on a line in the Watch window.

Watch Contexts
After you have entered an expression to watch, you need to tell VB
about the context in which the watch should be active. Remember
that the watch expression must be in the scope of the currently exe-
cuting code for VB to tell you its value. If you specify a context in
which the expression isn’t valid, you will see the Expression not
defined in context message. Again, that message doesn’t necessarily
mean that you have entered a bad expression. It does pay, however,
to check the entry just in case.

If you don’t have a form or module open when you create your
watch, the context options for your watch defaults to all procedures
and all modules.

If you accept the default context options, the expression is evaluated
constantly throughout the entire project. Such a broad setting may
sometimes make sense (as for a global variable, for instance), but you
will make VB work harder if you monitor Watch expressions in every
possible context. The narrower the scope, the faster you see the results.

Bear in mind that the goal of a watch is to locate a problem in your
code, such as a failure to modify a variable or assigning it a bad value.

21 002-8 CH 18 3/1/99 8:37 AM Page 852

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 853

The default procedure selection is also context sensitive. If the cursor
is in a particular procedure, it will be used as the default scope, as
shown in Figure 18.5.

If you have an expression selected in a code window, the value of the
Watch expression defaults to it too. If you want to watch a variable,
you don’t need to highlight its entire name—the word in which the
cursor appears will be used by default. Of course, you aren’t locked
into the defaults. You can type a different expression for the watch
if the default isn’t what you want. If you need to select a different
scope, you can select from a list of the modules and procedures in
the current project, as shown in Figure 18.6.

, F IGURE 1 8 .4
You can limit the scope of your Watch expres-
sion to a single module.

F IGURE 18 .5 ▲

You can also limit the scope of a Watch expres-
sion to a particular procedure.

, F IGURE 18 .6
Use the combo boxes to change the module or
procedure scope of a Watch expression.

If you have some idea of where the problem is, it makes sense to limit
the watch to a more appropriate context. When you set a watch, VB
will change the module context setting for you to default to the form
or module you are currently viewing, as shown in Figure 18.4.

21 002-8 CH 18 3/1/99 8:37 AM Page 853

854 Par t I VISUAL BASIC 6 EXAM CONCEPTS

USING BREAK MODE

You can’t actually use the Watch window until you are in Break
mode. Break mode is sort of a programmatic limbo: Your program is
still active, but its execution is temporarily suspended while the pro-
grammer pokes around. All your variables retain their values, as do
the properties of any objects in your project. During Break mode,
you can inspect any of these values. Remember, however, that only
those variables within the scope of the currently executing code are
available at any given moment.

Entering Break Mode Manually
You can manually enter Break mode in several ways:

á Press Ctrl+Break

á Choose Break from the Run menu

á Click on the Break button on the toolbar

If you aren’t sure what part of your code may be responsible for a
problem, but you see it when it happens, the ability to manually
enter Break mode can be handy. Because it is possible for so many
Windows events to occur in rapid succession, however, the few hun-
dred milliseconds it takes for you to click your mouse or press a key
after you spot the problem may put you into a part of your code
that has nothing to do with the problem.

If you can localize your problem to some extent, you can also specify
places in your code at which to enter Break mode automatically:

á Set a breakpoint

á Use the Stop command

21 002-8 CH 18 3/1/99 8:37 AM Page 854

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 855

You can toggle a breakpoint either from the Debug menu, as shown
in Figure 18.7, or by pressing the F9 key. If the current line has no
breakpoint set, F9 sets one; if the line already has a breakpoint, F9
turns it off. If you want to remove all breakpoints from your project,
you can either use the Debug menu to do so or press Ctrl+Shift+F9.
The color of the line in the VB code editor reflects the status of any
line with a breakpoint.

Once set, your program will enter Break mode the moment that it
reaches the line of code with the breakpoint. The program’s execution
is suspended just before that line of code executes.

You can also toggle individual breakpoints on or off by clicking in
the bar to the right of a line of code in Code window.

One problem with breakpoints is that they are not preserved
between programming sessions. That is, if you close a project after
setting a breakpoint and then reopen the project, your breakpoints
will be gone. If you want to set a breakpoint that persists between
sessions, use the Stop command. The moment the Stop line is
reached in your code, the program enters Break mode.

Stepping Through Your Code
Setting breakpoints usually isn’t an exact science. While tracking
down a bug, you may observe that problems occur after clicking on
a certain command button. That doesn’t necessarily mean that the
Click event code in the command button is at fault, of course. You
don’t have to wait to pin down the problem more closely before set-
ting a breakpoint, however. Because you know that the problem
occurs at some point after that procedure executes, go ahead and set
a breakpoint there so that you are at least that much closer to the
problem when you are in Break mode.

F IGURE 1 8 .7
Setting a breakpoint from the Debug menu.

W
A

R
N

IN
G Avoiding Inadvertant Stop

Commands If you’re worried about
inadvertently leaving a Stop com-
mand in a project before you deliver
it to a client, remember that you
can use a conditional compiler
switch:

#Const DEBUGMODE = 1
#If DEBUGMODE Then

Stop
#End If

To be extra safe, set the value of
DEBUGMODE on the command line.
Then you won’t have to worry about
forgetting to remove the definition
of the compiler constant from your
code either.

21 002-8 CH 18 3/1/99 8:37 AM Page 855

856 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Because program execution is suspended during Break mode, you
may wonder how this helps you get closer to the bug. After all, you
haven’t reached the bug yet, and the program has stopped. How do
you get to the problem?

Besides enabling you to watch variable and property values during
Break mode, VB also enables you to continue to execute the program
on an incremental basis. The process is typically called stepping
through your code, and it enables you to execute a program a line at
a time. You may not be right at the point at which a problem occurs,
but you can step through your code to sneak up on the bug and
catch it in the act.

The following four stepping commands are available in Break mode:

á Step Into

á Step Over

á Step Out

á Step to Cursor

The stepping commands are available in several ways: from the
Debug menu, from the keyboard via the F8 key (by itself, or in con-
junction with the Shift, Control, and Alt keys), or from the Debug
toolbar—as shown in Figure 18.8. If the Debug toolbar is not
already visible, you can pull down the View menu and choose
Toolbars, where you can toggle it off and on. The Debug toolbar
can be docked or permitted to float.

Here is a simple example to illustrate how the step commands
behave after a program is in Break mode. Consider a project con-
taining one form with a single command button. The code looks
like this:

Sub cmdCommand_Click()
Dim strName as String
Msgbox “After this message, break mode begins.”
Stop
strName = MyFunction()

End Sub
Function MyFunction() as String

Dim strPrompt as String
strPrompt = “Please enter your name”
MyFunction = InputBox (strPrompt)

End Function

F IGU R E 18 .8
The Debug toolbar.

21 002-8 CH 18 3/1/99 8:37 AM Page 856

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 857

When you run this project and click on the command button, the
program enters Break mode when it reaches the Stop command. The
code editor will appear with the Stop command highlighted in the
cmdCommand_Click function. Program execution is suspended, and
nothing else happens until you issue a step command.

Step Into
If you select Step Into, the highlight moves to the next line of code,
where strName is assigned the value returned by MyFunction. If you
select Step Into again, the code editor will display the code for
MyFunction with the highlight in its first line (recall that the high-
lighted line hasn’t executed yet; it runs after you perform the next
stepping action). If you continue to select Step Into, you will see
where the command gets its name: Step Into enables you to step
into any code that is called in your project, executing every
procedure a line at a time.

Step Over
Step Over is similar to Step Into. Within the current procedure,
Step Over continues to execute the code one line at a time. The dif-
ference is how it handles calls to other procedures. If you run this
project again and select Step Over when you reach the strName =
MyFunction() line in the Click event, you won’t step into the
MyFunction code. Instead, it runs all at once and you are returned to
the function that called it. When you aren’t interested in observing
the behavior of another procedure called from within the one you
are debugging, choose Step Over.

21 002-8 CH 18 3/1/99 8:37 AM Page 857

858 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Step Out
What if you selected Step Into, only to realize that you really don’t
need to watch the execution of every step of the procedure you just
stepped into? No, you don’t have to lean on the F8 key to force the
execution of every line. That’s what Step Out is for; it causes the rest
of the current procedure to run and returns to the calling procedure.
That is, you could select Step Out as soon as you entered MyFunction,
and you would find yourself back in the Click event just after
MyFunction had completed its work.

Step to Cursor
You may step into a procedure that only has a few lines that you
want to watch execute. If that happens, and there are a lot of lines
from your point of entry to the lines that interest you, you don’t
need to wade through the boring parts with Step Into or Step Over.
Instead, move the cursor to the first line you want to watch, and
then select Step to Cursor. All the code will execute between the
line at which you originally entered Break mode and the line where
you placed the cursor, then you can begin to step through the
interesting parts again.

Setting Stepping Options
You will also notice a couple of other options at the bottom of the
Debug menu. If you want to prevent a few lines of code from exe-
cuting, but otherwise let your program continue to execute normally,
use Set Next Statement.

21 002-8 CH 18 3/1/99 8:37 AM Page 858

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 859

While in Break mode, this enables you to move the cursor to the
next line that you want your program to execute. Because this skips
the intervening lines, use this feature carefully. If you inadvertently
skip some lines that modify values in your program, you may not
catch the bug you are after. If you aren’t sure what line is supposed
to execute next, use Show Next Statement.

The Set Next statement option only works with lines of code that
are inside the currently running procedure. In other words, you can’t
set the next statement to a line of code in a different procedure from
the currently running procedure.

To exit Break mode and resume the normal operation of your pro-
gram, choose Continue from the Debug menu or toolbar. (Its key-
board equivalent is F5.) If you have seen all that you need to see,
you can also halt the program by choosing End, which is available
on the Debug menu or on the toolbar.

Using the Watch Window
While you are busy stepping through your code, you can watch the
values of your Watch expressions in the Watch window. For instance,
consider a loop such as this:

Dim i as Integer, j as Integer, k as Integer
Dim astrAlphabet(0 to 25) as String
j = LBound(astrAlphabet)
k = UBound(astrAlphabet)
For i = j to k

astrAlphabet (i) = Chr$(i + 65)
Next

21 002-8 CH 18 3/1/99 8:37 AM Page 859

If you click the plus sign, the structure unfolds to display each indi-
vidual data element, as shown in Figure 18.10. The plus sign changes
to a minus sign, which you can click on to hide the elements
contained in the structure again.

860 Par t I VISUAL BASIC 6 EXAM CONCEPTS

This loop populates a 26-element array with the letters of the alphabet.
If you set a breakpoint and create a watch on the astrAlphabet array,
you can watch the values of each element of the array as they are
assigned values in the loop. However, you won’t see the array build a
string such as “ABCDEFGHIJKLMNOPQRSTUVWXYZ”. In fact, if you only
watch the single line containing the name of the array, you won’t see
much of anything useful except for the range of the array index values
(in this case, 0 to 25). That’s because an array is a data structure that
contains more than one value, and each line in the Watch window can
only display an individual value.

Watching Arrays
Don’t worry. You don’t need to set a separate watch for each element
of the array. When dealing with a data structure such as an array, the
Watch window will display the name of the array with a boxed plus
sign next to it, as shown in Figure 18.9. It works in the same way
that Windows Explorer displays a disk drive’s directory structure in
a tree control. Just as Windows Explorer uses plus signs to indicate
that nested subdirectories remain to be displayed, the VB Watch
window uses plus signs to indicate that more data elements are
nested within the selected structure.

F IGU R E 18 .9.
When a watch is set on an array, you will see a
boxed plus sign next to it.

F IGU R E 18 .10.
Click on the plus sign to monitor the values of
the elements contained in the array.

21 002-8 CH 18 3/1/99 8:37 AM Page 860

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 861

Watching User-Defined Types
The same nesting principle applies to user-defined types. If you cre-
ate a type to store an employee’s name, ID number, and Social
Security number, it might look like this:

Type tEmployee
strName as String
iIDNumber as Integer
lSocSecNum as Long

End Type

If you create a variable of type tEmployee, and then set a watch on
that variable, the Watch window will display the name of your vari-
able and a plus sign. As with the array, you need to click on the plus
sign to unfold the strName, iIDNumber, and lSocSecNum elements of
the data structure.

It is also possible to have multiple levels of nested structures in the
Watch window. If you were to create an array of tEmployee variables
called atMyEmployees, for example, you would need to click on the
plus sign associated with the atMyEmployees array to display the
tEmployee elements. To see the values contained for each tEmployee,
you would in turn have to click on the plus sign associated with each
element in the array.

Entering Break Mode Dynamically
If you’re waiting to see where a watch value changes, the process of
manually executing each individual line of your code can get to be
awfully tedious, particularly if you’re executing a lengthy loop.
Waiting for the 26 letters of the alphabet to be assigned is no big
deal, but what if you’re processing hundreds or thousands of records?
Rather than forcing you to manually execute the code until the
change occurs (or until the F8 key on your keyboards wears out),
VB gives you a couple of more convenient options.

Breaking on True
One of your options is to set a watch that causes your program to
enter Break mode only when the value of the watch is True. This
kind of watch spares you the bother of manually stepping through
each individual line of code, taking you directly to Break mode
when the program gets to a point that is really interesting.

21 002-8 CH 18 3/1/99 8:37 AM Page 861

862 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Here’s a simple procedure to illustrate the point:

LISTING 18.1

AN ILLUSTRAT IVE PROGRAM

Private Sub Form_Click()
Dim iCounter As Integer, iTotal As Integer
Dim fIncrementTotal As Boolean
Print “From 1 to 100, the even multiples of 7 are:”
For iCounter = 1 To 100

‘ set flag if value is an even multiple of 7
fIncrementTotal = Not CBool(iCounter Mod 7)
If fIncrementTotal Then

Print iCounter
‘ sum even multiples of 7
iTotal = iTotal + iCounter

End If
Next

Print “The sum of these values is “ & iTotal
End Sub

If you set a simple watch on the iTotal variable, you would have to
set a breakpoint and then manually execute every subsequent line
to observe changes in iTotal’s value. If you instead set a watch that
causes the program to enter Break mode only when fIncrementTotal
is true, however, you will save yourself some drudgery. To set this
kind of watch, just select the appropriate option in the Watch dialog
box, as shown in Figure 18.11.

When you hit the first breakpoint, you can inspect the values of
the program to make sure your calculations are correct. Instead of
stepping through each individual line, you can select Continue and
the program will run normally until the Watch expression evaluates
to True again, at which point you are back in Break mode.

Breaking on Change
Another way to evaluate this procedure is to set a watch so that the
program enters Break mode only when the value of a Watch expression
changes, as shown in Figure 18.12. In this case, you could set this type
of watch on the iTotal variable. The program would only enter Break
mode when iTotal changes. This accomplishes the same thing as the
preceding example, of course, because iTotal is incremented only when
fIncrementTotal is True.

F IGU R E 18 .11
Select Break When Value Is True to enter Break
mode automatically when a value is True.

21 002-8 CH 18 3/1/99 8:37 AM Page 862

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 863

When you are working with different kinds of watches simultane-
ously, VB makes it easy to see what kind of watches are in play by
displaying a different icon for each type in the Watch window, as
shown in Figure 18.13. An eyeglasses icon denotes a simple Watch
expression.

Break When Value Is True and Break When Value Changes both use
an open palm to indicate that these watches use VB’s internal break-
point traffic cop to force your program into Break mode. The Break
on Change icon also includes a small triangle, which you may also
recognize as the Greek letter “delta,” that is often used to indicate
changes in a value. Break on True displays a small blue rectangle in
addition to the open palm, which is perhaps meant to call the
expression “true blue” to mind.

F IGURE 1 8 .12 ▲

Select Break When Value Changes to enter
Break mode automatically when a value
changes.

, F IGURE 1 8 .13
Each type of watch is associated with its own
icon in the Watches window.

If you find that setting a watch that enters Break mode is more con-
venient than using the simple Watch expression you have already
entered, remember that you can always change a watch from one
type to another via the Debug menu’s Edit Watch selection. A right-
click of the mouse in the Watch window also displays this option on
the pop-up menu.

USING QUICK WATCH

When you are in Break mode, you may want to determine the value
of an expression in your code for which a watch has not already been
set. You can use the Quick Watch feature to display the value of any
expression, as shown in Figure 18.14. Select the expression, and then
pull down the Debug menu and choose Quick Watch. This displays
the value of the selected expression in a Quick Watch dialog box.
The dialog box also gives you a chance to add the expression to the
Watch window.

F IGURE 18 .1 4 ▲

The Quick Watch dialog box.

21 002-8 CH 18 3/1/99 8:37 AM Page 863

864 Par t I VISUAL BASIC 6 EXAM CONCEPTS

WATCHING ON DEMAND

Finally, you can also evaluate any expression in Break mode by
selecting it and positioning the mouse cursor over the expression for
a moment. The expression and its value are displayed like the
ToolTips that appear when you momentarily hold the mouse pointer
over a toolbar button. You don’t get a chance to add the expression
to the Watch window this way, but you can take advantage of this
technique to minimize clutter in your Watch window. If you don’t
need to constantly monitor a variable, just point at it when you need
to know its current value.

IMMEDIATE WINDOW AND THE DEBUG
OBJECT

. Monitor the values of expressions and variables by using the
Debug window.

The Immediate window is so called because it gives the VB devel-
oper an opportunity to interact with a program during Break mode.
By displaying almost instantaneous responses to your questions, you
get a degree of immediate gratification that isn’t available in many
contemporary Windows development environments.

Displaying the Debug Window
To open the Immediate window, pull down the VB View menu and
choose Immediate Window. The Immediate window will appear.

The Immediate window enables programmers to do the following
three things:

á Display messages programmatically with the Debug object

á Query or modify data values on-the-fly

á Test and execute VB procedures

N
O

T
E Displaying the Immediate Window

Unlike some options that can be
turned on and off via the same com-
mand, be aware that neither the menu
option nor the shortcut serve as a
toggle for the Immediate window; they
can only be used to display the
Immediate window when it is not cur-
rently displayed.

21 002-8 CH 18 3/1/99 8:37 AM Page 864

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 865

The first two capabilities are only available when a program is in
Break mode. Messages can be programmatically displayed in the
Immediate window by embedding certain statements in a program.
This entails use of a built-in VB object called the Debug object.

Unlike the fixed response in the other windows that can be used to
monitor the state of variables and properties, the Immediate window
also permits programmers to interactively inquire about these values,
or even to change a value at will.

The last capability doesn’t require that a program be running in Break
mode, or even that a VB program be running at all. At design time,
the Immediate window can be used to test code or execute com-
mands without actually running the application under development.
If you want to find out what value a function returns, for example,
you can enter and run the function in the Immediate window.

The following sections take a closer look at each of these capabilities.

Displaying Messages Programmatically
with the Debug Object
If you want to display messages about the status of your program
during a debug session, but you don’t want to enter Break mode,
you can do so by calling the Debug object and its methods in your
code. The Debug object is built in to VB itself, so you don’t need to
declare an object variable or do anything special to use it.

The Debug object has two methods: Print and Assert. Each displays
information in the Immediate window, but the methods have
different applications.

21 002-8 CH 18 3/1/99 8:37 AM Page 865

866 Par t I VISUAL BASIC 6 EXAM CONCEPTS

USING THE PRINT METHOD

Like any other VB method, you must use the dot operator syntax to
call the method from its object. Because you don’t need to declare an
object variable to use the Debug object, you just invoke the method
from the object itself, like this:

Debug.Print “Eat at Joe’s.”

If this statement were in your code, the message “Eat at Joe’s.”
would appear in the Immediate window when this line executed in
your code. More useful messages might tell you that a particular
function has been entered, or into which branch of a conditional
test your code has entered. For instance:

LISTING 18.2

MORE USEFUL MESSAGES

Select Case iConditionTest
Case 1
Debug.Print “Branched into Case 1”
‘ real case 1 code follows
Case 2
Debug.Print “Branched into Case 2”
‘ real case 2 code follows

‘ Case etc.
End Select

Although you could also find out this kind of information by single-
stepping through your code in Break mode and observing the path of
execution, using the Immediate window to display signpost messages
saves you the bother of manually stepping through the code.
It is especially handy when all you wanted to know was the informa-
tion displayed in the signpost itself. If you just want to know whether
your code branches into condition A rather than condition B, and the
details of execution are otherwise unimportant, a message in the
Immediate window is much more convenient than single-stepping.

Because this is a debugging technique, you may recall a lesson from
the chapter on conditional compilation that explains how to keep
your debug code from inadvertently making its way into a product
release. One way to prevent your Debug.Print statements from
appearing in the release version of your programs might be to wrap
in a conditional compiler block like this:

21 002-8 CH 18 3/1/99 8:37 AM Page 866

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 867

#CONST DebugConstant = 1
#If DebugConstant Then

Debug.Print “This message only appears when
➥DebugConstant is True”

#End If

Fortunately, Microsoft did everyone a favor that saves the bother of
writing a conditional compiler block every time you want to use
Debug.Print. Statements involving the Debug object are effectively
stripped out of your program when it is compiled.

Formatting Debug.Print Messages
The Debug.Print examples so far have been quite simple—
Debug.Print followed by a message statement—but the syntax of the
message can be somewhat more elaborate than simple text.

For one thing, the position in which the message appears in the
Immediate window can be specified by preceding the message text
with VB’s Spc() or Tab() functions. If you want to indent a message
by 10 spaces, you could do so in either of two ways:

Debug.Print Spc(10) “This message is preceded by ten
➥spaces.”

or:

Debug.Print Tab(11) “This message begins on column eleven,
➥which is functionally identical.”

Obviously, Spc() inserts spaces in the output, and Tab() sets the
position where the next message will appear.

It is also possible to use more than one text expression on the same
line:

Dim sDebugMsg as String
sDebugMsg = “ will self-destruct in five seconds, Mr.
➥Phelps.”
Debug.Print “This message” & sDebugMsg

When you need to combine multiple text expressions for use with a
single Debug.Print statement, the syntax starts to get a bit cluttered.
After each text expression, you can tell VB where to put the next
expression. There are three ways to do this.

First, you can place a semicolon after a text expression. This puts
the insertion point immediately after the last character displayed.

N
O

T
E When Debug Messages Appear The

Debug.Print message appears only
when testing an application in the
debugging environment. When a user
runs an application, it is not running
in the debugging environment, so
there is no Immediate window to dis-
play the message.

21 002-8 CH 18 3/1/99 8:37 AM Page 867

868 Par t I VISUAL BASIC 6 EXAM CONCEPTS

That is, the first character in the next expression that prints will be
immediately after the last character in the expression preceding the
semicolon. For all practical purposes, this behavior makes the semi-
colon act just like the “&” concatenation operator. In fact, the last
line of the preceding example could have been written like this:

Debug.Print “This message”; sDebugMsg

Second, you can use the Tab() function to move the insertion point
to a specific column. If you want some space between your messages,
you might try something like this (if you have an exceptionally wide
screen):

Debug.Print “That’s one small step for man”; Tab(100); “;
➥one mighty leap for VB”

What happens if you specify a Tab position that would cause part of
the previous text expression to be overwritten? The first text expres-
sion in the preceding example is 29 characters long, for example.
What happens if you enter this?

Debug.Print “That’s one small step for man”; Tab(11); “;
➥one mighty leap to the next line for VB”

You might expect the output in the Immediate window to look like
“That’s one;one mighty leap to the next line for VB”, starting
the second text expression in column 11 of the same line. In fact,
VB saves you from such mistakes by moving the second expression
to column 11 of the next line.

Finally, you can use Tab with no argument (remember to omit the
parentheses too; otherwise, VB will generate a syntax error) to posi-
tion the insertion point at the beginning of the next print zone. (On
average, a print zone occurs about every 14 columns.)

Remember that all the semicolons and Tabs are optional. If you don’t
specify where to place the next character, it will print on the next
line. You can use these formatting rules to produce output in a vari-
ety of ways. However, this example should give you some idea of
how to combine them. Figure 18.15 shows the result:

N
O

T
E How VB Treats Consecutive

Debug.Print Text Expressions If you
try to place two Debug.Print text
expressions immediately after one
another, VB will insert a semicolon
between them for you. In other words,
if you type:

Debug.Print “Message #1”
➥“Message #2”

As soon as you press Enter to move
to the next line, VB will automatically
change your debugging message into
this:

Debug.Print “Message #1”;
➥“Message #2”

21 002-8 CH 18 3/1/99 8:37 AM Page 868

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 869

LISTING 18.3

THE Debug.Print MESSAGE

Private Sub cmdOK_Click()
Dim sRef As String, sMsg1 As String, sMsg2 As String
sRef = “12345678901234567890123456789012345678901234567890”
sMsg1 = “I am a string exactly 40 characters long”
sMsg2 = “followed by more text at column 46.”
Debug.Print sRef
Debug.Print sMsg1; Spc(5); sMsg2
Debug.Print sMsg1; Tab(46); sMsg2
Debug.Print sMsg1; Tab(Len(sMsg1) + 6); sMsg2; vbCr
Debug.Print “The End!”

End Sub

F IGURE 18 .1 5
The output of the Debug.Print formatting
example looks like this.

Among other things, notice how it is legal to use a function call and
calculations in the Debug.Print line. The Len() function determines
how long the sMsg1 string is, and then you add another six columns
to that to duplicate the output of the other lines. Why is there an
empty line just before “The End!”? That’s because there isn’t a position
specifier after the vbCr constant (yes, built-in constants are available,
too). You didn’t specify where to place the next character, so it printed
on the next line following vbCr.

Displaying Data Values
So far, you have only been using Debug.Print to print simple text
messages to yourself, but you can also use it to display data values.
(Because some of your text messages have used string variables, per-
haps that is obvious.) A few rules apply to data variables when they
are displayed via Debug.Print. Most of these rules apply equally well
to every other aspect of VB, so they are pretty straightforward and
should not cause you any difficulty even if you don’t remember them.

21 002-8 CH 18 3/1/99 8:37 AM Page 869

870 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The Immediate window is aware of any locale settings you have
established for your system. Consequently, if you use Debug.Print to
display numeric data, the values will be displayed with the appropri-
ate decimal separator, and any keywords will appear in your chosen
language. Date variables will be displayed in the short date format
recognized by your system. Boolean values are displayed as either
true or false. These are the same default behaviors you should see
anywhere in VB.

If you are testing variables to see whether they contain values, remem-
ber that empty is not the same state as null. If the value of an empty
variable is displayed, nothing is printed (not the word nothing, but
literally nothing). If the variable is null, the word Null is printed in
the Immediate window.

Here are some examples of how data may be output to the
Immediate window:

LISTING 18.4

OUTPUT OF DATA TO THE IMMEDIATE WINDOW

Sub DebugPrintExamples()
‘ Display a decimal value
Dim s As Single
s = 3.14159
Debug.Print “The value of s is”; s
‘ Display a Boolean
Dim fMakesSenseToMe As Boolean
Debug.Print “The default value of a Boolean is “;

➥fMakesSenseToMe
‘ Display a date
Dim d As Date
d = Date
Debug.Print “Today is “; d
‘ Empty vs. Null
Dim var1 As Variant, var2 As Variant
Debug.Print “Before any assignment, a Variant is “; var1
Debug.Print “Can’t see that? Of course not; it really IS

➥empty!”
Debug.Print “OK, True or False. The statement ‘var1 is

➥Empty’ is “; IsEmpty(var1)
Debug.Print “and the statement ‘var1 is Null’ is “;

➥IsNull(var1)
‘ After an assignment, can var be reassigned a value of

➥Empty?
var1 = 1: var1 = Null
Debug.Print “Now, var1 is “; var1;
Debug.Print “, so the value of IsEmpty(var1) is “;

➥IsEmpty(var1)

21 002-8 CH 18 3/1/99 8:37 AM Page 870

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 871

Debug.Print “Not surprisingly, the statement ‘var1 is Null’
➥is “; IsNull(var1)

var1 = Empty
Debug.Print “A Variant can become Empty again by

➥assignment: “; IsEmpty(var1)
var1 = 1: var1 = var2
Debug.Print “or by being assigned the value of another

➥empty Variant: “; IsEmpty(var1)
End Sub

It used to be that after a Variant had been assigned a value, it could
become empty again only by being assigned the value of another
empty Variant. Now you can just reassign the value empty to the
variable.

USING THE DEBUG.ASSERT METHOD

As seen in previous sections in this chapter, you can cause your code
to enter Break mode in various ways. With the exception of the Stop
statement, however, none of the automated techniques previously dis-
cussed (toggling a breakpoint or setting a Watch expression whose type
is Break When Value Changes or Break When Expression Is True) can
be stored between sessions of your VB development environment. The
Watch expressions or breakpoints you set up during a VB development
session are lost as soon as you exit VB or exit the VB project.

The Debug.Assert method enables you to save breakpoints and break
conditions with your code so that they persist from one development
session to the next.

Debug.Assert causes your code to enter Break mode at design time if
a specified condition is False.

The format for a call to Debug.Assert in your code is this:

Debug.Assert logical condition

where logical condition is any expression that evaluates to a True or
False value. For instance, if you wanted your application to enter
Break mode whenever the variable intEmployees were 0, you would
write the line:

Debug.Assert intEmployees <> 0

21 002-8 CH 18 3/1/99 8:37 AM Page 871

872 Par t I VISUAL BASIC 6 EXAM CONCEPTS

In other words, you are asserting that intEmployees is not 0. If it is,
the Assert method forces the application to enter Break mode.

What if you always wanted your application to enter Break mode at
a particular point, regardless of conditions? The line

Debug.Assert False

would do the trick, because False is, of course, always false.

Like the Debug.Print method, Debug.Assert has no effect when the
compiled executable file runs. This means that you can also perma-
nently leave Debug.Assert statements in your production code with-
out any problems for your executable file.

Figure 18.16 shows what the result of an assertion failure looks like
in the debugging environment.

F IGU R E 18 .16
An assertion failure.

Notice how the code executed normally until it reached the
Debug.Assert line. The expression “i = 10” evaluates as False,
because i has just been declared and VB initializes Integer variables
to 0 by default. Because this expression is False, the Debug.Assert
on this line caused the application to enter Break mode. The line
with the assertion is highlighted, and an arrow immediately to the
left of the assertion indicates the program is still running, but execu-
tion is suspended at the indicated line.

So far, this discussion has focused on the mechanics of the Assert
method, but has not said much about when to use them. Consider
using an assertion whenever your code depends on an expression
satisfying certain criteria.

21 002-8 CH 18 3/1/99 8:37 AM Page 872

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 873

If you have already gone to great lengths to ensure that your code is
trouble free, why not take an extra step to verify that you haven’t let
something slip through the cracks? Even after you have applied every
reasonable test that you can imagine, an assertion may lead you to
some things you had not imagined. If you plug the expression into
an assertion only to trigger an assertion failure, maybe your original
tests weren’t as good as you thought.

By alerting you to conditions that are contrary to your expectations,
assertions help you to create tests that more completely reflect the
actual conditions under which your code must perform. When you
trigger an assertion failure, you know at once that your assumption
is wrong, meaning that you must either do something to ensure that
it continues to be valid or reframe the assumption.

Generally speaking, it is a good idea to get into the habit of using
assertions. Remember, however, that an assertion is not a substitute
for an error handler. It can show you where there may be a problem,
but an assertion can’t resolve any problems in your code at runtime
because it isn’t part of the compiled program.

INTERACTING WITH THE IMMEDIATE
WINDOW

So far, you have been using the Immediate window as a sort of
global message box. Although Debug.Print sends useful messages
during program execution, it is also possible to type directly into
the Immediate window. What can you type? For starters, you can
use the same Debug.Print commands that you have been using so
far in code. Figure 18.17 shows an example. The syntax is as follows:

Debug.Print “Insert Your Message Here”

F IGURE 18 .1 7
Debug.Print commands can be entered directly
into the Immediate window.

21 002-8 CH 18 3/1/99 8:37 AM Page 873

874 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Because the Debug object is the default object for the Immediate win-
dow, you can take advantage of some shortcuts. As this example
shows, Debug.Print can be abbreviated either to Print or just ?. The
method is invoked just as if you typed it completely, so you may as
well save yourself that extra typing.

Besides printing messages, the Immediate window can perform a few
other useful tricks when you use it interactively. You will look at
those next.

Querying or Modifying Data Values
Besides printing text messages, you can use the Print method to dis-
play the value of a variable. It is also possible to change the value of
a variable inside the Immediate window. The only catch is that the
program must be in Break mode to perform either of these actions.

If you think about it, one reason for this constraint is simple: A local
variable exists only in the context of the function in which it occurs.
If the function has already finished, the variable no longer exists.
Forcing the program to enter Break mode during the execution of a
routine ensures that the variables in that routine still exist for you to
view or modify. Global variables and form-level variables persist
beyond particular functions, of course, but the rules apply to all inter-
active uses of the Immediate window during program execution: Your
program must be in Break mode. Figure 18.18 provides an example.

F IGU R E 18 .18
Querying and changing a variable in the
Immediate window.

In this case, the variable i is incremented in a For loop. When the
loop finishes, the Debug.Print statement in the code displays the
current value of the variable in the Immediate window, and then the
embedded Stop command throws the program into Break mode. At
this point, the programmer changes the value of i interactively in the
Immediate window, and then the value change is confirmed via the

21 002-8 CH 18 3/1/99 8:37 AM Page 874

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 875

Debug.Print method (which is invoked via the question mark). Sure
enough, the value has been changed from 101 to 10.

Besides modifying variables interactively, you can also change the
values of properties. If you want to hide the form whose code is cur-
rently running, for example, you can type “me.Visible = False” in
the Immediate window. The form will vanish as soon as you press
Enter. To restore the form’s visibility, of course, you can type
“me.Visible = True”. Again, your program must be in Break mode
for this to work.

The capability to modify variables and properties in the Immediate
window gives you a chance to test a variety of conditions in your
debugging sessions that your program will face when it is released.
Want to see what happens if a variable value is (pick one) a specific
value/very small/very large/empty/null? Modify the variable and see
what happens. Want to see what happens if you change a property of
a control or form? Go ahead. If you can do it in code, you can do it
in the Immediate window.

Testing and Executing VB Procedures
Although most of the uses to which you have put the Immediate
window so far have required that a program be suspended in Break
mode, you can do some things with the Immediate window that
don’t require a program at all. If you want to execute a command or
run a procedure that you have written, you can just type the com-
mand or procedure name (along with any necessary parameters) into
the Immediate window, and then press the Enter key.

Assume, for example, that you want to delete a file using the Kill
statement, but you aren’t sure what will happen if you put the com-
mand in your program and the file doesn’t exist. You can enter the
command in the Immediate window twice in succession to see what
it will do, as shown in Figure 18.19.

N
O

T
E Ending Value of a Loop Counter

Variable In the example in Figure
18.18, did you expect i to be 100 at
the end of the loop? Remember that
100 is the last legal value for the
loop. When i equals 100, it is incre-
mented one last time by the Next
statement in the final iteration. Thus
when the loop exits, i equals 101.

F IGURE 18 .1 9
Deleting a file with the Kill statement.

21 002-8 CH 18 3/1/99 8:37 AM Page 875

876 Par t I VISUAL BASIC 6 EXAM CONCEPTS

As you can see, nothing special happens in the Immediate window
to indicate that the command succeeded. If you try to execute the
Kill command again, however, you will generate a runtime error
(#53: File not found) because the file was successfully deleted the
first time.

Perhaps it would be nice to have a more informative way to delete a
file. There is no way to modify the built-in Kill statement to provide
extra information, but you can write your own file deletion function
that does. Here is one that uses the Kill command to do its dirty
work, but that uses the Immediate window to display its status along
the way. Most important, the new function also provides a return
value to indicate whether it succeeded:

LISTING 18.5

A FILE DELET ION FUNCTION

Function Delete(sFilename As String) As Boolean
‘ use the return value in the calling function rather than

➥trap the error here
On Error Resume Next
Dim fReturn As Boolean
#Const DEBUGGING = True
‘ see if the file exists to delete
If Dir(sFilename) <> “” Then fReturn = True
#If DEBUGGING Then

Debug.Print “File exists = “; fReturn
#End If
If fReturn Then

‘ file exists, so kill it
Kill sFilename
‘ if couldn’t delete, set return value
If Dir(sFilename) <> “” Then fReturn = False
#If DEBUGGING Then

Debug.Print “File deleted = “; fReturn
#End If

End If
Delete = fReturn

End Function

If you run this function twice in succession, the Immediate window
looks like Figure 18.20.

21 002-8 CH 18 3/1/99 8:37 AM Page 876

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 877

The Delete function is more informative than the Kill statement at
debug time because it uses Debug.Print to keep you posted about its
progress. Aside from the debugging output, Delete also gives you
more to work with in your program. Because it provides a Boolean
return value, you can test for the success of the file deletion and take
appropriate measures in your program.

Because Delete is a function, it also enables you to display useful out-
put in the Immediate window without sprinkling Debug.Print state-
ments throughout its body. If you remove the “#Const DEBUGGING =
True” line and run Delete from the Immediate window, you can use
the Debug.Print statement to display its return value, as shown in
Figure 18.21.

, F IGURE 1 8 .20
Results of the Delete function displayed in the
Immediate window.

, F IGURE 1 8 .21
Results of the Delete function displayed in the
Immediate window with the Debug.Print
method.

This gives you two ways to run a procedure from the Immediate
window: with or without prefacing it with Debug.Print. If you just
want to execute a procedure and disregard its return value (if it has
one), don’t use the Print method. If you want to display the return
value of a function, preface it with a leading question mark to
invoke Debug.Print.

USING THE LOCALS WINDOW

One of VB’s debugging windows can save you from endlessly
embedding Debug.Print statements in code to examine the value
of variables: the Locals window, which displays the current value of
variables within the scope of the currently executing procedure.

N
O

T
E Functions Versus Subs in the

Immediate Window You can treat a
function like a sub in the Immediate
window, but you can’t treat a sub like
a function. If you inadvertently put a
leading question mark in front of a
sub that you try to run in the
Immediate window, you will get this
error message: Compile error:
expected function or variable.

21 002-8 CH 18 3/1/99 8:37 AM Page 877

878 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Because what it displays depends on the current scope, the contents
of the Locals window changes whenever a different procedure exe-
cutes. To display the Locals window, pull down the View menu and
choose Locals Window. Figure 18.22 shows the Locals window.

F IGU R E 18 .22
The Locals window.

Calling it a “Locals” window is somewhat misleading, because it isn’t
limited to viewing only those variables that are local in scope. You
will see all the local variables, of course, but form-level variables are
also visible in the Locals window. (Remember that you will only see
the form-level variables for the current form.) For module-level vari-
ables, you have to use the other methods covered in this chapter (for
example, the Watch window and Debug.Print). The Locals window
can’t display module-level variables.

Here is an example. Module_1 contains nothing but a global variable,
declared like this:

Public g_Test As Integer

In Form1, a form-level variable is declared in the General
Declarations section:

Public f_Test As Long

Here is the rest of the Form1 code:

Private Sub Form_Initialize()
Dim i as integer
i = 1
g_Test = 10
f_Test = 1000

End Sub
Private Sub Form_Click()

Dim k as integer
k = 5
Stop

End Sub

21 002-8 CH 18 3/1/99 8:37 AM Page 878

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 879

Values are assigned to the form-level variable and the module-level
variable in the form’s Initialize event. When the form is clicked,
the program enters Break mode. This is necessary because the con-
tents of the Locals window depend on a specific local scope. After
the program enters Break mode, you can use the Locals window to
examine the status of the variables.

When the program enters Break mode, the Locals window looks like
Figure 18.23.

F IGURE 18 .2 3
The local variable and ME are available in the
Locals window.

Because program execution was broken in the form’s Click event,
the value of k is available because it is local to that event. Notice
what isn’t available: You can’t see the value of the i variable from the
Initialized event because it isn’t local to the current procedure.
You also can’t see the form-level variable f_Test or the module-level
variable g_Test. You do see something called ME, however, which has
a boxed plus sign immediately to its left.

You may recall that ME is VB shorthand for the form in which code
is currently executing. If you click on the plus sign, the ME object will
unfold, displaying all the current form’s properties in alphabetic
order. Look toward the bottom of the window displayed here and
you will see that f_Test is displayed, but g_Test is not. A form-level
variable is essentially a property of a form, and so it is available here.
The module-level variable, however, is not. What happened to k? It
is still there, but when you clicked on ME to display its contents, it
scrolled to the very bottom of the window.

At the top of the Locals window, notice that the name of the cur-
rently executing procedure is identified. To the right of the procedure
name, the button with the ellipsis can be used to display the Call
Stack window. The Locals window also enables you to do one more
trick: You can use it to change the value of a property or a variable.
If you click on the value displayed for an item, you can type a new
value to replace it. The change won’t take effect until you press Enter.

21 002-8 CH 18 3/1/99 8:37 AM Page 879

880 Par t I VISUAL BASIC 6 EXAM CONCEPTS

USING THE IMMEDIATE WINDOW IN
PLACE OF BREAKPOINTS

Many of the techniques that have been used in this chapter to display
data require a program to be in Break mode. Sometimes, however,
that can cause problems. If you know when Break mode can give you
fits, you can use Debug.Print to get the information you need in the
Immediate window instead of setting watches or breakpoints.

Using the MouseDown and KeyDown
Events
The first potential problem occurs in association with key events and
mouse events. If you enter Break mode during a MouseDown or KeyDown
event, you are probably going to release the key or mouse button while
you are still in Break mode. After all, you need to use the keyboard and
the mouse yourself to carry out your debugging tasks. If you break
execution during either of these events and then resume program exe-
cution, your application doesn’t know enough to trigger a MouseUp or
KeyUp event for you. After all, when it went to sleep the button or key
was down; and now that it is awake, it thinks that’s still the case.

To get the MouseUp or KeyUp event, you need to press the button or
key again and release it. But that’s where the program goes into
Break mode again (a veritable “Catch-22”), so you never really get
to the MouseUp or KeyUp events.

Solution: Don’t enter Break mode in these events. Instead, use
Debug.Print to display the necessary data in the Immediate window.

Using the GotFocus and LostFocus
Events
The problem here doesn’t pose the same logical difficulty presented by
the MouseDown and KeyDown events. Instead, a breakpoint in GotFocus
or LostFocus can just throw off the timing of system messages as they
are sent. Windows is so sensitive to the timing of system messages that
the API even includes several different ways to dispatch them.

21 002-8 CH 18 3/1/99 8:37 AM Page 880

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 881

SendMessage will send a message to the target object, for example,
waiting until the message has been successfully sent before returning
a value. PostMessage, on the other hand, returns at once after adding
its message to the queue; it doesn’t wait for the results. Function calls
seem to occur so quickly that it may seem strange to think that the
difference would be so important as to require a different function.
Remember that a computer’s memory access is measured in nanosec-
onds, however, and perhaps it will make more sense.

Timing is critical, and a breakpoint in the Focus events can mess
things up. If you need to display values during a GotFocus or
LostFocus event, use Debug.Print to send the data to the Immediate
window.

LEVELS OF SCOPE

. Given a scenario, define the scope of a Watch variable.

Just as the scope of a variable depends on where and how it is
declared, the scope of a watch depends on the manner of its defini-
tion. Specifying the scope of a watch determines the context in
which its behavior is observed. If you know where in your program
the observation of a variable is significant, you can make more effi-
cient use of your debugging time by specifying the appropriate
Watch context.

You are already familiar with the issue of scope as it pertains to data
variables. In a block-structured programming language such as
Visual Basic, the visibility of a variable depends on where it is
declared. A variable may exist at any one of the following three levels
of scope:

á Local

á Module

á Global

A variable declared in the context of a particular procedure is visible
only in the context of that procedure. It is said to be local in its
scope, which means that it is invisible to all other procedures in the
program. Consider the following subprocedures, for instance:

21 002-8 CH 18 3/1/99 8:37 AM Page 881

882 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Sub MyProcedure
Dim iCount as Integer, sName as String
‘ pretend that something useful happens later in the

➥procedure
End Sub

Sub YourProcedure
Dim iCount as Integer
‘ pretend that something else useful happens here, too

End Sub

The variables declared in these routines are all local in scope. The
variable sName declared in MyProcedure can be accessed only by the
code in MyProcedure. It is not visible to YourProcedure, nor is it visi-
ble to any other routine in the program. The two iCount variables
are each local to the procedures in which they are declared. They are
permitted to have the same name because each is unique in the con-
text of the procedure in which it is declared.

A variable may also have module scope if it is declared in the General
Declaration section of its code module using the keyword Private.
In this case, the variable is visible to all procedures contained in the
module, but it is invisible to all other procedures in the program.

Finally, a variable is global in scope if it is declared in the General
Declaration section of its code module using the keyword Public.
Such a variable is visible to all procedures contained throughout the
program.

If you already understand how variables may have their scope defined
at these different levels, you will find the scope of a watch fairly easy to
understand. Just as a variable’s scope may be at the local, module, or
global level, the scope of a watch may be defined at these levels too.

Local Scope
Although the scope of a variable depends on where it is declared in
the source code, watches are all created using the same Add Watch
dialog box, and edited using the same Edit Watch dialog box. The
key to differentiating among the various levels of scope lies in the
controls contained in the Context group of the Watch dialog boxes.

The Context group contains three controls: Procedure, Module, and
Project. The control pertaining to Project is a simple label that dis-
plays the name of the current project. Because it is a label, it can’t be
edited. It serves as a reminder that only those procedures and mod-
ules will be displayed by the other controls in the group.

21 002-8 CH 18 3/1/99 8:37 AM Page 882

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 883

The real work of determining the scope of a watch is done by the
other two controls. If you want to define a watch at the procedure
level, that means that you only want to assess the value of the Watch
expression in the context of a particular procedure. To do this, use
the Module combo box to select the appropriate module. The
Module combo box displays the names of all modules contained in
the current project.

After a module name is selected, use the Procedure combo box to
choose the procedure for which the watch should be active. The
Procedure combo box displays only those procedures contained in
the currently selected module. If the procedure you want isn’t in the
list, check the Module combo box again. You probably selected the
wrong module by mistake.

Figure 18.24 shows how to use the Add Watch dialog box to create
a procedure-level watch.

Remember that if you need to modify the settings for a watch, you
can use the Edit Watch dialog box to do so. The following section
shows you an example of this.

Module Scope
If you want to monitor an expression as it changes throughout an
entire module, you don’t need to create individual procedure-level
watches for each routine contained in the module. Instead, you can
set a single watch that applies to an entire module.

To define a watch at the module level, use either the Add Watch dialog
box (to create a new watch) or the Edit Watch dialog box (to modify
an existing watch). Just as with a procedure-level watch, you still need
to select the appropriate module from the Module combo box.

As before, the next step is to select an item from the Procedure
combo box’s drop-down list. Instead of selecting a particular proce-
dure name, however, select the item that says (All Procedures).
(All Procedures) is the first item contained in the drop-down list. By
selecting (All Procedures), your watch is automatically activated for
every procedure contained in the currently selected module.

F IGURE 18 .2 4
A procedure-level watch.

21 002-8 CH 18 3/1/99 8:37 AM Page 883

884 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Figure 18.25 shows how to use the Edit Watch dialog box to change
the local watch you set in the preceding section into a module-level
watch.

Global Scope
What if you want to monitor an expression throughout your entire
program? Just as you can set a single watch pertaining to an individ-
ual module, you can also set a single watch that applies to an entire
program.

To define a global watch, you once again can use either the Add
Watch dialog box or Edit Watch dialog box. First, select All Modules
from the Module combo box. (As with the Procedure combo box,
the All selection is the first item in the drop-down list.) This will
also automatically set the Procedure watch to All Procedures in the
Procedure combo box. Figure 18.26 shows an example of this.

The Watch expression in Figure 18.26 will be evaluated in all proce-
dures in all modules as the program executes, making it global in scope.

As you set watches at various levels of scope, you will notice that the
Watches dialog box displays the context of each expression. As
shown in Figure 18.27, a procedure-level watch is indicated to apply
to a particular procedure by the ModuleName.ProcedureName syntax in
the Context column of the Watches dialog box. A module-level
watch has the name of its module displayed in this column. A global
watch is indicated when the entry is blank, denoting that there is no
contextual limitation on the watch.

F IGU R E 18 .25 ▲

A module-level watch.

F IGU R E 18 .26 ▲

A global watch.

F IGU R E 18 .27.
The Watches dialog box indicates the level of
scope for each Watch expression.

21 002-8 CH 18 3/1/99 8:37 AM Page 884

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 885

SCOPE CONSIDERATIONS

As you have seen, a watch may be set at any of three levels of scope.
This section considers how to decide which level of scope is best
suited to solve a given problem.

Striving to Narrow the Scope
The rules governing intelligent declaration of variables largely apply
to watches too. It generally makes sense to limit the scope of a vari-
able, for instance. If a variable must be used in just one procedure, it
should be declared locally within that procedure; declaring it at a
higher level is a needless complication. In particular, global variables
should be used sparingly. Because they can be modified anywhere in
a program, bugs involving global variables are harder
to track down.

In essence, the task of debugging is vastly simplified as the number
of places in which data can be modified diminishes. This rule also
applies to watches. Limiting the number of places in which a Watch
expression is evaluated cuts down on distractions during the debug-
ging process. After all, if you monitor a variable in 100 procedures
when you only need to monitor it in 10, you expend about
10 times more effort on it than it is worth.

You will recall from the section “Types of Watch Expression” that
you can do three things with a watch:

á Monitor the value of the Watch expression

á Break when the Watch expression is True

á Break when the value of the Watch expression changes

Bearing these options in mind, this discussion begins to focus on
some strategies and constraints regarding watches set on different
kinds of variables.

Global Variables
A global variable can be evaluated in a watch at any level of scope.
Because it is available throughout the program, its value can be
detected in a watch of module-level or procedure-level scope as easily
as in a global watch.

21 002-8 CH 18 3/1/99 8:37 AM Page 885

886 Par t I VISUAL BASIC 6 EXAM CONCEPTS

If you suspect that a global variable is being incorrectly modified,
you will probably want to begin with a global watch. The value of
the variable can be changed anywhere in your program. If you set
the watch to break on change or when the Watch expression is true,
however, you will be able to tell which procedure has modified the
value. As you find likely suspects for the bug in question, you may
wish to narrow the scope of your watch, or to set additional watches
of more limited scope.

Module-Level Variables
A module-level variable can be evaluated in a watch at either of two
levels: module level or procedure level. Naturally, a procedure-level
watch makes sense only for procedures found in the same module in
which the variable is defined.

The same search pattern suggested for global variables makes sense
for module-level variables. Until you have reason to focus the search
on a particular procedure or set of procedures, you will initially want
to set the watch at the highest scope available. Use watches to trigger
a program break to determine which procedure(s) is the source of
your problem.

Local Variables
Obviously, only a procedure-level watch is sensible for local vari-
ables. Its value can be evaluated only in the context of the procedure
in which it is defined. It literally does not exist anywhere else, so
there’s no point in looking for it elsewhere.

The point to limiting the number of places in which your watches
are active is so that you can spend less time looking at meaningless
changes. After you have pinned down the likely sources of a bug, it
is only logical to limit the search to the likely problem areas.

Performance Concerns
Aside from the logical issue, performance concerns are also a motiva-
tion to limit the scope of a watch. Broader watches cause VB to
devote more resources evaluating watch expressions than do watches
of more limited scope.

21 002-8 CH 18 3/1/99 8:37 AM Page 886

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 887

Does the performance degradation produced by a watch that is
broader in scope than necessary really matter? Most of the time,
probably not. If you are working with anything particularly time
sensitive, however, the time you may save by limiting the scope of
your watch may make a difference. Even a few milliseconds may be
important to a real-time system, a callback function, or a program
relying on the sequence in which a series of Windows messages is
processed.

If you encounter problems along these lines during a debug session
in which you are using watches, try deactivating the watches or lim-
iting their scope before you decide that you have found more bugs
in your program. If the problems go away after you have changed
the watches, it is likely that the watches slowed execution just
enough to cause problems.

In summary, this chapter covered the following topics:

á Using Watch expressions

á The meaning and use of Break mode, including the various
Step options, the use of the Watch window, and different
methods for entering Break mode

á Using the Immediate window and the Debug object

á Using the Locals window

á Scope of watches

CHAPTER SUMMARY

KEY TERMS
• Assertion

• Call stack

• Immediate window

• Locals window

• Scope

• Watch

21 002-8 CH 18 3/1/99 8:37 AM Page 887

A P P LY YO U R K N O W L E D G E

888 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Exercises

18.1 Using the Call Stack

Most programs will have procedures that call other pro-
cedures that call still other procedures. VB has a tool to
show the call stack to help you keep track of the calling
chain. You can use the Call Stack window any time you
need to trace the interactions of procedures in a pro-
gram. This exercise demonstrates its use.

Estimated Time: 30 minutes

To create this exercise, follow these steps:

1. Create an application consisting of a single form
with a command button. The form should resem-
ble that shown in Figure 18.28.

3. Create three additional procedures in the form, as
follows:

Private Sub ProcedureA()
Print Tab(5); “Beginning Procedure A.”

Print Tab(5); “Calling Procedure B”
ProcedureB
Print Tab(5); “Ending Procedure A.”

End Sub

Private Sub ProcedureB()
Print Tab(10); “Beginning Procedure B.”
Print Tab(10); “Calling Procedure C”
ProcedureC
Print Tab(10); “Ending Procedure B.”

End Sub

Private Sub ProcedureC()
Print Tab(15); “Beginning Procedure C.”
‘ Stop
‘ Print “Entering break mode”
Print Tab(15); “Ending Procedure C.”

End Sub

4. Run the exercise program and click on the com-
mand button. The form will display text in the
form indicating the sequence in which the pro-
gram’s procedures have been called.

5. Close the form. Open the form’s code module
and remove the comment characters from the
ProcedureC code. ProcedureC should now look
like this:

Private Sub ProcedureC()
Print Tab(15); “Beginning Procedure C.”
Stop
Print “Entering break mode”
Print Tab(15); “Ending Procedure C.”

End Sub

6. Run the application again. When the program
enters Break mode, pull down the VB View
menu and choose the menu option titled Call
Stack (notice that Ctrl+L is a keyboard shortcut
for the call stack).

F IGU R E 18 .28
The call stack demonstration form.

2. Enter the following code for the Click event of
the command button:

Private Sub cmdStart_Click()
Cls

Print “Beginning Start button code.”
Print “Calling Procedure A”
ProcedureA
Print “Ending Start button code.”

End Sub

21 002-8 CH 18 3/1/99 8:37 AM Page 888

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 889

A P P LY YO U R K N O W L E D G E

7. Experiment with the Call Stack window. Notice
how you can use it to view the point in any active
procedure where a subsequent procedure call was
issued. You can use information about the call
stack to guide your decisions about how to use
the Debug menu’s stepping commands to step
into, out of, or to a particular line via step to cur-
sor.

18.2 Using the Debug.Print Command

In this exercise, you practice using the Debug.Print
command to display formatted output in the
Immediate window.

Estimated Time: 15 minutes

To create this exercise, follow these steps:

1. Create a new VB application containing a single
form.

2. Code the form’s Initialize, Load, Resize,
Activate, GotFocus, Paint, Unload, and
Terminate events to display a message in the
Immediate window notifying you of the current
event. Progressively indent the messages in the
order of their occurrence until the form paints,
and then unindent them as the form exits.

3. Experiment by inserting similar messages into
the form’s other events. Interact with the form—
change its size, obscure it with another program’s
window, and so on. Which events occur only
once? Which ones continue to occur?

18.3 Modifying Values in the Immediate and
Locals Window

In this exercise, you use the debugging tools to modify
program values at runtime.

Estimated Time: 30 minutes

To create this exercise, follow these steps:

1. Create an application that contains at least one
module and one form. Create Public integer
variables both in the form and the module.

2. Add code to the form’s Click event that incre-
ments the value of the variables and displays
them on the form with the form’s Print method.
(Hint: You also may want to use the Cls method
when the form’s CurrentY property approaches its
height.) Be sure to set a breakpoint so that you
can use the debugging windows.

3. Set the form’s AutoRedraw property to True so that
its contents will be preserved when you return to
it from the debugging windows.

4. Click on the form a few times to confirm that
the variables are incrementing and displaying
properly. After you have displayed a few values,
use the Immediate window to change the form’s
Forecolor property. (Unless you have specific
hexadecimal values memorized, this may be most
easily accomplished via the RGB function, or by
using VB’s built-in named Color constants, such
as vbRed, vbMagenta, and so on.) Clear your
breakpoint and click on the form again to con-
firm that the printed output has changed color.

5. Reset the breakpoint and try changing the form’s
Forecolor property again using the Locals win-
dow. If you have trouble selecting a particular
value, try using the RGB function again or one of
the color constants. Notice how the property
value changes to reflect the return value of the
function. Continue to experiment with changes
in other properties by using both the Immediate
window and the Locals window.

6. After you have finished experimenting with prop-

21 002-8 CH 18 3/1/99 8:37 AM Page 889

890 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

erties, try modifying the variables by using both
windows. Which way do you prefer? Does either
window permit you to do anything that the
other window can’t do?

18.4 Setting the Scope of a Watch

This exercise shows how to use the Edit Watch dialog
box to create watches at different levels of scope.

Estimated Time: 15 minutes

To create this exercise, follow these steps:

1. Create a new project.

2. Add a code module to the project. Enter the fol-
lowing code into the General Declarations section
of the module:

Public g_iCounter as Integer
Private m_strModuleString as String

3. Create a new procedure in the code module as
follows:

Public Sub MyProcedure
Dim iAlphaCode as Integer
m_strModuleString = “”
For iAlphaCode = 65 To 96

m_strModuleString = m_strModuleString &
➥Chr(iAlphaCode)

Next
‘ count the number of times this procedure

➥runs
g_iCounter = g_iCounter + 1

End Sub

4. Enter the following code for the Click event of
the default form VB provides:

Call MyProcedure

5. Set watches for each of the variables declared in
the code module (g_iCounter,
m_strModuleString, and iAlphaCode). Use the
Context controls in the Watches dialog box to

experiment with different scopes as described in
this chapter.

6. The test code gives you one sample each of a
global variable, module-level variable, and local
variable. What difference does the scope make in
the evaluation of each variable type?

18.5 Changing the Scope of a Watch

This exercise shows how to use the Edit Watch dialog
box to modify the scope of a watch.

Estimated Time: 20 minutes

To create this exercise, follow these steps:

1. Create a new project.

2. Add a code module to the project. Enter the fol-
lowing code into the General Declarations section
of the module:

Public g_iTestVariable as Integer

3. Create a new procedure in the code module as
follows:

Public Sub TestProcedure
On Error Resume Next
‘ count the number of times this procedure

➥runs
g_iTestVariable = g_iTestVariable + 1
If g_iTestVariable > 32767 Then

g_iTestVariable = 0
End If

End Sub

4. Enter the following code for the Click event of
the default form VB provides:

Call TestProcedure

5. Set a global watch that will break when the value
of g_iTestVariable changes. Run the application
and pay attention to which module the break
occurs in. Change the scope of the watch so that

21 002-8 CH 18 3/1/99 8:37 AM Page 890

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 891

A P P LY YO U R K N O W L E D G E

it is active only in that module. Run the applica-
tion again. This time pay attention to which pro-
cedure the break occurs in. Change the scope of
the watch again so that it is active only in that
procedure.

Using this general approach, you can narrow the scope
of a watch so that it encompasses only that scope rele-
vant to the variable being watched. In a live applica-
tion, of course, you will want to exercise the program
more to see whether the variable changes anywhere else
before jumping to the conclusion that it needs to be
watched only in a single module or
procedure.

Review Questions
1. Identify the various kinds of watches available

in VB6.

2. How are arrays and user-defined types displayed
in a Watch window?

3. What is Break mode?

4. What method of the Debug object can be used to
display a value in the Immediate window during
a debugging session?

5. A boxed plus sign appears in the Locals window
next to the name of a variable being processed in
a loop. What does this mean?

6. What happens when a procedure name is entered
into the Immediate window?

7. At what three levels may the scope of a watch
be set?

8. How does the scope of a watch affect its

calculation time?

9. What choices must be selected in the Context
group for a watch to have global scope?

Exam Questions
1. What cannot be changed in the Watch window?

A. Watch expression

B. Watch on demand

C. Watch, break on change

D. Watch, break on true

2. If you no longer need to monitor the values in
the current procedure, but you want to continue
single-stepping through another procedure, which
options can you select to continue single-step
execution in the other procedure?

A. Step Into

B. Step Over

C. Step out Of

D. Step to Cursor

3. You entered Break mode in the current debug-
ging session by pressing Ctrl+Break. To resume
program execution, you should do what?

A. Select Continue

B. Toggle the current breakpoint from on to off

C. Select Stop to exit Break mode

D. Press Ctrl+Break again

21 002-8 CH 18 3/1/99 8:37 AM Page 891

892 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

4. Your program enters Break mode when the value
of an integer (iVariable) Watch variable is
assigned a value of 25. As the program continues,
iVariable is later assigned a value of 0, but the
program does not enter Break mode this time.
The type of watch set on the variable is

A. A simple Watch expression, iVariable >= 25

B. Watch, break when expression changes

C. Watch, break when expression is True

D. A quick watch

5. If a plus sign appears next to a Watch variable
used in a loop, you can click on the plus sign to:

A. Increment the loop counter by one and
process the next iteration of the loop

B. Increment the value of the Watch variable

C. Toggle the status of the watchpoint from
active to inactive

D. Display the elements contained in the user-
defined type or array being watched

6. If you type an invalid expression for use as a
Watch expression, VB will

A. Display a compiler error

B. Immediately display a watch error

C. Display a watch error the first time it evalu-
ates the expression in Break mode

D. Do nothing

7. You have distributed your application to a client
in the form of an EXE file. How can the client
recover from a Debug.Assert failure that occurs
when he runs the program?

A. Press the F9 key to deactivate the breakpoint,
and then press F5 to continue.

B. Use the Locals window or the Immediate
window to modify the bad value that trig-
gered the failure.

C. Nothing can be done. The client must exit
and restart the program.

D. This scenario cannot occur.

8. Using the Immediate window, you assign an inte-
ger variable a value of 32768. What happens?

A. The program continues to execute normally.

B. The Immediate window closes and the pro-
gram shuts down.

C. A runtime overflow error occurs.

D. The variable’s value wraps to the first legal
value, –32768.

9. An application has two forms: Form1 and Form2.
Form2 is displayed only when a command button
on Form1 is clicked. While Form2 is displayed, you
use the Immediate window to change its Visible
property to False and type Unload Me. What
happens when you click on the button on Form1
that should display Form2?

A. The program crashes.

B. Form2 cannot be displayed because it is invisi-
ble.

C. Form2 is displayed and its code is active, but
the form is invisible.

D. Form2 is displayed normally.

10. To place the insertion point immediately after the
last character in an expression displayed in the
Immediate window by Debug.Print, what must
you place after the expression?

21 002-8 CH 18 3/1/99 8:37 AM Page 892

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 893

A P P LY YO U R K N O W L E D G E

A. Colon

B. Semicolon

C. Ampersand

D. Comma

11. The Immediate window can be used interactively
to debug a program

A. Whenever a call is made to Debug.Assert or
Debug.Print

B. When a program is waiting for an event to
occur

C. When a program is in Break mode

D. At any time

12. Debug.Print can be represented by symbol(s)
when typed directly into the Immediate window.

A. ?

B. Print

C. >>

D. D.P

13. The scope of a watch should be narrowed when

A. The program is time sensitive.

B. The variable is static.

C. The maximum number of watches of that
scope is exceeded.

D. The expression doesn’t need to be evaluated
in certain contexts.

14. The scope of a Watch expression is determined by

A. The scope of the variable(s) used in the
expression

B. The Watch class module

C. The Watch type library

D. The Watch dialog box settings

15. A global variable is visible to a watch of which
type of scope?

A. Global

B. Module-level

C. Procedure-level

D. Unbound

16. A module-level variable is visible to a watch of
which type of scope?

A. Global

B. Module-level

C. Procedure-level

D. Unbound

17. The highest Watch scope meaningful to a variable
declared in a form using the Public keyword is

A. Global

B. Module-level

C. Procedure-level

D. Unbound

18. The highest Watch scope meaningful to a variable
declared in a module using the Private keyword is

A. Global

B. Module-level

C. Procedure-level

D. Indeterminate

21 002-8 CH 18 3/1/99 8:37 AM Page 893

894 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Answers to Review Questions
1. Simple watch, Watch (break when expression

changes), Watch (break when expression is True),
quick Watch, and Watch on demand. See “Using
Quick Watch,” “Watching on Demand,” and
“Entering Break Mode Dynamically.”

2. Arrays, user-defined types, and other objects
appear in Watch windows with a boxed plus sign
to the left of their name. Their data elements can
be selectively displayed or hidden by toggling the
boxed symbol between “+” and “–”. See “Using
the Watch Window.”

3. In Break mode, a program is temporarily sus-
pended during execution so that the programmer
can inspect the program state. See “Using Break
Mode.”

4. The Debug object’s Print method displays values
in the Immediate window. See “Using the Print
Method.”

5. A boxed plus sign indicates that a variable con-
tains subelements not currently displayed. This
might indicate that the variable is an array, a user-
defined type, or some other type of complex
object. See “Using the Locals Window.”

6. Procedures can be executed by typing them into
the Immediate window. See “Testing and
Executing VB Procedures.”

7. A watch may be set at three different levels: the
procedure level, module level, or globally. See
“Levels of Scope.”

8. The greater the scope of a watch, the slower it
can be calculated. A watch set at the procedure
level executes more quickly than a watch set at
the global level. See “Scope Considerations.”

9. The Context group enables you to select from
among the modules and procedures in the current
project. Global scope is specified by selecting All
Modules in the Module combo box. See “Global
Scope.”

Answers to Exam Questions
1. B. The Watch on demand isn’t available in the

Watch window; it appears like a ToolTip when
the mouse pointer lingers over an expression. For
more information, see the section titled
“Watching on Demand.”

2. A, C. Both will continue execution of code one
statement at a time, either in a procedure called
from the current code (Step Into) or in the pro-
cedure which called the current code (Step Out).
Step Over executes a called procedure in its
entirety, but continues to single-step through the
current procedure’s code. Step to Cursor works
only within the current procedure. For more
information, see the section titled “Stepping
Through Your Code.”

3. A. Continue is the only way to resume execution.
Deactivating a breakpoint in code doesn’t auto-
matically resume program execution. The other
means of entering Break mode are one way; they
don’t toggle it on and off. For more information,
see the section titled “Setting Stepping Options.”

4. C. It isn’t A or D, because neither a simple watch
expression nor a quick watch affects Break mode.
It isn’t B because then the program would enter
Break mode on any change to the variable.
Remember that 0 is equivalent to False. For
more information, see the section titled “Breaking
on True.”

21 002-8 CH 18 3/1/99 8:37 AM Page 894

Chapter 18 USING VB’S DEBUG/WATCH FACILITIES 895

A P P LY YO U R K N O W L E D G E

5. D. The plus sign can be used to expand or col-
lapse the variable being watched. For more infor-
mation, see the sections titled “Watching Arrays”
and “Watching User-Defined Types.”

6. D. If an expression can’t be evaluated, it is just as
if it were out of scope. No error occurs. For more
information, see the section titled “Creating a
Watch Expression.”

7. D. Assertions are not compiled into an exe-
cutable program; they are only available in the
debug environment. For more information, see
the section titled “Using the Debug.Assert
Method.”

8. C. The value 32768 exceeds the bounds of an
integer, so the assignment generates a runtime
error. For more information, see the section
titled “Querying or Modifying Data Values.”

9. D. Setting “Form2.Visible = False” applied
only to the current instance of the form. The
next time the Form2 is loaded and displayed, the
original defaults are used, so the form displays
normally. For more information, see the section
titled “Querying or Modifying Data Values.”

10. B. The semicolon puts the insertion point imme-
diately after the prior text. For more informa-
tion, see the section titled “Formatting
Debug.Print Messages.”

11. C. A program must be in Break mode to use the
Immediate window. For more information, see
the section titled “Querying or Modifying Data
Values.”

12. A, B. Either ? or Print is shorthand for
Debug.Print when entered into the Immediate
window. For more information, see the section
titled “Interacting with the Immediate Window.”

13. A, D. Performance considerations may require
you to narrow the scope of a watch so that it can
calculate more quickly. If you don’t need to
observe a variable in certain contexts, it is safe to
exclude it from the watch. For more information,
see the section titled “Scope Considerations.”

14. D. The Context group of controls on the
Watches dialog box determines the scope of the
watch. For more information, see the section
titled “Procedure Scope.”

15. A, B, C. Global variables are visible to watches of
all scope levels. For more information, see the
section titled “Global Variables.”

16. B, C. Module-level variables are visible to
watches set at either the module level or proce-
dure level, assuming that the module is the same
one in which the variable is defined and that the
procedure is contained in that module. For more
information, see the section titled “Module-Level
Variables.”

17. A. A Public form variable is essentially a property
of the form, making it globally accessible
throughout the program. For more information,
see the section titled “Global Variables.”

18. B. Private makes it a module-level variable. For
more information, see the section titled “Module
Scope.”

21 002-8 CH 18 3/1/99 8:37 AM Page 895

21 002-8 CH 18 3/1/99 8:37 AM Page 896

OBJECT IVE

19C H A P T E R

Implementing Project
Groups to Support the

Development and
Debugging Process

This chapter helps you prepare for the Visual Basic 6
exam by covering the following objective and
subobjectives:

Implement project groups to support the
development and debugging process.

• Debug DLLs in process.

• Test and debug a control in process.

. Since version 5 of VB, developers have been able
to use project groups. A project group enables you
to manage more than one VB project in a single
session of the VB IDE.

. The most obvious advantage of project groups is
that you can quickly move between related VB
projects and manage them as a unit.

. The most powerful consequence of this facility for
working with more than one project at a time is the
possibility of fully testing and debugging VB com-
ponents that require a client application to run—in
other words, COM components such as ActiveX
DLLs and ActiveX controls.

. Since neither ActiveX DLLs nor ActiveX controls
are intended to run standalone, you can’t test them
by themselves: They always need some client appli-
cation to run and exercise their features. You can
therefore create a VB project group that contains
your ActiveX DLL or ActiveX control project, as
well as one or more test client applications.

. When you run a test client project at design time,
the IDE automatically makes the ActiveX DLL or
ActiveX control in the same project group available
in the test application’s environment. You can there-
fore program the test client to use the ActiveX DLL
or ActiveX control as if it had already been com-
piled and distributed in the client’s environment.

22 002-8 CH 19 3/1/99 8:38 AM Page 897

OUTL INE STUDY STRATEGIES

Understanding Project Groups 899

Creating Project Groups 900

Building Multiple Projects 902

Using Project Groups to Debug an
ActiveX DLL 903

Setting Up a Sample Group 903

Debugging Features in Project Groups 906

Using Project Groups to Debug an
ActiveX Control 907

Chapter Summary 909

. Know how to create a project group that
contains more than one VB project (see
Exercise 19.1).

. Know how to change a project group’s startup
project and why this is useful (see Exercise
19.2).

. Know how to debug an ActiveX DLL in a project
group (see Exercise 19.3).

. Know how to debug an ActiveX control in a
project group (see Exercise 19.4).

. Be familiar with how to handle errors when
testing ActiveX projects in the design-time
environment (see Exercise 19.5).

22 002-8 CH 19 3/1/99 8:38 AM Page 898

Chapter 19 IMPLEMENTING PROJECT GROUPS TO SUPPORT THE DEVELOPMENT
AND DEBUGGING PROCESS 899

INTRODUCTION

The concept of a project group enables you to work with multiple
projects open at the same time. In versions of VB before versions 5
and 6, you could only accomplish this by using multiple instances of
Visual Basic, making it difficult to work with the projects as one
complete system. Working with multiple design-time projects at
once was actually impossible in versions 3 and below, because these
versions did not enable you to have more than one instance of VB
running at a time!

As many of the systems built with Visual Basic 6 are component
based, using multiple ActiveX projects, it is very important to be able
to work with all the components in one development environment.

This chapter covers the following topics:

á What exactly project groups are, and how you can use them.

á How to use project groups in component-based development.

á How to debug multiple-project applications using project
groups.

UNDERSTANDING PROJECT GROUPS

Developers often work with multiple projects simultaneously. The
two most common reasons to group projects together are

á The projects depend on each other (such as an application and
an ActiveX control that it uses).

á The projects are multiple, independent parts of a large devel-
opment project (such as an order-entry system and an HR
application both being built for the same company).

Project groups have become necessary because each Visual Basic
project does not exist in a vacuum, but rather must coexist with
other applications. As the software industry continues to mature,
you will see more and more development with multiple,
interdependent projects.

N
O

T
E Other ActiveX Control Debugging

Techniques Not Discussed Here
Because this chapter deals with pro-
ject groups, it does not discuss other
techniques available in VB6 for debug-
ging ActiveX controls. For more discus-
sion of ActiveX control debugging, see
the section titled “Testing and
Debugging an ActiveX Control” in
Chapter 13, “Creating ActiveX
Controls.”

22 002-8 CH 19 3/1/99 8:38 AM Page 899

900 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Project groups provide several benefits over the more traditional single-
project model:

á All the individual projects you have placed into a group are
opened and closed together, reducing the time spent getting
ready to work and the time getting ready to quit.

á Opening all the projects together enables you to work with
them inside a single instance of Visual Basic.

á If the projects are directly related (through references), you can
execute and debug them together (as discussed in more detail
in the section titled “Using Project Groups to Debug an
ActiveX DLL”).

The individual projects are not modified just by being part of a pro-
ject group. They are still stored individually on disk. The group file
(*.VBG) merely contains links (using relative paths) to each member
project (*.VBP). The contents of a sample *.VBG group file are
shown here:

VBGROUP 5.0
StartupProject=project1.vbp
Project=Project2.vbp

Each project can belong to a number of groups, in combination
with other projects, and can still be opened directly, as an individual
project, at any time. The only limit on combining projects is that a
project can only be in a project group once; multiple copies of a
given project within the same project group are not possible.

Creating Project Groups
There is no special procedure for creating a project group on its own:
You just start with a standard Visual Basic project, and then add other
projects to it. By adding a second project, you implicitly create a new
group. You add and remove projects in the group with the File menu’s
Add Project and Remove Project options, as shown in Figure 19.1.

Selecting the Add Project command brings up the same style of dia-
log box as Visual Basic 6 shows at startup, enabling you to create a
new project. Select one from a list of recently opened projects or
select any other existing project through a standard directory
browser, as shown in Figure 19.2.

22 002-8 CH 19 3/1/99 8:38 AM Page 900

Chapter 19 IMPLEMENTING PROJECT GROUPS TO SUPPORT THE DEVELOPMENT
AND DEBUGGING PROCESS 901

The Remove Project command disassociates the currently selected
project with the project group, and is also available through the right-
click context menu in the Project Explorer. Even if you remove pro-
jects until only one project remains, it is still contained within a
project group. If, on the other hand, you remove all the projects in a
project group, it is the equivalent of closing the group completely.
Exercise 19.1 takes you through creating a simple project group con-
taining two new projects.

When you exit Visual Basic or attempt to load another project (as
opposed to adding a project), the current group and its associated
projects must be closed. If the group has not previously been saved,
this is when you can specify a name and location for the file, as
shown in Figure 19.3. You can also save the entire project group
through the two menu options: Save Project Group and Save Project
Group As. These commands are not available when you do not have
multiple projects loaded. It is not necessary to save the group in any
particular location, relative to its component projects, but it can
make moving the entire set of your development files easier if you
store them all in the same area.

After a project group has been saved, it will appear in the Recent tab
in any open project dialog boxes, as shown in Figure 19.4, as well as
in the Recently Opened Files list near the bottom of the File menu.

, F IGURE 1 9 .1
Visual Basic 6 includes Add Project and
Remove Project commands for working with pro-
ject groups.

F IGURE 19 .2 ▲

Using a standard directory browsing dialog box
to open an existing project.

F IGURE 19 .3 ▲

Saving a project group file (*.VBG).

22 002-8 CH 19 3/1/99 8:39 AM Page 901

902 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Building Multiple Projects
Visual Basic makes one other important modification to its menus
when a project group is loaded: the addition of the Make Project
Group command under the File menu. This will perform a build of
every project contained within the current project group, which is
sometimes more convenient than selecting and building each project
individually. Selecting the Make Project Group option brings up a
dialog box, as shown in Figure 19.5, where you can select which
projects you would like to build.

The option at the bottom of this dialog box, Use Default Build
Options, is very important. If it is selected, Visual Basic will just go
ahead and build each of the selected projects using whatever settings
you used last, without displaying any dialog boxes to enable you to
change these build settings. If you have never built a project before,
and this option is selected, the system will use the standard defaults
shown for a first build (save in current folder, name is same as pro-
ject name, and so on). If you do not have this option checked, the
standard build dialog box will come up for each project in turn,
prompting you to either accept or change the current settings. If you
are using the Make Project Group command with the intention of
starting all your projects compiling while you go away and do some-
thing else, you should ensure that this option is checked.

Another important difference when you have multiple projects
loaded is that you need to let Visual Basic know which one is the
main, or startup project. This project is the one that will run when
you press F5 or choose Start from the Run menu. All other projects
are only run if they are instantiated by that main project. A project is
considered instantiated by another project if it is started through
some type of ActiveX call, such as CreateObject.

F IGU R E 19 .4.
Group Files appear in Visual Basic’s Recent tab.

F IGU R E 19 .5▲
The Make Project Group dialog box enables you
to select which projects to build.

22 002-8 CH 19 3/1/99 8:39 AM Page 902

Chapter 19 IMPLEMENTING PROJECT GROUPS TO SUPPORT THE DEVELOPMENT
AND DEBUGGING PROCESS 903

The first project placed in a group is, by default, the startup project,
but this can be changed through the Project Explorer. If you right-
click within any of the projects in the Project Explorer window, you
will see the menu option Set as Start Up (see Figure 19.6). If you
select that option, the project that was currently selected is now des-
ignated the startup project. To indicate its status, the startup project’s
name is shown in bold in the Project Explorer.

Generally, the choice of which project should be the main project is
obvious to the developer. It is the one that calls or references all the
others. It is sometimes necessary, however, to change the startup pro-
ject while testing.

Any project that can be run on its own can be a startup project,
which means any type of project other than an ActiveX control (refer
back to Figure 19.6). Exercise 19.2 demonstrates the effect of chang-
ing the startup project, using the simple project group you created in
Exercise 19.1.

USING PROJECT GROUPS TO DEBUG
AN ACTIVEX DLL
In real development, project groups will usually be used with some
form of components. When you are creating a system that uses one
or more components, especially components that are still in develop-
ment, a project group can greatly simplify your work. After a com-
ponent is stable, or when using third-party components, there
should be no need to have their code available and a simple reference
to the component should suffice. To illustrate the use of project
groups when developing with components, this section walks you
through the creation and debugging of an ActiveX DLL.

Setting Up a Sample Group
For the purposes of this demonstration, you will set up two projects:
one standard EXE that consists of a simple form with one command
button, and one ActiveX DLL project.

To create the sample projects, follow these steps:

F IGURE 19 .6
Set this project to be the startup project.

N
O

T
E To Which Project Am I Adding?

Other than the previously mentioned
options, the Project Explorer behaves
the same when dealing with a project
group as it does for a single project.
The project affected by the various
Add commands, such as for forms
and modules, is always the currently
selected one.

N
O

T
E Setting the Startup Project Always

ensure that your startup project is set
correctly when dealing with ActiveX
objects. ActiveX DLLs in particular,
when accidentally set to be the
startup group, can cause some puz-
zling results. Usually, because the DLL
probably doesn’t have any code that
runs without a client application call-
ing it, there are no visible results of
starting the project group. You will see
Visual Basic remain in Execution
mode (Start button grayed, Pause and
Stop buttons enabled), but nothing
else will happen. This might cause
you to frantically look for errors in
your main project (the one you
intended to be the startup), without
finding anything. Remember to always
look for the bold project name as
proof of the current startup project.

22 002-8 CH 19 3/1/99 8:39 AM Page 903

904 Par t I VISUAL BASIC 6 EXAM CONCEPTS

S T E P B Y S T E P
19.1 Setting Up Multiple Projects

1. Start Visual Basic. The Startup dialog box appears, as
shown in Figure 19.7.

F IGU R E 19 .7.
Selecting a new Standard EXE project through
the Visual Basic 6 Startup dialog box.

N
O

T
E No Startup Dialog Box Appears at the

Beginning of a VB Session If the dia-
log box shown in Figure 19.7 does not
appear when you start Visual Basic 6,
you have most likely chosen to turn it
off, and a default, empty, project is cre-
ated instead. For the purposes of this
example, the project created by default
will work just fine. If you wish to have
the Startup dialog box appear when
you start Visual Basic in the future, you
can turn it back on by selecting Prompt
For Project under the Environment tab
in the Visual Basic Options dialog box,
as shown in Figure 19.8.

2. From the dialog box, select the Standard EXE icon.

3. This project will include a single form, named Form1.
Change the following properties of Form1 to the indicated
values:

• Change Name from “Form1” to “frmSample”.

• Change BorderStyle to 3 - Fixed Dialog.

4. On the form, create a new button. Change the button’s
name to cmdGetStatus, and its caption to “Get Status”.

5. Place the following code into the form, replacing anything
else that may be there:

Option Explicit

Private Sub cmdGetStatus_Click()
Dim sTemp As String
Dim objStatus As New clsStatus

sTemp = objStatus.Status

MsgBox sTemp, vbOKOnly, “Status”

End Sub

The code itself is very straightforward: It takes a string
value from the objStatus object and displays it in a stan-
dard Visual Basic message box.

F IGU R E 19 .8▲
Control whether the Startup dialog box appears
through this Option dialog box.

22 002-8 CH 19 3/1/99 8:39 AM Page 904

Chapter 19 IMPLEMENTING PROJECT GROUPS TO SUPPORT THE DEVELOPMENT
AND DEBUGGING PROCESS 905

6. Change the name of the project to “Sample”.

7. Add a second project by choosing Add Project from the
File menu. Select ActiveX DLL from the dialog box that
appears, as shown in Figure 19.9.

8. The new project already contains one class module, Class
1, so you won’t need to add anything. Change the class’s
name to clsStatus in its Property sheet; it is referred to it
by that name in the cmdGetStatus_Click routine in step 5.

9. Change the new project’s name to “DateTime”.

10. Place the following code into clsStatus, once again
replacing any other code that may already be there:

Option Explicit

Public Property Get Status() As String
Dim sTemp As String

sTemp = Format(Date, “Long Date”)
Status = “The Current Date is “ & sTemp

End Property

This property procedure, like the preceding code sample,
is simple. It puts together a simple string and returns it to
the calling program.

After you have completed all the preceding steps, the group is
almost complete. The code in your Get Status button won’t work,
however, if you stop now. (Try it, a User-Defined type not defined
error will appear when you click on the button.) You still need to
add a reference to the DLL to your main project so that you can
create instances of your new class.

Adding a reference to a project that is in the same project group is
not much different from adding any other reference. It is, in fact, a
little easier. If you select the main project in the Project Explorer,
and then choose the References command from under the Project
menu, the standard Visual Basic References dialog box will appear,
as shown in Figure 19.10.

F IGURE 19 .9▲
Adding a new ActiveX DLL project to a project
group.

F IGURE 19 .1 0▲
ActiveX objects in the same project group appear
at the top of the unselected References list.

22 002-8 CH 19 3/1/99 8:39 AM Page 905

906 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Note that the entry for your new project, DateTime, appears directly
under the existing, selected references and not in regular alphabetic
order. This is not a mistake. Microsoft expects you to commonly
be making references to other projects in the same project group.
Because this is the main reason why this feature exists, Microsoft
has made it a little easier. Another important fact here is that the
DateTime DLL was never compiled, but still appears in the list. This
would not occur if you didn’t have the projects in a group. After you
check the DateTime reference and close the dialog box, the main
project will be ready to run.

Debugging Features in Project Groups
With the project group properly set up, you are now ready to explore
some of the debugging features you can take advantage of when using
project groups. When working with multiple components, it is possi-
ble to treat them all as independent projects and completely finish
one before ever working on another. In such a scenario, you would
test and debug each of your components separately. Then, after you
have built all the components in to actual DLLs and EXEs, you
would combine them with your main application and begin integra-
tion testing. If you were always able to do things this way, and there
were never any bugs missed, there would be no need to test or debug
in project groups. However, that doesn’t happen often.

Debugging within a project group is not any different from regular
debugging. The same techniques are used—breakpoints, error-
trapping, and stepping through code—but they apply across all the
projects in the group. You can set breakpoints in any of the projects,
not just the startup. If that line is about to be executed, it will pause
at that point, just as you would expect. This can be useful in deter-
mining exactly when an object is created, initialized, and terminated,
and will even work across multiple instances of one project. The
Debugging Error-Trapping setting, which can be set to Break on
All Errors, Break in Class Module, or Break on Unhandled Errors,
behaves as it does with a normal project, but applies across all the
projects in a group. It is not possible to set different debugging
options for individual projects because these options are really
environment-level options, not project-level ones.

Scope of VB IDE Options In gen-
eral, when dealing with project
groups, it is important to realize
whether a setting applies to only
the current project or to the entire
Visual Basic environment. Settings
found in the Options dialog box
(under the Tools menu), including
the Error-Trapping setting, apply to
Visual Basic. Those found in the
Project Properties and Compile
Options dialog boxes are stored
with each individual project.

W
A

R
N

IN
G

22 002-8 CH 19 3/1/99 8:39 AM Page 906

Chapter 19 IMPLEMENTING PROJECT GROUPS TO SUPPORT THE DEVELOPMENT
AND DEBUGGING PROCESS 907

Stepping through the executing code is where the true power of pro-
ject groups becomes clear. It is possible to step, line-by-line, through
the code of one project, into the code of another. When dealing with
ActiveX components, this could mean hitting an object call in one
project that takes you immediately to the code of that object’s prop-
erty or method, possibly passing through some initialization code on
the way.

Exercise 19.3 takes you through all three of the debugging options
discussed so far, using the sample projects you created in the section
titled “Setting Up a Sample Group.”

USING PROJECT GROUPS TO DEBUG
AN ACTIVEX CONTROL

Another feature of Visual Basic, the capability to develop your own
ActiveX controls, naturally works well with the concept of project
groups.

Whenever you develop an ActiveX control, it is a good idea to add
some other project to your project group—before you run, test, or
debug your control. You really don’t need to have anything more
than a single form in the test project, but this testing method, of
course, always requires the use of a group. This is because the test
project has to be separate from the ActiveX control’s project.

As in the previous DLL examples, you can use all the debugging fea-
tures of Visual Basic when working with your ActiveX control in a
project group. Using breakpoints, you can cause Visual Basic to
pause execution at any point in your control, or in the code of the
host project. When stepping through code, the entire project group
is treated as one complete, uninterrupted collection of code. You can
step directly from a line of code in the host project to a line in your
control, transparently. The Error-Trapping settings also function as
in the DLL examples: The settings always affect all projects in the
group. Exercise 19.4 illustrates the various debugging methods with
an ActiveX control.

Overall, there are only a few important differences about working
with ActiveX controls rather than DLLs in project groups:

N
O

T
E New ActiveX Debugging Possibilities

With VB6 In VB5, a multiproject
group as described in this chapter
was the only way you could test and
debug an ActiveX control inside the
VB IDE. With the release of VB6, you
now have other options for the design-
time testing and debugging of an
ActiveX control or other ActiveX com-
ponent, as described in the section
titled “Testing and Debugging an
ActiveX Control” in Chapter 13.

22 002-8 CH 19 3/1/99 8:39 AM Page 907

908 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á You do not need to create a reference to the control in your
other projects in the same project group. The control is always
available on the ToolBox, and a reference is automatically cre-
ated for you when you place the control on to any of your
forms in the test project.

á Although the ActiveX control you’re working on becomes
immediately visible in the VB ToolBox, you can’t use it in the
text project unless you have closed the ActiveX control’s
designer. It will remain disabled on the ToolBox until you close
the ActiveX designer.

á Breakpoints placed in key startup code (such as the
UserControl’s Initialize event) can prevent proper display or
functioning of the control during design time.

The first difference is not a problem; it is merely a convenience not
provided for ActiveX DLLs, and saves you a few seconds of effort.
Because you have to load the control into another project before you
can run it, every project in the group references the control by
default.

The second and third points are a bit more of an issue, and they exist
because of the differences between DLLs and controls. ActiveX con-
trols have a visual interface at design time, so their code is loaded into
memory and executed even when you are not running the project.

Visual Basic is not really in Execution mode at this point, however,
so it is not possible to debug what happens when the code is run at
this point.

If you attempt to open a form containing your control, and the con-
trol has an error, you will receive an error message, as shown in
Figure 19.11, and the form will not be opened. Fortunately, you
have the option to enter Debug mode at this point, enabling you to
fix the problem. Exercise 19.5 takes you through a series of steps to
demonstrate the design-time effects of breakpoints and errors in an
ActiveX control project.

F IGU R E 19 .11
Errors in your ActiveX control project can cause
error messages when placing an instance of
your control on a form in the test project.

22 002-8 CH 19 3/1/99 8:39 AM Page 908

Chapter 19 IMPLEMENTING PROJECT GROUPS TO SUPPORT THE DEVELOPMENT
AND DEBUGGING PROCESS 909

Because of the obvious benefits of using project groups when you
work with any ActiveX object, it is important to understand and
begin using them as soon as you can. As it is such a common fea-
ture, project groups are almost guaranteed to appear on the certifica-
tion exam in some form or other. The exercises in this chapter help
prepare you for those questions.

T
IP

Project Groups Project groups are
extremely likely to be addressed in
some form or fashion on the exam.
Make sure that you not only under-
stand them conceptually, but that
you have some hands-on experi-
ence with them. Make sure you
work through the exercises in the
“Apply Your Learning” section of
this chapter.

E
X

A
M

In summary, this chapter covered the following topics:

á The meaning of a project group in VB6

á How to create a project group containing multiple projects

á How to debug an ActiveX DLL using a project group

á How to debug an ActiveX control using a project group

CHAPTER SUMMARY

KEY TERMS
• ActiveX component

• Design time

• IDE

• Project group

• Runtime

22 002-8 CH 19 3/1/99 8:39 AM Page 909

910 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Exercises

19.1 Creating a Simple Project Group

In this exercise, you create a project group consisting of
two new standard EXE projects.

Estimated Time: 5 minutes

To create this exercise, follow these steps:

1. Start Visual Basic. The Startup dialog box displays.

2. From this dialog box, select Standard EXE, double-
click on the icon or click on the OK button.

3. You should now have one project, named
Project1, with a sample form displayed. Choose
Add Project from the File menu.

4. The Add Project dialog box appears (refer to
Figure 19.9), enabling you to choose between a
new project, an existing project, or a recent pro-
ject. Select the New Project tab.

5. Select the Standard EXE icon. Double-click on
that icon or click the OK button.

The exercise is complete. You now have a project group
consisting of two projects. Remember that in this case,
because the two projects do not reference each other in
any way, running this project group is really no differ-
ent from running the projects on their own. Keep this
project group open if you do not want to re-create it
before running the next exercise.

19.2 Demonstrating the Effects of Changing
the Startup Project

For this exercise, you will be starting with the project
group created in Exercise 19.1. If you didn’t complete
that exercise previously, please do so before beginning
this one.

Estimated Time: 10 minutes

To create this exercise, follow these steps:

1. Start with the sample project group (containing
two new standard EXE projects) from Exercise
19.1.

2. Select the only form contained in Project1.

3. Change the form’s caption from “Form 1” to
“First Project”.

4. Select the form in Project2.

5. Change its caption to “Second Project”.

6. At this point, Project1’s name should be dis-
played in bold (in the Project Explorer) to indi-
cate that it is the startup project. If it is not,
make it the startup project by right-clicking on it
and choosing Set as Start Up from the context
menu that appears.

7. Run the project group by choosing Start from the
Run menu, clicking on the Play icon on the tool-
bar, or pressing the F5 key.

8. A Visual Basic form appears onscreen, with a cap-
tion of “First Project”. This is because Project1
is the startup project. No matter what you do,
the form with the caption “Second Project” will
not appear during this run because it is not
referred to in any way from the first project.

9. Stop the execution by closing the visible form.

10. Make Project2 the startup group. Right-click on
the second project in the Project Explorer and
choose Set As Start Up in the context menu.
Project2 should be displayed in bold.

11. Run the project group again. This time the form
that appears shows the caption “Second Project”
because now Project2 is running.

22 002-8 CH 19 3/1/99 8:39 AM Page 910

A P P LY YO U R K N O W L E D G E

19.3 Debugging an ActiveX DLL (in a
Project Group)

This exercise requires the use of the sample projects cre-
ated in Step by Step 19.1. After you have this project
group created and open, you can follow these steps to
experiment with various debugging techniques.

Estimated Time: 45 minutes

First you step through a project group, as follows:

1. If you plan to complete Exercise 19.4,
“Debugging an ActiveX Control,” you should
make a second copy of the project created in
Step by Step 19.1 before you go ahead with this
exercise. You can use this second copy of the pro-
ject as the starting point for Exercise 19.4.

2. With your sample project group open, ensure
that the project Sample is set as the startup.

3. From the Debug menu, choose Step Into, or
press the F8 key.

4. The Visual Basic form “frmSample” appears. Click
on the button labeled Get Status on this form.

5. At this point, you will enter Break mode as
Visual Basic encounters the first executable line
of code in this project.

6. Using the Debug menu command Step Into
again, step through the lines in the button’s Click
procedure. When you reach the objStatus.Status
call, the next step will take you into the property
procedure of your ActiveX DLL.

7. If you continue to step through the code, you
will reach the end of the GetStatus procedure
and return back to the first project.

8. After you have completed stepping through the
cmdGetStatus_Click procedure, and dismissed the
message box that is displayed, stop the project
execution by closing the form. You may have to
minimize the VB IDE window or move it out of
the way to see your form running.

Add some code into the Class_Initialize() and
Class_Terminate() procedures of clsStatus. It doesn’t
matter what code, so put something simple such as a
Debug.Print command. Step through the project group
again and watch what happens. The class’s initialization
code doesn’t fire until you first attempt to actually use
the object (by calling its Status property), not when
the object is declared (in the Dim objStatus as line).

This happens because Visual Basic is always attempting
to conserve memory and other system resources, so it
doesn’t even create an instance of your DLL until it is
referenced. This fact can become extremely important
if you place code into the Initialization event of any
class. The termination of the object happens later,
when objStatus goes out of scope at the end of the
cmdGetStatus_Click procedure.

To experiment with the Termination event, try playing
with it when the DLL reference is lost. If you move the
line declaring objStatus into the Global Declarations
area of the form’s code, the initialization will occur at
the same time but the termination will not happen until
the entire form is closed because the object has broader
scope. You can explicitly cause the object reference to be
destroyed by inserting a Set objStatus = Nothing line
at the end of the button’s Click event; clicking the
button more than once will result in an error.

Next you use breakpoints, as follows:

1. With your sample project group open, ensure
that the project Sample is set as the startup, and
that it is not currently executing.

Chapter 19 IMPLEMENTING PROJECT GROUPS TO SUPPORT THE DEVELOPMENT
AND DEBUGGING PROCESS 911

22 002-8 CH 19 3/1/99 8:39 AM Page 911

912 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

2. Open clsStatus by double-clicking on it in the
Project Explorer. Find and select the line sTemp =
Format(Date, “Long Date”). Right-click on this
line, select the Toggle submenu, and click on the
BreakPoint command. The line should be high-
lighted in red, indicating a breakpoint is on.

3. Run the project group. (Do not step through it,
just run it normally.) Once again, the main pro-
ject’s form will appear onscreen.

4. Click on the Get Status button. Almost immedi-
ately, Visual Basic will enter Break mode and the
code from clsStatus will display.

5. Stop the execution of the project.

Breakpoints are very powerful in testing ActiveX compo-
nents. It is not unusual, in a large system of DLLs and
other objects, to be interested in a procedure buried deep
inside a program. Stepping through all the code up until
that point would work, but would take much longer
than it needs to. Setting a breakpoint right where you
need to check some values or pay special attention to the
flow of execution can save you a great deal of time.

Now use the Break on Errors settings, as follows:

1. With your sample project group open, ensure
that the project Sample is set as the startup, and
that it is not currently executing.

2. Open clsStatus by double-clicking on it in the
Project Explorer. Find and select the
Class_Initialize procedure. Put code into this
event that will cause an error, and an On Error
Resume Next statement at the beginning of the
procedure (example code, as follows):

Private Sub Class_Initialize()
On Error Resume Next
Dim j as Integer

j = 1/0

End Sub

3. Remove the breakpoint added in the preceding
portion of the exercise, if you haven’t already
done so.

4. Right-click anywhere in your code and select the
Toggle submenu. Select the Break on All Errors
setting.

5. Run the project. Visual Basic will break on the
line j = 1/0, with a “Division by Zero” error,
despite the On Error Resume Next statement. Try
the other two settings in the Toggle submenu,
restart the project, and note what happens.
Next, comment out the On Error Resume Next
statement and run the project again with each of
the Toggle submenu options.

The important point to remember, when changing the
Error-Trapping settings in Visual Basic, is that they
affect all projects equally.

19.4 Debugging an ActiveX Control

In this exercise, you create a project group containing
an ActiveX control, and then demonstrate various
debugging techniques on that control. First create a test
project. This exercise builds on the sample projects cre-
ated Step by Step 19.1. After you have this project
group created and open, you can follow these steps to
add an ActiveX control to that project group.

Estimated Time: 30 minutes

To create this exercise, follow these steps:

1. Choose Add Project from the File menu. A dialog
box displays asking you to choose what type of
new project to create. Select the ActiveX Control
icon by double-clicking on it.

2. A new blank control project has now been added
to your project group.

22 002-8 CH 19 3/1/99 8:39 AM Page 912

A P P LY YO U R K N O W L E D G E

3. Change the new project’s name to
“ctrlDateTime”, and the UserControl’s to
“ctrlStatus”.

4. Place a Label control on to the control. Position
and size do not matter.

5. Rename this label to “lblStatus”.

6. Add the following code to the control, replacing
any other code that may already be there:

Option Explicit

Private Sub UserControl_Initialize()
Dim sTemp As String

sTemp = Format(Date, “Long Date”)

lblStatus.Caption = “The Current Date is
➥“ & sTemp

lblStatus.Left = 0
lblStatus.Top = 0

End Sub

Private Sub UserControl_Show()

UserControl.Width = lblStatus.Width
UserControl.Height = lblStatus.Height

End Sub

7. Close the UserControl window. Switch to the
main project in your group (Sample) and open its
single form.

8. Select the new icon from your toolbox, as shown
in Figure 19.12. It will be the very last icon, so you
may need to expand the toolbox to see it. This is
your new control, all ready to place on this form.

Chapter 19 IMPLEMENTING PROJECT GROUPS TO SUPPORT THE DEVELOPMENT
AND DEBUGGING PROCESS 913

Don’t Leave ActiveX Control
Design Windows Open When
Testing Always close the control’s
Design window before switching to
other projects. If it is left open, you
cannot place the control anywhere
else, and the toolbox icon will be
disabled.

W
A

R
N

IN
G

9. Place the control on to your form, just under the
command button that is already there. Notice
that it is already displaying your status string,
meaning your control is working.

10. Ensure that the main project, Sample, is set as the
startup, and then step into the project group by
choosing Step Into from the Debug menu.

11. Almost immediately (before frmSample appears),
Visual Basic will break at the UserControl’s
Initialize procedure. From this point, you can
step through the control, moving back and forth
between it and the main project.

12. Continue to experiment with the control in
Debug mode.

F IGURE 19 .1 2
Selecting your new User Control item from the form toolbox.

22 002-8 CH 19 3/1/99 8:39 AM Page 913

914 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

19.5 Errors in User Controls During
Design Time

In this exercise, you continue using the project group
created for the preceding exercise.

Estimated Time: 15 minutes

1. Ensure that the project group is not running by
choosing Stop from the Run menu.

2. Open the code for ctrlStatus. Add a breakpoint
inside the UserControl_Initialize() event proce-
dure, at any point, and then close the Designer
window for ctrlStatus.

4. Double-click on frmSample (from the main pro-
ject) in the Project Explorer.

5. Notice how you immediately switch into Debug
mode at this point, even though you were not
really ever running your project. Continue the
execution (F5).

6. Remove the breakpoint and open the form again
to see how it should work.

7. Return to the control’s initialization routine and
add the following lines of code (anywhere):

Dim j as integer
j = 1/0 ‘will Cause a division by zero error

8. Open frmSample again, noticing that an error
message displays. You are given the option to
debug your code.

In both cases, the problem is the same: Visual Basic
hits a breakpoint or an error and cannot continue exe-
cuting the control’s code. This causes it not to reach
the Show event procedure and not to display the status
information.

Review Questions
1. You are building an ActiveX control for use in an

existing Visual Basic system, and you have added
the control’s project to the same group as your
existing program. Do you need to add a reference
to the control before you can use it in your exist-
ing program?

2. What if, instead of an ActiveX control, you have
a similar situation with an ActiveX DLL compo-
nent—do you need to add a reference to the
component before you can use it in your existing
program in the same program group?

3. How do you temporarily register an ActiveX
component that is running from the VB IDE in
the Windows Registry so that you can test client
applications against it?

4. You have a project group containing three pro-
jects, the main program (a standard EXE project)
and two ActiveX DLLs. Is it possible to set up
Visual Basic to break on errors in your main pro-
ject, but not on errors in the DLLs?

5. In the project group described in question 2,
what project begins to execute first if you choose
Start from the Run menu?

6. You have a main project that creates two
instances of the same ActiveX DLL while it runs.
How many copies of the ActiveX DLL project do
you need to have in your project group so that
you can use breakpoints?

Exam Questions
1. What type(s) of projects can be startup projects?

(Select all that apply.)

22 002-8 CH 19 3/1/99 8:39 AM Page 914

A P P LY YO U R K N O W L E D G E

A. Standard EXE

B. ActiveX DLLs

C. ActiveX EXEs

D. ActiveX controls

E. ActiveX documents

2. When attempting to debug a project group con-
taining project groups, which projects are
effected by the Break on All Errors setting?

A. All non-ActiveX projects

B. The startup project

C. Whichever project was selected when the
option was set

D. Any project except ActiveX controls

E. All projects

3. Before you can make calls to an ActiveX DLL
project in the same project group, what must
you do? (Select all that apply.)

A. Compile the DLL

B. Check the DLL off in your project’s
reference list

C. Make sure the DLL is the startup project

D. Nothing

4. If you lose or delete your project group file
(*.VBG), what information have you lost?
(Select all that apply.)

A. Projects which belonged to that group

B. Compile information for each project

C. The project that was the current startup project

D. Any references to projects in the same group

5. If there is an error in the Initialize event of
your ActiveX control (part of your project
group), when will you receive the error message?
(Select all that apply.)

A. When you run the project and a form is dis-
played with your control on it.

B. When you open the ActiveX control’s project.

C. When you open (in Design mode) a form
containing the control.

D. Never. ActiveX controls cannot raise error
messages.

6. The design-time testing of ActiveX controls
(Select the best answer.)

A. Cannot be done in a project group. You must
use another instance of VB.

B. Can be done in a project group, among other
options.

C. Is not possible. ActiveX controls must be
compiled to be tested.

D. Can only be done in a project group.

Answers to Review Questions
1. No. References to ActiveX controls in the same

project group are created automatically for all
projects in the group. See “Using Project Groups
to Debug an ActiveX Control.”

2. Yes. References to ActiveX DLL components that
you are debugging in the same project group
must be created by using the Project, References
menu option. See “Using Project Groups to
Debug an ActiveX DLL.”

Chapter 19 IMPLEMENTING PROJECT GROUPS TO SUPPORT THE DEVELOPMENT
AND DEBUGGING PROCESS 915

22 002-8 CH 19 3/1/99 8:39 AM Page 915

916 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

3. Trick Question. You don’t need to do anything to
create a temporary Registry entry for an ActiveX
DLL component that you are testing—VB auto-
matically takes care of that for you. See “Using
Project Groups to Debug an ActiveX DLL.”

4. No. Visual Basic’s Error-Trapping settings apply
to all projects. See “Debugging Features in
Project Groups.”

5. Another trick question. You can’t tell which pro-
ject executes first; it will be whichever project was
set to be the startup project. See “Understanding
Project Groups.”

6. One. You can create as many instances of your
ActiveX components as you wish, but you can
never include more than one copy of the same
project in a project group. See “Understanding
Project Groups.”

Answers to Exam Questions
1. A, B, C, E. Any type of project can be a startup

project, with the sole exception of ActiveX con-
trols. ActiveX controls always need another pro-
ject to host them before they can be executed.
For more information, see the section titled
“Understanding Project Groups.”

2. E. The Break on All Errors setting is a Visual
Basic environment setting and has no connection
to any individual project. For more information,
see the section titled “Debugging Features in
Project Groups.”

3. B. (Check the DLL off in your project’s
Reference list.) When running in the Visual Basic
environment, you do not need to compile any of
your ActiveX projects before you can run them.
The calling project has to be the startup project,
not the DLL itself. When working with ActiveX
controls, you do not have to do anything (except
place the control on your form), but ActiveX
DLLs and EXEs need to have a reference set. For
more information, see the sections titled
“Understanding Project Groups,” “Using Project
Groups to Debug an ActiveX DLL,” and “Using
Project Groups to Debug an ActiveX Control.”

4. A, C. Reference and compile information are all
stored with each individual project and stay intact
when the project(s) are opened outside of the
project group. For more information, see the sec-
tion titled “Understanding Project Groups.”

5. A, C. ActiveX controls are executed when they
are displayed, both in Design and Execution
modes. For more information, see the section
titled “Using Project Groups to Debug an
ActiveX Control.”

6. B. The design-time testing of an ActiveX control
can be done in a project group, among other
options. In VB5, project groups were the only
method you could use, but this is no longer true.
For more information, see the section titled
“Using Project Groups to Debug an ActiveX
Control.”

22 002-8 CH 19 3/1/99 8:39 AM Page 916

OBJECT IVES

20C H A P T E R

Compiling a VB
Application

The exam objectives discussed in this chapter cover the
two main ways in which you can manipulate the VB
compiler’s behavior when it creates your VB application
from your source code.

Given a scenario, select the appropriate com-
piler options (70-175 and 70-176).

. You can specify general behavior of the compiler, to
optimize your source code in particular ways. The
VB IDE provides a dialog-driven interface that you
can use to select among these options.

Control an application by using conditional
compilation (70-175 and 70-176).

. You can direct the compiler to make logical deci-
sions about optional compilation of different parts
of your source code by using compiler variables that
will control whether some sections of your code are
compiled.

23 002-8 CH 20 3/1/99 8:43 AM Page 917

OUTL INE STUDY STRATEGIES

P-Code Versus Native Code 920

Native Code 920

P-Code 924

Understanding When and How to
Optimize 925

Compiling to P-Code 926

Compiling to Native Code 928

Using Compile on Demand 941

Understanding Conditional Compilation 942

Preprocessor Directives 943

Types of Expressions 945

Compiler Constants 947

Applications and Styles 952

Chapter Summary 956

. Memorize the significance of each of the com-
piler options available in the Compile tab of
the Project, Properties menu dialog box in the
VB IDE.

. Experiment with the compilation of the same
EXE with different compiler settings, as
described in the section in this chapter titled
“Results of Basic Optimization” and in
Exercises 20.1 and 20.2.

. Experiment with compiler directives and condi-
tional compilation as described in the section
titled “Understanding Conditional Compilation”
and in Exercise 20.4.

. Become familiar with the sample application
included with your VB installation in the project
“Optimize.VBP.” Experiment with this application.

23 002-8 CH 20 3/1/99 8:43 AM Page 918

Chapter 20 COMPILING A VB APPLICATION 919

INTRODUCTION

Visual Basic includes a native-language compiler. This compiler can
translate the Visual Basic source code that programmers can read
and understand into executable programs consisting of native
machine code that computers can read and understand.

Versions of Visual Basic before version 5 also produce executable
files, but the code in those executables does not consist of native
machine code. Until versions 5 and 6, executable program files pro-
duced by Visual Basic consisted of something generally known as
pseudocode, or P-Code, rather than native machine code. Native code
provides a performance advantage over P-Code that VB program-
mers have wanted for a long time.

As if it weren’t enough to include a native code compiler, Microsoft
also gave VB an optimizing compiler. In addition to the performance
advantage inherent in native code compilation, the optimization
switches enable discerning VB programmers to tweak their applica-
tions for even greater performance.

However, Microsoft still allows the programmer to choose P-Code
compilation for any project.

Although the primary purpose of source code is to provide clear
instructions for the CPU, it is occasionally useful to be able to talk
to the compiler too. When necessary, this permits you to give the
compiler special instructions about how it should produce the code
that finally gets sent to the CPU.

Visual Basic enables the programmer to talk directly to the compiler
itself by embedding instructions directed to the compiler in VB
source code.

This chapter discusses the consequences of choosing different com-
piler options in a VB project and also discusses how you can manip-
ulate the compiler directly by using compiler directives.

Specifically, this chapter covers the following topics:

á P-Code versus native code

á When and how to optimize

á Using compile on demand

23 002-8 CH 20 3/1/99 8:43 AM Page 919

920 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á Conditional compilation defined

á Preprocessor directives

á Preprocessor constants

á Applications and styles

P-CODE VERSUS NATIVE CODE

. Given a scenario, select the appropriate compiler options.

You should be able to explain the essential differences between
P-Code and native code on the certification exam. You also need to
know the advantages that each type of compilation provides.

Native Code
If you are familiar with other language compilers—such as Microsoft
Visual C++, Borland Turbo Pascal, or any of the various assembly
language compilers available for a given processor chip—you know
that a language compiler turns a programmer’s source code into
native machine code that is linked into an executable program file.

Before version 5 of VB, the Visual Basic compiler did not generate
the machine code common to other compilers. Instead, it could
only create something called pseudocode, commonly abbreviated
to P-Code.

To understand how P-Code differs from machine code, let’s take a
look at the difference between programs based on interpreted lan-
guages and programs based on compiled languages.

At some level, every computer program can be said to consist of
nothing but the source code used to write it. Programmers write
statements in a high-level language (such as Visual Basic, COBOL,
or C++). If you assemble a series of these statements that collectively
are supposed to do something useful, you have a computer program.
Before the computer can do anything with a program, however,
these high-level language statements must be translated into some-
thing the computer can understand: machine code.

23 002-8 CH 20 3/1/99 8:43 AM Page 920

Chapter 20 COMPILING A VB APPLICATION 921

Machine code instructions govern the most fundamental tasks per-
formed by a CPU. For Intel chips, those basic operations include
things such as data transfer, arithmetic, bit manipulation, string
manipulation, control transfer, and flag control. The format of an
instruction falls into two parts; One part identifies the operation
code, while the other identifies the address in the computer’s
memory at which the data to be used in the operation is stored.

Machine code varies with each processor, however. The Motorola
chips used in Apple computers, for example, don’t respond to the
same set of instructions used by the Intel chips found in computers
that run Microsoft Windows. For a given program to run on a com-
puter, it must be converted into the machine code appropriate for
that computer. The code used by a particular processor chip is also
known as its native machine code.

Until a program is translated from the language used by the pro-
grammer into native code, the computer can’t do anything with
the program. The difference between an interpreted program and a
compiled program is the point at which this translation occurs.

With a compiled program, the process of producing an executable
file from your source code takes two basic steps. The first step is the
compile step. If you choose to compile to native code, the compiler
produces a series of intermediate files from your source code. These
intermediate files are commonly called object files, and many compil-
ers (including the VB compiler) give these intermediate files an
extension of OBJ.

Even though they consist of machine code, the object files themselves
can’t be used directly by your computer. Because your computer relies
on an operating system (for example, Microsoft Windows 9x or
Windows NT), another step—called the link step—is necessary to
produce an EXE file. During the link step, the object files produced
by the compiler are linked together with some startup code that tells
your operating system where to load your program into memory. The
result is written to disk in a form that your computer can use.

Interpreted Code
In an interpreted language, each individual language statement is con-
verted to machine code on a line-by-line basis. A line is read and trans-
lated into machine code. The computer then reads the machine code
for that line and executes its instructions. Then the next line is read,
translated, and executed, and so on for every line in the source code.

N
O

T
E Creation and Destruction of Object

Files Ordinarily, you won’t find OBJ
files in your Visual Basic project direc-
tories. That’s because VB cleans up
after itself after it produces your exe-
cutable file, DLL, or custom control. It
still creates object files, but it deletes
them after the link step. If you find an
OBJ file in a VB project directory, it may
be left over from an earlier attempt to
compile the project that was disrupted.

If you are curious to see what usually
happens to these object files, run
Explorer in a window behind VB. Make
sure that you have your project direc-
tory displayed in Explorer, and then
compile a VB project. You can watch
as the object files are created and
destroyed just before the end product
of your project is produced.

23 002-8 CH 20 3/1/99 8:43 AM Page 921

922 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Because this process must be repeated every time the program runs, inter-
preted languages are generally rather slow. The source code can be saved
for re-use, but it must be re-interpreted every time the program runs.

If you have an old version of MS-DOS or PC-DOS, you probably
have an example of an interpreted language. The GW-BASIC and
BASICA implementations of BASIC that were included with DOS
each provided an interpreted environment for running BASIC com-
mands and programs. You could type a line of code and see just
what effect it would produce before typing the next line. Despite the
slow speed of execution, the real strength of an interpreted language
is this capability to interactively test and debug portions of code
within the development environment at any time.

A compiled program is executed differently than an interpreted pro-
gram. When a program is compiled, the entire program is read and
translated into machine code prior to execution. The translation
from high-level language into machine code occurs just once, and
the translation is saved for re-use. Because there is no overhead for
the concurrent translation that occurs with an interpreter, programs
produced in compiled languages generally execute faster than those
produced in interpreted languages.

The speed at which one’s code executes isn’t always the defining char-
acteristic of an application’s speed at runtime, however. If an applica-
tion is internally responsible for a lot of processing—for instance, if it
performs complex mathematical calculations, or processes lengthy
loops or large arrays—it certainly will benefit from compilation.

If an application depends on external resources—say, the speed at
which a remote database searches and sorts its records—the benefits of
compilation will be less apparent, as its internal code execution is less
of a factor in the performance of the application as a whole. If it takes
several seconds to return records from a remote database in Cleveland,
it doesn’t matter so much to the person running your program in
Cincinnati that compilation to native code cut the time required to
build the SQL statement by a few hundredths of a second.

Until the release of version 5.0, Visual Basic did not compile to
native code, but it didn’t depend on an interpreter, either. Instead,
it produced P-Code, which stands somewhere in between.

23 002-8 CH 20 3/1/99 8:43 AM Page 922

Chapter 20 COMPILING A VB APPLICATION 923

Understanding Early Pseudocode
Even though programmers commonly refer to the code produced by
VB as pseudocode, this term actually has another meaning that pre-
dates VB.

Pseudocode is a technique for expressing the operations of a computer
program or an algorithm in a natural language, such as English. It
was developed as an alternative to flowcharting.

A pseudocode representation of a program generally retains the flow
control directives of the computer language actually being used to
develop the program, but it replaces the rest of the program with
high-level, natural language descriptions of the processes.

Because Visual Basic flow control uses reserved words such as DO,
LOOP, WHILE, IF, and so on, here’s the pseudocode for a program to
read a book:

open book to first page
DO

read page
turn to next page

UNTIL end of book

The implementation details of reading a page and turning pages
are not provided, but there is enough information to determine
whether any tasks are omitted or out of sequence. It is easy to see that
the read page step needs to occur before the turn page step.
If these were reversed, the first page of the book would never be read.

This is called pseudocode because it looks sort of like programming
code, but it really isn’t (the prefix pseudo comes from the Greek word
for false). This kind of pseudocode is much different from Visual
Basic P-Code, which bears some resemblance to native machine
code, but isn’t fully translated.

In any case, the term is commonly used to refer to the pseudo–
machine-code produced by VB, so you are stuck with it., If you talk
to other programmers who don’t work with VB, you may find that
their notion of pseudocode differs from yours.

23 002-8 CH 20 3/1/99 8:43 AM Page 923

924 Par t I VISUAL BASIC 6 EXAM CONCEPTS

P-Code
As already mentioned, the executable files produced by earlier ver-
sions of VB don’t consist of native code. For computers to run these
programs, it is clear that they must entail some extra overhead for
the computer to understand them. Because you have just taken a
brief look at how interpreters work, you might fairly expect to dis-
cover that there is an interpreter at the heart of VB. VB does not,
however, rely only on an interpretive mechanism to perform this
decoding at runtime.

Every time you type a new line of code in the VB Code Editor, VB
tokenizes it as a symbol that represents a series of machine instructions.
That is, VB doesn’t compile directly to machine code, but it produces
a series of tokens that are a sort of shorthand for particular operations.

The process of tokenization occurs when an object is regularly repre-
sented by a particular set of signs or symbols. The most familiar
form of tokenization is language. Words are not identical with the
things for which they stand—for instance, the word apple isn’t the
same thing as an actual apple—but words are understood to be
tokens for the things they represent.

A programming language such as Visual Basic is a special form of
language. Unlike natural languages, the expressions formed by a pro-
gramming language literally can be transformed into the things that
they represent. Even though the computer can’t understand words,
programs can be thought of as instructions for a computer, and cer-
tain tools (compilers and linkers) turn words into actual computer
instructions. Think about turning the word apple into an actual
apple, and you begin to see how a programming language is distinct
from a natural language such as English.

When you compile your program, the source code compiles to
P-Code, which consists of a series of these symbols. When you turn
your program into an EXE file, VB builds an executable file that con-
tains the P-Code and the necessary executable header and startup code.

When VB code is compiled, however, you don’t immediately get
actual computer instructions. P-Code itself isn’t executable. If a
computer were told to take the contents of the P-Code literally, it
wouldn’t know what to do.

23 002-8 CH 20 3/1/99 8:43 AM Page 924

Chapter 20 COMPILING A VB APPLICATION 925

Because the P-Code symbols are not pure machine code, your VB
program must look up these symbols at runtime to figure out what
machine code corresponds to each symbol. That’s the reason VB
programmers have historically needed to distribute VB programs
with a runtime DLL file. (for example, VB 3.0 programs relied on
a file named VBRUN300.DLL.)

When a P-Code EXE file produced by VB runs, the runtime DLL
loads to translate the program’s P-Code into instructions a computer
can understand. Because the Visual Basic language statements have
been precompiled to P-Code, VB programs are faster than if they
relied on pure interpretation. It still takes longer to translate P-Code
into machine code, however, than it does to run native machine
code in the first place.

Although P-Code has many advantages over interpreted code, native
code offers yet another advantage: It can be optimized. You will
need to compile to native code if you want to take advantage of
VB’s new optimization features. The following section discusses
code optimization.

UNDERSTANDING WHEN AND HOW TO
OPTIMIZE

To produce an executable, you may just select the VB File menu
and choose Make. VB also gives you several choices when you are
ready to produce an EXE file. These choices depend on whether you
care to take advantage of the native code compiler.

In the following examples, you use one of the sample projects
included with VB. The project file is Optimize.VBP. Assuming that
you installed the sample files and that you used the default directory
structure when you installed VB, you will find a separate directory
containing the Optimize project under your VB Samples directory.

You can follow along with any project you like, of course, but this
particular project also illustrates some of the optimization issues
explored during the rest of this chapter. Therefore, it may be helpful
to install it if you haven’t already done so.

23 002-8 CH 20 3/1/99 8:43 AM Page 925

926 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Compiling to P-Code
Yes, P-Code is still a compiler option. After you have loaded a pro-
ject and are ready to produce an EXE, your File menu might look
like Figure 20.1.

When you choose Make, you will see another dialog box that
enables you to set various compiler options. To instruct the compiler
to produce a P-Code EXE, all you need to do is select the P-Code
option from the dialog box, as shown in Figure 20.2.

F IGU R E 20 .1▲
The menu command to produce your EXE file.

F IGU R E 20 .2.
Setting compiler preferences at compile time.

If you want to set your compiler options, but you aren’t yet ready to
compile to an EXE, you can also reach the compiler properties by
pulling down the Project menu and choosing Optimize Properties. It
looks like Figure 20.3.

You will work from the Project menu for the rest of this chapter.
Notice that the Project Properties window, as shown in Figure 20.4,
has two additional tabs that don’t appear on the dialog box you get
when you choose Make from the File menu. Because you are only
concerned about setting compiler options now, the extra tabs don’t
matter.

When you select the Compile To P-Code option button, the other
controls on the dialog box are disabled. That’s because the other con-
trols set optimization preferences, and P-Code doesn’t get optimized
in VB6. The EXE generated on compilation behaves just like the
P-Code EXEs from earlier versions of VB.

F IGU R E 20 .3▲
Setting compiler preferences from the Project
menu.

Compile to
P-Code option

23 002-8 CH 20 3/1/99 8:43 AM Page 926

Chapter 20 COMPILING A VB APPLICATION 927

If the capability to compile to native machine code is such a big
deal, why does Visual Basic 6 enable you to choose not to take
advantage of this great new feature? After all, if native code always
executes faster, why would you ever want to bother with P-Code any
more? Three reasons come to mind.

First, speed isn’t everything. Because it doesn’t have to bundle all the
native machine code into the EXE (remember that with a P-Code
EXE, the runtime file contains the native routines), compiling to
P-Code produces smaller EXE files. The advantage of this smaller
footprint increases as multiple VB applications are deployed on a
single computer.

Theoretically, this can be a compelling factor in favor of P-Code,
especially on a computer with a relatively small hard drive. In
practice, however, this was more of an advantage for Visual Basic
versions 3.0 and earlier, when the runtime files weren’t nearly as big
as they are now. The VB3 runtime file (VBRUN300.DLL) is about
390KB. The VB4 runtime files take up about 700KB. With VB6,
the least you can get away with is about 1.3MB.

With the growth of the runtime files, the size of the EXE itself has
become a proportionately less significant factor in distributing applica-
tions. Still, the runtime files need to be installed just once to support
any number of applications. Therefore, generating a smaller P-Code
EXE may still be important to those running short of disk space.

A second reason why P-Code is still an option may be because the
native code speed advantage isn’t always a huge factor. The degree to
which P-Code incurs a performance hit depends on the granularity
of the interpreted routines. If even the slightest action entails a call
to the interpreter, the slowdown could be immense.

Fortunately, however, the VB P-Code system has evolved to the
point that it uses many fairly large-scale instructions, each of which
is executed by a big compiled subroutine. VB’s built-in functions fall
into this category, for instance. (Although some, such as IIF(), are
still notoriously slow. Given the speed of the C/C++ ternary operator
that IIF() emulates, this is surprising.) After they have been passed
to the runtime files, these subroutines run at native speed, so the
P-Code overhead need not be substantial.

F IGURE 20 .4
The Project Properties dialog box uses four tabs
to set project options.

23 002-8 CH 20 3/1/99 8:43 AM Page 927

928 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Third and finally, a P-Code engine certainly simplifies the distribution
of common features among multiple programs. Why do you suppose
Microsoft settled on this mechanism for building macro and program-
ming capabilities into so many of its applications via Visual Basic for
Applications? A native compiler for VBA would certainly have been
interesting, but the convenience of the P-Code engine is compelling,
especially when you consider that Microsoft applications such as Word
and Excel need to run on Apple platforms in addition to Windows.

Compiling to Native Code
Although P-Code has its advantages, the capability to compile to
native code is an advantage that most VB6 programmers put to good
use, especially because it permits additional optimizations. This dis-
cussion focuses on the basic compiler options for native code.

Visual Basic versions 5 and 6 have the capability to compile native
machine code into the EXE files it produces. Like the applications
normally produced with other language compilers that produce
Windows programs (for example, Visual C++), VB programs require
library files. The difference is that a compiler such as Visual C++ can
create completely independent EXEs—if the programmer is willing
to write all the program’s interface code from the ground up. VB
can’t do that.

Why is native code important? You already know the answer: speed.
As hardware has become faster and operating systems have grown
more sophisticated, programmers feel the need to produce applica-
tions that can keep pace. In a world in which desktop computers
featuring 200+MHz Pentium processor chips and 32MB+ RAM are
becoming commonplace, and developers routinely produce Internet-
enabled programs, your applications absolutely must be fast if they
are to be taken seriously.

To compile to native code, open the Project Properties dialog box
and make sure that the Compile to Native Code option button is
selected. When you do, additional choices on the dialog box become
available. The following sections look at these choices.

23 002-8 CH 20 3/1/99 8:43 AM Page 928

Chapter 20 COMPILING A VB APPLICATION 929

Basic Optimizations
Two sets of optimizations are available. The basic optimization choices
are all accessible from the Compile tab of the Project Properties dialog
box (see Figure 20.5). A set of advanced optimizations is also available
if you click on the Advanced Optimizations button.

Take a look at the basic optimization choices first. By selecting the
appropriate option button, you can optimize for fast code, small
code, or use no optimizations at all. It is also important to consider
the impact these optimization choices have on a sample project.

Optimizing for Fast Code
After you have selected Compile to Native Code, select the first
option button underneath it to generate the fastest code possible (the
Optimize for Fast Code option). Even if the compiler decides that it
needs to produce more machine instruction code to handle certain
portions of your application, thereby resulting in a bigger EXE file,
the end result ought to be faster than the smaller alternatives.

You may wonder how one set of instructions can be faster than
another, if each accomplishes the same end result. Well, you can get to
your next-door neighbor’s house by walking about 25,000 miles around
the earth or by walking a few steps the other direction and knocking on
the door. You get the same result either way. A compiler that can opti-
mize for speed just knows how to take those shorter routes.

The VB programmer can perform some kinds of optimizations. VB
doesn’t short-circuit expressions like C or C++, for example. That is,
in a conditional expression such as the following:

If iConditionOne < 1 and iConditionTwo < 10 then
‘ do something

End If

VB evaluates both parts of the conditional expression every time.
Even if the value of iConditionOne were 5, so that the overall expres-
sion must evaluate to False, VB would still evaluate the value of
iConditionTwo. If a C or C++ compiler evaluated this conditional, it
would know that the overall expression must evaluate to False as
soon as it evaluated the first expression. This is called short-circuiting.

If a programmer knows that VB doesn’t short-circuit logical expres-
sions, it is simple to develop the more efficient habit of coding like this:

F IGURE 20 .5
Compiling to native code basic optimizations.

23 002-8 CH 20 3/1/99 8:43 AM Page 929

930 Par t I VISUAL BASIC 6 EXAM CONCEPTS

If iConditionOne < 1 then
If iConditionTwo < 10 then

‘ do something
End If

End If

It takes two extra lines of code, but the second fragment executes
more quickly than the first when the first condition is false. In this
case, knowing how the language behaves makes it possible for you to
write smarter code.

Optimization for performance generally occurs in two ways: globally
and at the register level. If a compiler employs global optimization
methods, it tries to change the order in which your program’s
instructions are executed. This can save time if an action is being
repeated unnecessarily, as in a loop such as this:

Do
iBadlyPlacedVariable = 1

‘ more processing occurs here, but
‘doesn’t change the value of the variable

Loop

In this case, the variable is assigned a value of 1 every time this loop
repeats. If the loop iterates several thousand times, that’s several thou-
sand unnecessary assignments. Clearly, the assignment should have
been done outside the loop, but the programmer made a mistake. If it
uses global methods, an optimizing compiler can correct this mistake.

Register-level optimization tries to save time by putting data where it
can be reached most quickly. Generally speaking, the data your com-
puter needs can be found in one of just three places. In order of
increasing speed, these are as follows:

á Physical storage

á Random access memory

á A CPU register

When possible, register optimization tries to put data into a register
for quick access.

It takes a relatively long time to find data on a physical storage device
such as a hard disk. Even fast hard disks have average seek times mea-
suring in the millisecond range, which is an awfully long time com-
pared to the nanoseconds used to measure RAM chips. Given a
choice, it is always better to search RAM than to search a hard disk.

23 002-8 CH 20 3/1/99 8:43 AM Page 930

Chapter 20 COMPILING A VB APPLICATION 931

(That’s why disk-caching programs are useful: They store recently
accessed data from the hard drive in memory for faster access.)

Because they are part of the CPU itself, registers are even faster than
RAM. If data or an instruction is in RAM, the CPU has to wait for
it to be copied into a register to do anything with it. If it is already
in a register, the CPU obviously doesn’t have to wait on the RAM
access operation. Register optimization occurs when a compiler can
reduce the amount of register manipulation necessary to give the
CPU what it needs to run the program.

You will see how well the basic speed optimizations work shortly;
but first, this section looks at the other basic optimization choices.
The explanations of the remaining basic optimizations will be brief;
they’re quite simple.

Optimizing for Small Code
Selecting the second button causes the compiler to minimize the size
of the code it produces. You can easily guess the trade-off between
the speed and size optimizations. If selecting fast code produces
speed at the expense of a larger EXE, selecting small code may gen-
erate a more compact file at the expense of performance. As you
have already seen, a shorter list of instructions doesn’t necessarily
correlate with greater performance.

No Optimization
If you select the third button, the compiler still generates native
code, but it will no longer be optimized. Before you decide that
Microsoft was asleep at the switch when this option was released,
think about what it takes to develop an optimizing compiler. It isn’t
easy to determine precisely how to handle every conceivable combi-
nation of factors governing the use of an optimization. Detecting
when it is safe to move an instruction out of a loop or when a par-
ticular register value ought to be retained is no mean feat, and it is
possible that the optimizer may make a mistake.

In other words, the opportunity to optimize one’s code is also
another opportunity to introduce a bug. Generally speaking, it is
certainly possible to introduce a bug via an optimization switch.
The initial release of Visual C++ 5.0 had some problems with its
speed optimizations, for example. (The problem was quickly
identified and remedied with a service pack.)

23 002-8 CH 20 3/1/99 8:43 AM Page 931

932 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Optimized or not, native code still ought to execute faster than
P-Code. If you find that your program doesn’t run properly when
you compile it with optimization features activated, you should try
compiling with no optimization. If your program still misbehaves, it
is probably not the fault of the compiler—this bug belongs to you! If
the program behaves properly after being compiled with no opti-
mization, however, it is just possible that you have found a bug in
the VB6 optimization routines.

Favoring Pentium Pro
Whereas the speed/size/no optimization switches are mutually exclu-
sive, the remaining choices on the Project Properties dialog box can
be selected for either the speed or size optimization. If you select
Favor Pentium Pro, your code will run a little faster on computers
with Pentium Pro processors.

It probably doesn’t need to be said, but you shouldn’t use this option
unless you know that your program is likely to be deployed on a
machine equipped with a Pentium Pro. Don’t worry about breaking
anything if you run the program on a computer with a slower CPU.
The program will still run on a standard Pentium, or even a 486 or
386. As long as the computer can run a 32-bit Windows program, your
program will still run—it just won’t perform as well. If you aren’t sure
where your program will be deployed, don’t use Favor Pentium Pro.

Creating Symbolic Debug Info
The last of the choices you can make on the basic optimization dialog
box isn’t really an optimization at all. If you check the Create Symbolic
Debug Info box, the compiler will generate symbolic debug informa-
tion for your project. This doesn’t change the size or performance of
your EXE file, but it does generate a PDB file containing the symbol
information for the EXE. Bear in mind that the PDB file is of no
value to you unless you have a debugger that can use CodeView-style
debug information. That rules out the built-in VB debugger. If you
want to use the Visual C++ debugger, however, you can.

Results of Basic Optimization
Use the sample Optimize project included with VB. The project file
is named Optimize.VBP. Assuming that you installed the sample files
and that you used the default directory structure when you installed
VB, you will find the Optimize project in the \VB\Samples\Pguide\
Optimize directory.

23 002-8 CH 20 3/1/99 8:43 AM Page 932

Chapter 20 COMPILING A VB APPLICATION 933

The Optimize project is particularly appropriate here because it
assesses the speed at which certain VB operations run. The point of
the “Real Speed” portion of the project is to show you how to write
more efficient routines for string and file manipulation, variable
access, and numeric data processing.

You will use the Real Speed tests from the Optimize project to assess
the relative impact of VB6’s basic optimization scheme in these
areas. All you need to do is compile the project four times, produc-
ing a separate EXE corresponding to each of the basic options: one
EXE each for P-Code, native code optimized for speed, native code
optimized for size, and native code with no optimization.

Before you measure performance, take a look at the size of the EXE
produced by each option, as shown in Figure 20.6.

, F IGURE 2 0 .6
Comparative sizes of the Optimize project EXE.

The P-Code EXE is smallest, and native code with no optimization is
largest. Optimizing for speed doesn’t produce a file much larger than
optimizing for size. Considering the total size of the files necessary to
distribute the application, there isn’t really a great size difference
among the four files. This suggests that compiling for fast perfor-
mance may be worthwhile as a matter of course. In any case, the price
of speed doesn’t seem to result in a large enough size penalty to worry
about unless you are extremely pressed for disk space.

When you run the Optimize project, its main form looks something
like Figure 20.7.

The first test shows how to improve the performance of string manip-
ulation and file I/O. (Strings are built more efficiently outside a loop,
and binary file access is faster than random file access.) You shouldn’t
see any deviation from these general conclusions in your comparison
of the four EXE files, but you ought to learn something about the
effect of the basic optimizations on string manipulation and file I/O.
Because you are working from the same code base and running the
tests on a single machine (in the author’s case, a Compaq DeskPro SP
with 64MB RAM running Windows NT Server 4), any significant
differences in the timings assessed by the Optimize project can be
attributed to the optimizations introduced by the VB6 compiler. F IGURE 20 .7▲

The Optimize application with all nodes closed
except for the tests of Real Speed.

23 002-8 CH 20 3/1/99 8:43 AM Page 933

934 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Figures 20.8, 20.9, 20.10, and 20.11 show the results of the string
manipulation and file I/O tests.

F IGU R E 20 .8.
Results of the string manipulation and file I/O
test when compiling to P-Code.

F IGU R E 20 .9.
Results of the string manipulation and file I/O
test when compiling to native code optimized
for speed.

F IGU R E 20 .10.
Results of the string manipulation and file I/O
test when compiling to native code optimized
for size.

F IGU R E 20 .11▲
Results of the string manipulation and file I/O
test when compiling native code with no opti-
mizations.

Depending on your machine, you may want to specify a different
number of iterations than the 100,000 string operations and 10,000
file operations used here. The goal is to run enough iterations to dis-
cern measurable differences among the behaviors of each optimiza-
tion choice.

▼

23 002-8 CH 20 3/1/99 8:43 AM Page 934

Chapter 20 COMPILING A VB APPLICATION 935

What conclusions can you draw here? In these tests, it looks as if
there isn’t a great deal of difference among the results for each opti-
mization type. Because the measurements are all fairly close, even
for P-Code, perhaps this merely indicates that the string manipula-
tion code in the VB runtime is already pretty well optimized. The
close timings on the file I/O tests are a reminder that other factors
besides native code influence performance. No matter how fast the
code executes in memory, you still depend on a hard drive (the
fastest of which is still relatively slow compared to memory and
processor throughput) for accessing data files.

The second test should be more instructive (see Figures 20.12,
20.13, 20.14, 20.15). As its name implies, the code optimization
test is more a measure of how VB handles its own code. It is a test
of internal factors that shouldn’t be influenced either by runtime
libraries that have been optimized in advance or by the speed of a
physical device.

F IGURE 2 0 .12▲
Results of the code optimizations test when
compiling to P-Code.

, F IGURE 20 .1 3
Results of the code optimizations test when
compiling to native code optimized for speed.

F IGURE 20 .1 4▲
Results of the code optimizations test when
compiling to native code optimized for size.

, F IGURE 2 0 .15
Results of the code optimizations test when
compiling to native code with no optimizations.

▼

23 002-8 CH 20 3/1/99 8:43 AM Page 935

936 Par t I VISUAL BASIC 6 EXAM CONCEPTS

In every test here, you clearly see that P-Code is slowest and opti-
mizing for speed is fastest. The single biggest difference is in the
handling of Variant data types, which native code does much more
efficiently than P-Code. On the whole, it looks as if optimizing cer-
tainly makes a difference, although it doesn’t make much difference
whether one optimizes for speed or size; both are generally faster
than P-Code or unoptimized native code.

The final test enables you to explore performance with numeric data
types. The differences here are striking even over a small number of
iterations, as shown in Figure 20.16, 20.17, 20.18, and 20.19.

F IGU R E 20 .16▲
Results of the numeric data type test when
compiling to P-Code.

F IGU R E 20 .17.
Results of the numeric data type test when
compiling to native code optimized for speed.

F IGU R E 20 .19▲
Results of the numeric data type test when
compiling to native code with no optimizations.

F IGU R E 20 .18.
Results of the numeric data type test when
compiling to native code optimized for size.

Again, P-Code is slowest by a big margin in every test. Either opti-
mization is an improvement on unoptimized native code. But once
again, there doesn’t seem to be a great deal to recommend optimiz-
ing for speed over optimizing for size; both seem to execute at fairly
similar speeds.

23 002-8 CH 20 3/1/99 8:43 AM Page 936

Chapter 20 COMPILING A VB APPLICATION 937

On the whole, it looks as if some real performance benefits are avail-
able through the basic optimizations. The next section covers the
advanced optimizations.

Advanced Optimizations
These advanced optimization choices appear if you click on the
Advanced Optimizations button on the Compile Properties tab, as
shown in Figure 20.20.

Next you will see what these optimizations are intended to do.

Assuming No Aliasing
A programming alias is much the same as an alias used for a person’s
identity. Consider how you can declare a sub from a C++ DLL in
your program. If necessary or desirable, you can give it an alias too:

Declare Sub MySub Lib “z:\MyLibrary.DLL” Alias “_MySub”
➥(Arg1 as string, Arg2 as string)

In this case, the alias was necessary because the function name in the
library begins with a leading underscore, which isn’t legal in VB. The
declaration enables you to call the _MyFunction routine in the library
by the name MyFunction, which VB will accept. Even though you
have two different names for the function, both names refer to the
same function.

This optimization is concerned with the kind of aliasing that occurs
when the same object in memory is referred to by more than one
name. Assume, for example, you use the MySub routine (previously
sketched) like this:

Dim szName as string
MySub szName, szName

According to the declaration statement, MySub receives two string
variables as arguments. This example meets that requirement, even
though the two variables happen to be the same. When MySub is
called, the arguments are passed and MySub does whatever it needs to
do with the argument variables. There is nothing special about that,
is there?

Ordinarily, no. But recall that, by default, VB passes arguments by
reference. Instead of passing by value, in which a routine receives
copies of the arguments passed on the stack, the two arguments passed
to MySub are actually the memory locations of the string variables.

F IGURE 20 .2 0
Options for advanced optimization.

Advanced Optimizations Activating
any advanced optimization turns off
a built-in VB safety check. Although
removing these checks will speed
program execution, the extra speed
certainly isn’t worth it if your pro-
grams crash. The basic optimiza-
tions are probably safe enough, but
you may want to heed the voice of
conservatism when using the
advanced optimizations:

• Don’t use them unless you
absolutely must. Any optimiza-
tion that turns off a built-in
safety check is another oppor-
tunity to ship a bug.

• You must remember to apply
any necessary safety checks
yourself. If you don’t have time
to conduct your own safety
checks, refer to the punch line
of the first rule.

W
A

R
N

IN
G

23 002-8 CH 20 3/1/99 8:43 AM Page 937

938 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Because it no longer is working with a copy of the argument vari-
able, a routine that receives an argument by reference has the power
to change the original variable by modifying the value stored at its
location in memory.

The MySub example is a special case. The same variable is used for
both of its arguments, and both arguments are passed by reference.
This means that MySub receives the same memory location for each
argument. Therefore if MySub modifies the value of one of its argu-
ments, it will unknowingly also modify the other argument as well.

From the perspective of an optimizing compiler, this poses a prob-
lem. One of the general forms of optimization mentioned earlier is
register optimization, in which values are kept as easily accessible to
the CPU as possible. When multiple variables refer to the same
memory location, only one instance of the variable needs to be
copied to a CPU register. That is, if the address of the first instance
of szName is already in a register, copying the address of the second
instance of szName is redundant. But how is the compiler supposed
to know that the two arguments are really identical?

Register optimization can be confusing when two arguments actually
refer to the same thing, so VB ordinarily avoids this problem by not
doing this kind of optimization. If you use Assume No Aliasing as
an optimization, you are telling the compiler that each variable name
you use refers to a value held in a memory location separate and dis-
tinct from the values referred to by every other variable name. This
opens up the prospect of successful register optimization. If you
inadvertently slip in a dual reference, however, you may actually slow
down your program.

Removing Array Bounds Checks
Whenever you access or modify an element in an array, VB validates
the index values of the array to make sure that you aren’t trying to
overwrite its bounds. If you have 10 items in an array, you don’t want
to inadvertently refer to a nonexistent eleventh item, as for instance:

Dim aiMyArray (9) as Integer

This ordinarily gives you 10 items in the array, as Option Base 0 is
the VB default. Because there are 10 items, attempting to access the
item at index 10 is a common mistake:

Dim iIndex as integer
Do While iIndex <= 10

23 002-8 CH 20 3/1/99 8:43 AM Page 938

Chapter 20 COMPILING A VB APPLICATION 939

iIndex = iIndex + 1
aiMyArray(iIndex) = iIndex

Loop

Because the index is zero-based, this loop never assigns a value to the
item at index 0, and the last pass through the loop attempts to assign
a value to a nonexistent eleventh item in the array. By default, VB
saves you from attempts like this to overstep the bounds of an array.
(It doesn’t help you with the overlooked item 0, however.) Naturally,
this takes some processing time. You can eliminate this checking by
using this optimization option.

To make sure nothing goes wrong, you will want to use the Ubound()
and Lbound() functions to ensure that you aren’t doing anything ille-
gal. The real savings will occur if you process arrays in loops. Instead
of having VB’s automatic checking occur with every access, you can
conduct your tests outside the loop. This way, you can still be
assured that your program is safe and cut down on the array-
processing overhead.

The preceding example, for instance, could be rewritten this way:

Dim aiMyArray (9) as Integer
Dim iIndex as Integer, iLimit as Integer
iIndex = LBound(aiMyArray) ‘ assure start at first item
iLimit = UBound(aiMyArray)
Do While iIndex <= iLimit

iIndex = iIndex + 1
aiMyArray(iIndex) = iIndex

Loop

Now that the necessary checks are in place, you can take advantage
of this optimization without fear of writing beyond the bounds of
the array.

Removing Integer Overflow Checks
This is conceptually similar to array bounds checking. Whereas the
programmer determines the upper and lower bounds of arrays, the
ranges of the basic data types are set in stone. Whenever you per-
form any calculations on integer types, VB automatically checks to
make sure that the resulting values can still be stored in an integer
variable. VB will raise an error code if you try to overstuff an integer
variable with a value that it can’t hold.

Just like all the other built-in checks, testing for overflow takes some
processing time. If you don’t want to spend time on these checks,
you can turn off overflow checking.

23 002-8 CH 20 3/1/99 8:43 AM Page 939

940 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Removing Floating-Point Error Checks
This is similar to integer overflow, but applies to the nonintegral
data types (that is, singles and doubles). VB’s automatic tests also
check for division by zero. If you test your code and are confident
that you aren’t performing any disallowed arithmetic actions, you
can save the overhead of these tests by deactivating them with this
optimization.

Allowing Unrounded Floating-Point Operations
This is another floating-point optimization. It applies when a VB
program compares the values of floating-point variables in the evalua-
tion of conditional expressions. Because the variables being compared
may not be of the same type, the compiler performs a rounding oper-
ation prior to the actual comparison. This enables it to compare like
types to one another. For example:

Dim singleValue as Single, doubleValue as Double
singleValue = 1
doubleValue = 1
If singleValue = doubleValue Then

‘ do something
End If

Before comparing the values, singleValue is rounded up to the
same precision as doubleValue. Otherwise, the compiler might
decide that 1.000000 doesn’t equal 1.00000000000000, which
would be confusing.

The rounding process takes some extra time, so this optimization
enables you to turn it off. You can avoid any problems this may
cause by making sure that you compare variables that are already
the same type as one another.

Removing Safe Pentium FDIV Checks
This is yet another floating-point optimization. Some of Intel’s early
Pentium chips had a bug that affected certain floating-point division
calculations. By default, VB’s mathematical routines guard against
the Pentium bug, but doing the math in VB code is slower than let-
ting the processor chip do it for you. If you are confident that your
programs won’t run on a machine with the Pentium FDIV bug, you
may want to activate this optimization.

23 002-8 CH 20 3/1/99 8:43 AM Page 940

Chapter 20 COMPILING A VB APPLICATION 941

Using Compile On Demand
Compile on demand doesn’t really make your code execute any
faster, but it may save you time just the same. The time savings
comes from quicker loading of your application when you run it in
Debug mode. To use it, pull down the Tools, Options menu and
choose the General tab. Figure 20.21 shows this tab.

The two check boxes in the Compiler group determine how this fea-
ture operates. If you check the Compile On Demand box, VB no
longer will perform a full compilation of your project before running
it in Debug mode. Instead, VB will compile only as much as it needs
to start your project. After the application is running, it will then
compile your code on an as-needed basis.

If you have two command buttons on a form, for example, the code
behind each button won’t be compiled unless you click on the but-
ton while the application is running. Because you have asked to exe-
cute the code for the button’s Click event, that portion of your code
will be compiled. If there are no errors, the code executes at once. If
there are compiler errors, however, a message box informs you of the
problem and gives you a chance to fix your code.

The main advantage of compile on demand is that you don’t have to
get every bug out of your project to test one particular part of it. You
may discover that some of your code for a list box won’t compile, for
instance, but now you don’t have to remove that code (or comment
it out) just to test the code for a set of command buttons. If compile
on demand is activated, you can test each portion of your project
independently.

The Background Compilation switch is available only if you also
select Compile On Demand. With this switch activated, VB will
try to compile additional portions of your application even if you
haven’t tried to use them yet. The compiler accomplishes this by
waiting for idle time while you test the project. It won’t notify you
of compilation errors unless you have specifically tried to use a
feature, but any successful compilations will be available instantly
when you are ready to use them.

F IGURE 20 .2 1
The Compile On Demand option on the
General tab.

The Compile On Demand Option

23 002-8 CH 20 3/1/99 8:43 AM Page 941

942 Par t I VISUAL BASIC 6 EXAM CONCEPTS

UNDERSTANDING CONDITIONAL
COMPILATION

. Control an application by using conditional compilation.

Ordinarily, the VB compiler reads all the source code in a project
and translates it into either P-Code or native code that can be used
by a computer. It doesn’t omit a single line of executable code (natu-
rally, comments aren’t compiled), so every instruction that was in the
source code also winds up in the compiled EXE, DLL, or custom
control.

With conditional compilation, this no longer is the case. Using con-
ditional compilation, it is possible for the programmer to tell the
compiler whether to skip or include a portion of code, or to compile
one section rather than another. (Reasons for doing these things are
discussed later in the section titled “Applications and Styles.”) This
means that there may be code in the source files that does not get
compiled into the EXE for a project.

To understand how this works, it may help to think about the com-
pilation process as consisting of two phases. During the first phase,
the source code is scanned to determine which parts of the source
are actually supposed to be translated into machine code. The code
that fails the test is ignored; the code that passes is written to tempo-
rary storage for use in phase two. During the second phase, the code
in the temporary storage is compiled into an executable program file.

Because the determination of which code is included and which
code is omitted occurs before the compiler actually processes the
code, this phase is often called preprocessing. Although it was not
introduced into VB until version 4.0, other languages have had
access to a preprocessor for a long time.

The C and C++ preprocessor, for instance, makes it possible for the
contents of one file to be inserted into another (the #include direc-
tive), to expand a token into another series of characters as a macro
(the #define directive), and even to change the rules of the language
temporarily (the #pragma directive). Remember that all these actions
occur before the code is presented to the compiler. The compiler never
sees the original state of your source code; it only operates on the code
that has passed the conditional tests put in place by the programmer.

N
O

T
E Simplifying the Discussion of

Conditional Compilation VB can pro-
duce custom controls, DLLs, or EXEs,
consisting of either P-Code or native
code. Rather than unnecessarily com-
plicating the explanation of the compi-
lation process by referring to all
options every time, the rest of this
chapter assumes that the program-
mer is compiling an EXE to native
code. None of the conditional compila-
tion concepts change if you change
your project options, but the rest of
the explanations in this chapter
should be more readable if the dis-
cussion addresses just one case.

23 002-8 CH 20 3/1/99 8:43 AM Page 942

Chapter 20 COMPILING A VB APPLICATION 943

The Visual Basic preprocessor is not as powerful as that found in C
or C++—VB can’t do the tricks mentioned in the preceding para-
graph (not yet, anyway)—but it is still quite useful. The following
section takes a look at VB’s preprocessor directives.

Preprocessor Directives
A preprocessor gets its name precisely because it operates on source
code before the compiler processes the code. The only function of
the VB preprocessor is to conditionally evaluate code to determine
which parts of it the compiler should process.

The preprocessor uses just the following four conditional flow con-
trol directives:

á #If

á #ElseIf

á #Else

á #End If

Aside from the “#” prefix, the preprocessor syntax is just like that of the
If, ElseIf, Else, and End If flow control directives in the Visual Basic
programming language. The only difference is that If/Then/Else/End
If conditional tests used in a program determine the path of execution
taken by the code, whereas the #If/#Then/#Else/#End If preprocessor
conditional tests determine which code will be included when a project
is compiled.

Because any code that the preprocessor screens out is completely
absent from the final compiled product, its presence in the source
code does not influence the executable program in any way. No size
or performance penalty accrues.

The formal syntax for the preprocessor directives is represented like
this in the VB Help system (blocks enclosed in brackets are
optional):

#If expression Then
statements

[#ElseIf expression-n Then
[elseifstatements]]

[#Else
[elsestatements]]

#End If

23 002-8 CH 20 3/1/99 8:43 AM Page 943

944 Par t I VISUAL BASIC 6 EXAM CONCEPTS

At minimum, a preprocessor block must consist of #If/Then/#End
If. Optionally, any number of #ElseIf blocks can be included with
additional expressions to be evaluated should the expression in the
main #If be False. A single #Else block can be included, but is not
required. The #Else block has no expressions to evaluate because it is
the default block. It is reached only if all the #If and #ElseIf expres-
sions evaluate as False.

The sections marked statements, elseifstatements, and elsestate-
ments represent lines of VB code that are subject to conditional com-
pilation. After the conditional expressions are evaluated, only those
lines found in the active conditional block (that is, the lines in an
#If or #ElseIf block that evaluates as True, or, if no expression is
True, the lines in an #Else block) will be passed to the VB compiler.
Besides containing lines of VB code, it is also possible to nest addi-
tional preprocessor blocks here.

If you know how VB evaluates a programming If block, you already
know how to evaluate a preprocessor #If block. A conditional
expression is evaluated on the #If line. Should the conditional
expression be evaluated as True (that is, any non-zero value), the set
of statements immediately following the #If line will be included in
the compiled form of the program, until an #End If (or, optionally,
an #ElseIf or #Else) is encountered. If the conditional expression is
not True, the code in the #If branch of the conditional block is
excluded from the compiled form of the program.

Should the preprocessor find an #ElseIf after an #If expression eval-
uates as False, the preprocessor evaluates the #ElseIf expression,
applying to it the same guidelines as previously described for the #If
block. This process continues until the preprocessor finds an expres-
sion that evaluates to True, whereupon the code wrapped in that
branch will be sent to the compiler.

When no #If or #ElseIf condition evaluates to True, those branches
are excluded from the compiled form of the program. The preprocessor
then tries to find an #Else branch. If one is present, any code wrapped
in it will be included by default in the compiled form of the program.

Again, if you understand VB flow control with an If block, you
shouldn’t have any difficulty with the logic used in the VB
preprocessor. They follow the same rules, with just one exception:
A conditional expression and a single action are allowed to appear on
a single line in a VB program, such as this:

If TestCondition = True Then DoSomething()

23 002-8 CH 20 3/1/99 8:43 AM Page 944

Chapter 20 COMPILING A VB APPLICATION 945

When a single action is involved, the usual closing End If is unnec-
essary. (Of course, if more than one action should be taken as a
result of a conditional test, this form can’t be used—all the actions
must appear on separate lines, and the terminating End If is
required.)

With the preprocessor, however, the conditional test must be on a
different line from any actions, even if there is just one action to per-
form. To work with the preprocessor, the preceding code would have
to be written like this:

#If TestCondition = True Then
DoSomething()

#End If

The reason for keeping preprocessor commands on separate lines from
other VB actions is due to the way the preprocessor does its job.
When it determines what portions of the source code to pass on to the
compiler, it does more than just remove the code blocks that didn’t
satisfy its conditional tests: It also strips out the tests themselves, as
well as every other line that begins with a preprocessor directive. After
all, the preprocessor commands are not part of your program. (Think
about it—they aren’t in the Visual Basic programming language, so
the VB compiler doesn’t know how to compile them.) If a program-
ming command were to appear on the same line as a preprocessor
directive—as is the case with the single-line version of a conditional
test shown previously—it would also be stripped out of the program.

It may help to think of the preprocessor and the VB compiler as two
separate compilers that don’t speak each other’s language. So as not
to confuse them, keep the commands for one separated from the
commands for the other.

Types of Expressions
So far, this discussion has focused on how the process of evaluating
conditional compiler expressions works. You still need to know more
about the kinds of expressions that the preprocessor can handle. Just
like any other conditional statement, the preprocessor requires the
expressions it evaluates to have a truth value—that is, they must
evaluate to True or False, where True is defined as any non-zero
value and False is zero. These expressions may consist of the follow-
ing three components, two of which are probably already familiar:

23 002-8 CH 20 3/1/99 8:43 AM Page 945

946 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á Operators

á Literals

á Compiler constants

You probably understand operators already. The same arithmetic and
logical operators used in any other conditional statement are available
for use in preprocessor conditional statements, with one exception.
You can use any arithmetic or logical operator except Is—because Is
is a special operator used to compare VB object variables, and the
preprocessor doesn’t understand VB variables.

Literals are probably familiar by now, too. A literal can be a numeric
value, such as 1 or 256, or a text string, such as “Hello, world”.
When comparing values, the Option Compare statement has no effect
upon expressions in #If and #ElseIf statements. Conditional com-
piler statements are always evaluated with Option Compare Text.

Because these tests use only operators and literals, both tests are valid:

#If 1 < 2 Then
‘ do something

#ElseIf “MyString” = “MyString” Then
‘ do something else

#End If

Not only are both of the tests valid, but it so happens that both are
also True. However, only the do something code will be compiled
into the executable because the conditional statement on which it
depends, 1 < 2, is evaluated first. The do something else condi-
tional, “MyString” = “MyString”, is True, but because it is part of an
#ElseIf test, it is skipped when any previous #If or #ElseIf at its
level in the block evaluates to True.

However, this test is not valid:

Dim db1 as Database, db2 as Database
Set db1 = DBEngine(0)(0)
Set db2 = db1
iCounter = 100
#If db1 Is db2 Then

‘ try this
#ElseIf iCounter > 0 Then

‘ try this instead
#End If

There are two problems here. The first should be obvious from the
rule for operators stated earlier: The #If statement uses the Is opera-
tor, which is explicitly disallowed.

23 002-8 CH 20 3/1/99 8:43 AM Page 946

Chapter 20 COMPILING A VB APPLICATION 947

What’s wrong with the second conditional? Because it is True that
iCounter is greater than zero, it may seem that nothing is wrong
here. The problem is that the preprocessor can’t use VB variables, so
it has no idea what to do with iCounter. (In fact, that’s also a prob-
lem with the #If statement’s use of the db1 and db2 variables.)

Although these variables make perfectly good sense in the context of
a VB program, remember that the preprocessor doesn’t speak the
same language as the compiler. The preprocessor may be responsible
for deciding which code gets sent to the compiler, but it doesn’t have
to know anything about VB code to accomplish that task.

If you could only use literals in your tests, the preprocessor wouldn’t
make for a very interesting tool. You could only construct tautologies
(statements that are always true) or contradictions (statements that
are always false). You could move such statements from place to place
in your code, explicitly selecting the lines you want to include by
wrapping them with tautologies, and screening the lines you want to
exclude with contradictions, but that’s a lot of manual labor. It would
almost be as easy to wade through the each project’s code, manually
commenting out any undesired lines on a build-by-build basis.

Fortunately, an easier way exists. Besides operators and literals, you
will recall that a third component allowed in conditional compiler
tests was mentioned earlier: compiler constants. Compiler constants
are the key to doing tricks with the VB preprocessor.

Compiler Constants
Compiler constants have two sources. Some are predefined by VB,
and the programmer creates others. The following sections discuss
both types of compiler constants.

Predefined Compiler Constants
Visual Basic for Applications predefines two constants for use with
the preprocessor: Win16 and Win32. These values are automatically
available everywhere in a project (that is, they are global constants).

These constants exist for downward compatibility with projects that
were originally created in VB 4.0, which developers could use to
develop projects for both 16-bit and 32-bit Windows from the same
source code.

23 002-8 CH 20 3/1/99 8:43 AM Page 947

948 Par t I VISUAL BASIC 6 EXAM CONCEPTS

In version 4.0 of VB, you could compile for either a 16- or a 32-bit
platform. (In all previous versions, 16-bit was the only available plat-
form; in subsequent versions, 32-bit is the only platform.) The values
of the Win16 and Win32 constants depended on whether you were
compiling on a 16-bit or 32-bit Windows platform. If you were com-
piling for a 16-bit platform (for example, Windows 3.1), the value of
Win16 was defined as True, and the value of Win32 was defined as
False. On 32-bit platforms (for example, Windows 9x and Windows
NT), the values were reversed: Win16 was False, and Win32 was True.

In VB6, Win32 is always True and Win16 is always False. You no
longer need to use compiler logic with Win16 and Win32 in your
code. If you maintain code that was originally written in VB4, you
may find these constants.

Leaving this compiler logic in your code does no harm in the VB6
environment, but neither does it do any harm to remove the Win16
logic: No future version of VB is ever going to support 16-bit code
again.

Declaring Compiler Constants
Besides the predefined constants, you can also define preprocessor
constants for yourself to automate your preprocessing requirements.
You can declare a compiler constant in the following three ways:

á In code

á In the Project Properties dialog box

á From the command line

Each method produces slightly different results from the other two.
First, it is important to understand the mechanics of declaration for
each case. After that’s clear, the discussion examines how each
method behaves.

Declaring in Code
There is one more preprocessor directive to remember in addition to
the #If, #Else, #ElseIf, and #End If talked about earlier: #Const.
Not surprisingly, the #Const preprocessor directive is similar to the
VB keyword Const. Const enables you to define a name to use in
place of a constant value in your VB code, such as this:

Const MAX_LINES as Integer = 60

23 002-8 CH 20 3/1/99 8:43 AM Page 948

Chapter 20 COMPILING A VB APPLICATION 949

Then, whenever you need to use this value, you can type MAX_LINES
rather than 60. This makes your code easier to understand because
your code can use a meaningful name rather than a magic number.
For instance,

Do While iCount <= 60

is harder to understand and more difficult to maintain than the
following:

Do While iCount <= MAX_LINES

In the first case, it is not clear what makes 60 a special value; and if
the value ever needs to be changed, every conditional that uses it
must be changed manually. In the second case, the use of a meaning-
ful constant name clarifies the meaning of the value; and if it ever
needs to be changed, a single change to the constant definition prop-
agates the change to all instances of its use.

#Const works in much the same way for the preprocessor. For
instance:

#Const TESTING = 1

Just like a programming constant, a compiler constant must be
defined only once. The syntax for compiler constants is slightly dif-
ferent, however, from programming constants. Although you can
optionally specify a data type with a programming constant (if you
don’t, the constant defaults to a Variant, or whatever the program-
mer has specified as a default type via the family of Def statements—
for example, DefInt, DefLng, and so on), it is not possible to specify
a data type for a preprocessor constant. All preprocessor constants
are treated as if they are Variants of type string.

You may notice something slightly odd about this chapter’s treat-
ment of compiler constants: Even though you generally use them as
Booleans, the sample constants you will see in this chapter have all
been assigned numeric values. In fact, the values True and False can
be used for compiler constants too. The reason this chapter avoids
doing so is that the value for True is explicitly defined as –1, which
can lead to some puzzling results with the preprocessor:

#Const VexingVariable = True
#If VexingVariable = 1

MsgBox “You Won’t See Me”
#End If

23 002-8 CH 20 3/1/99 8:43 AM Page 949

950 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The message box won’t appear because the preprocessor sees the test
as –1 = 1, which it concludes is False. If you are accustomed to
thinking of any non-zero value as True, this can be confusing. That
is why this chapter assigns unambiguous literal values to compiler
constants rather than Boolean values.

Once again, remember that the preprocessor and the compiler don’t
speak the same language. (In this case, perhaps it is more appropriate
to say that they don’t share the same name space.) Just as the pre-
processor can’t use a variable you have declared in your code, your
code can’t use compiler constants anywhere but in a preprocessor
directive. This is illegal:

Dim ProgramVariable as Integer
#Const NothingButACompilerConstant = 1
If ProgramVariable = NothingButACompilerConstant Then
➥DoSomething()

When you try to compile code like this with Option Explicit, VB
will tell you that you haven’t declared NothingButACompilerConstant.
By now you have certainly noticed the pattern. So long as you don’t
mix the stuff you do on lines beginning with pound signs with any
of your other code, you should not have any trouble. Just keep track
of those pound signs.

Declaring in the Project Properties Dialog Box
If you pull down the Project menu and choose Properties at the bot-
tom of the menu list, the Project Properties dialog box appears. If
you select the Make tab on the dialog box as shown in Figure 20.22,
you will see a field for Conditional Compilation Arguments.

To define a preprocessor constant here, you don’t use #Const, but the
syntax is otherwise the same as for doing so in code: Type a name for
the constant, an equals sign, and the value you wish to assign to the
constant. As the illustration shows, you can define more than one
constant in the Project Properties dialog box by separating them
with colons. (When you realize that the colon also acts as a line sep-
arator in VB code, this makes pretty good sense.)

Declaring in the Command Line
You can also use the VB command line to set up preprocessor con-
stants. If you want to compile a project from outside the develop-
ment environment, you can start the compilation process from a
command line with the /make switch, adding the /d switch to enter
compiler constants. For example:

F IGU R E 20 .22
The Make tab of the Project Properties
dialog box.

23 002-8 CH 20 3/1/99 8:43 AM Page 950

Chapter 20 COMPILING A VB APPLICATION 951

vb.exe /make ProjectName.vbp /d VERSION=2:CLIENT=”Pointy-
➥haired boss”

You don’t need to leave a space between the /d switch and the con-
stant, but it makes the example easier to read. Notice how the exam-
ple defines multiple constants by separating them with colons.

Scope and Persistence
The scope and persistence of a compiler constant depends on where
it is declared.

If the #Const directive is used to define a compiler constant in code,
that constant is Private to the module in which it is defined. This
means that if you want to use the same constant in multiple mod-
ules, it must be defined in each module; you can’t use #Const to cre-
ate Public compiler constants. Naturally, compiler constants defined
in code persist between sessions. That is, they won’t go away unless
you explicitly remove them from your source files.

If you need to use a Public compiler constant, you can define it
either in the Project Properties dialog box or on the command line.
Constants defined in either way are Public to all modules in a pro-
ject. If you need to use the same constant throughout an entire pro-
ject, this is obviously more convenient than manually entering it
into every module and form.

Why are there two ways to define Public compiler constants? The
scope is the same using either method, but the persistence differs. If
you use the Project Properties dialog box to define a constant, it is
saved with your project. If you close the project, any compiler con-
stants you have defined as a property of the project will still be there
the next time you open the project.

When you specify a compiler constant on the command line, it applies
only to the instance of the project that you are running at that very
moment. The primary reason for this is to enable you to use a different
value for a Public compiler constant that you have already defined in
the Project Properties dialog box. The value you use on the command
line temporarily overrides the stored value, but doesn’t erase it.

Consider that a Public compiler constant is defined under Project
Properties such that USER=”Wally”, and that the following is entered
on the command line:

vb.exe /make ProjectName.vbp /d USER=”Alice”

23 002-8 CH 20 3/1/99 8:43 AM Page 951

952 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Any conditional compiler tests will substitute the value “Alice” for
the USER constant during the current debug session. The next time
the project is run, however, USER will still be defined as “Wally”
(unless it is overridden on the command line again, of course).
Values set on the command line don’t persist between sessions.

What happens if you use the same name for a constant both in your
code and in the Project Properties dialog box? The same thing that
happens when a local variable has the same name as a global vari-
able: The local variable overrides the global variable. The value of the
compiler constant set in your code will override the Public constant
set in the dialog box.

If BUDDYLIKESSOCKS = 0 is specified in the dialog box, for example,
and #Const BUDDYLIKESSOCKS = 1 is specified in a code module, the
value of BUDDYLIKESSOCKS will be 1 in the code module and 0 every-
where else. This enables you to override Public compiler constants
on a module-by-module basis.

Applications and Styles
This discussion to this point has focused on the mechanics of how
conditional compilation enables you to selectively include and
exclude parts of your code from the compiled version of a project.
Now the focus changes to some applications of these concepts. What
follows is hardly an exhaustive list of all the possibilities, but it should
at least suggest some ways to use the preprocessor to your advantage.

Using Debug Mode
Conditional compilation makes it easier to remove debugging tests
from your code prior to building a release version of a project.
Rather than having to manually search and remove (or comment
out) tests that may be scattered in multiple modules, you can place
your debug code in conditional compiler blocks:

Dim BuggyVariable as String
‘ ... processing occurs

#If TESTING = 1 Then
‘ see if THIS is where BuggyVariable blew up
MsgBox “Current value of BuggyVariable” “ &

➥BuggyVariable
#End If

23 002-8 CH 20 3/1/99 8:43 AM Page 952

Chapter 20 COMPILING A VB APPLICATION 953

Naturally, you don’t want this to appear in a released product. The
key is to define a constant that will be True only when you are
debugging, and False otherwise. Visual C++ includes a predefined
compiler constant that serves just such a purpose, but Visual Basic
requires you to create your own “Debug mode” constant. Recall that
there are three ways to define a compiler constant. You could define

#Const TESTING = 1

in every module with debug code, and then wrap your tests in the
following:

#If TESTING Then
#End If

Of course, this requires you to manually alter each module so that
TESTING is no longer defined as 1 when it is time to build a release.
One of the reasons to use conditional compilation in the first place
is to cut down on that kind of drudgery. Therefore, defining the
constant via #Const probably isn’t the best choice unless your debug-
ging tests are confined to a single module.

Defining a Public compiler constant, either via the Project Properties
dialog box or on the command line, defines a constant for the entire
project. Of course, if you use the Project Properties dialog box, you
must remember to change the value of TESTING (for example, TESTING
= 0) before building your release. This approach has the advantage of
leaving you with only one place to make the change. Still, it is possi-
ble to forget, especially if you don’t visit the Project Properties dialog
box regularly. This approach is less risky than having to track down
#Const in multiple source files, but there is still a chance that you will
release a project that includes your debug code.

What about the command line? Because you have to explicitly define
your Public compiler constant with the /d switch before beginning
each debug session, this is less convenient than setting the constant
with the Project Properties dialog box. However, it also means that
you’re extremely unlikely ever to ship a version of a project with your
debug tests accidentally enabled.

This raises another issue, however: What happens to a conditional
compiler test when a compiler constant is undefined?

If you leave the conditional tests in place after eliminating the
definition of a constant, you might expect to see some kind of pre-
processor error message or warning. In fact, you won’t get one.

23 002-8 CH 20 3/1/99 8:43 AM Page 953

954 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Recall that preprocessor constants are treated as Variants. If a Variant
hasn’t been initialized, it has the value Empty. Now, assume that the
RELEASEMODE constant in this example has not yet been defined:

#If Not RELEASEMODE Then
MsgBox “But I thought this code wouldn’t be compiled!”

#End If

In this case, the message box will appear. A Variant containing Empty
is treated as 0, and Not 0 evaluates to True. This means that the mes-
sage box pops up even if you haven’t assigned a value to RELEASEMODE.

Because you can’t rely on a compiler warning or preprocessor error
message to inform you of your mistake (there is no Option Explicit
for compiler constants), it is a good idea to take this default behavior
into account when you code your tests to avoid surprises. Always test
the compiler constant used to wrap your debug code for a non-zero
value. (That is, never rely on a test that reduces to “MYCONSTANT =
0”.) If you use the command line switch to define your debug com-
piler constant, this will make it impossible to accidentally compile
your debug tests into a release.

From a mechanical standpoint, there is nothing more to know about
the process of conditional compilation. After you understand the
rules for defining and testing constants, all that is left is to dream up
new ways to apply them. The rest of this chapter suggests a few ideas
to get you started.

Comparing Algorithms
If you are not sure which algorithm is best suited to a procedure,
implement the ones you want to compare in a conditional block.
For example:

#Const SortMethod = 1
#If SortMethod = 1
‘ Insertion Sort
#Else If SortMethod = 2
‘ Bubble Sort
#Else If SortMethod = 3
‘ QuickSort
‘ #Else If etc.
#End If

The quantity and state of the data it manipulates may affect the per-
formance of an algorithm. Insertion sorts are fast with small lists, for
example, but performance deteriorates as the size of the list increases.
If a list is already nearly sorted, a bubble sort can be quite fast.

23 002-8 CH 20 3/1/99 8:43 AM Page 954

Chapter 20 COMPILING A VB APPLICATION 955

Conditional compilation to support different algorithms makes it
easier for you to test different approaches to programming problems.
Depending on the completeness of your implementation, you may
also find it useful to be able to adapt your program to the demands
of different data sets just by changing the value of a compiler con-
stant and recompiling.

Feature Sets
The same body of code can support different combinations of fea-
tures. You may want to use the same interface for a database pro-
gram, for example, but employ it with different data engines. Using
conditional compilation, you could produce separate versions of
your program for DAO, RDO, and ODBC.

Unlike the database scenario, which requires selecting one approach
from among competing alternatives, you can also take an additive
approach. If you add fax support to your program, but you only
want it to be included in the releases 2.0 and up, you can still pro-
duce a 1.0 EXE from your source, as follows:

#If ReleaseNumber >= 2 Then
‘ fax support
#End If

Just make sure that you specify #Const ReleaseNumber = 1 when you
need to generate a 1.0 copy of your program. It is no match for a
full-blown version control system, but conditional compilation can
serve as a limited VCS.

Client Specific
If you provide the same program to multiple clients who require
slightly different features, you can implement these features in a com-
mon body of code by wrapping the client-specific features in condi-
tional compiler blocks that compare a constant to the client name:

#If ClientName = “Clinton” Then
‘ ingenious code that cripples the Republican party,
‘ except for that pesky Whitewater bug
#End If
#If ClientName = “Dole”
‘ ingenious code that cripples the Democratic party,
‘ except for that annoying 1996 bug
#End If

23 002-8 CH 20 3/1/99 8:43 AM Page 955

956 Par t I VISUAL BASIC 6 EXAM CONCEPTS

This chapter discussed the following topics related to the compiling
of a VB application:

á Pseudocode and native code

á The meanings of the various compiler optimization options,
both the elementary and advanced options, and how to experi-
ment with these options in sample applications

á How to use compile on demand when you want to quickly
test specific changes to a large project—and how to compile
fully if you want to make sure all compiler errors have been
eliminated

á What conditional compilation is and why it is useful, includ-
ing the use of preprocessor directives and preprocessor con-
stants and their declaration

CHAPTER SUMMARY

KEY TERMS
• Compiler

• Compiler constant

• Compiler directive

• Executable file

• Interpreter

• Native code

• Object code

• Source code

• Pseudocode

23 002-8 CH 20 3/1/99 8:43 AM Page 956

Chapter 20 COMPILING A VB APPLICATION 957

A P P LY YO U R K N O W L E D G E

Exercises

20.1 Measuring the Benefits of Basic
Optimizations

VB6 includes a sample Optimize project. As you have
already seen, the project shows the relative merits of
various approaches to coding so that you can write
more efficient programs.

The time measurements used in the Optimize project
all depend on the VB Timer() function. Timer() isn’t
really as accurate as the Optimize project would have
us believe. The text boxes used to display elapsed time
are formatted to display hundredths of a second, but
Timer() only purports to return time values in whole
seconds. Because the speed comparisons among the
basic optimization choices were so close in certain
cases, some advantages may merely have been apparent
due to the inaccuracy of Timer().

The goal of this exercise is to modify the optimization
project to apply a finer measure of performance differ-
ences among the basic optimizations by substituting
another function for Timer(). Hint: The Win32 API
includes several functions that return elapsed time in
milliseconds.

Estimated Time: 25 minutes

To create this exercise, follow these steps:

1. Open the Optimize project. Its default location
is in the \VB\Samples\Pguide\Optimize directory.

2. Add a function declaration in a standard (.BAS)
module. Use the Windows API Viewer if you
like, or type in the following:

Declare Function GetTickCount Lib “kernel32”
➥() As Long

3. Add a new function in the global module:

Public Function ElapsedTime(ByVal timeStart
➥As Single, ByVal timeEnd As Single) As
String
ElapsedTime = Format$((timeEnd—timeStart) /
➥1000, “##.###”) & “ secs.”
End Function

4. In each of the forms used in the Real Speed tests,
change the calls to the Timer() function so that
they call GetTickCount() instead. One technique
to accomplish this might be to do an Edit/Search
across the entire project for the string “Timer” to
find all the calls to the Timer() function and
replace them with GetTickCount.

5. In each of the forms used in the Real Speed tests,
change the string assigned to the Label controls
used to display elapsed time so that they receive
their values from the new ElapsedTime() function.

6. Conduct your own tests of EXE files built to P-
Code, fast native code, small native code, and
unoptimized native code to see where the benefits
are most apparent.

20.2 Measuring the Benefits of Advanced
Optimizations

The tests discussed so far apply only to the basic opti-
mizations. Next you will create some tests to measure
the benefits of the advanced optimization features. The
instructions assume that you have already completed
the first exercise.

Estimated Time: 25 minutes

To create this exercise, follow these steps:

1. Again, you use the Optimize project. Its default
location is in the \VB\Samples\Pguide\Optimize
directory.

23 002-8 CH 20 3/1/99 8:43 AM Page 957

958 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

2. Create five native-code EXEs optimized for
speed. Use the Advanced Optimizations features
to create one executable for each of the five opti-
mization features. Each EXE should have just one
advanced feature activated. That is, one option
will use Assume No Aliasing, but no other
switches; one will use Remove Array Bounds
Checks, but no others; and so on. Choose a
meaningful name for each EXE to make it easier
to remember which optimization is used in each
of them.

3. Run the tests again. Compare your results to the
previous tests conducted with the fast native-code
EXE to see how much difference the advanced
optimizations make.

20.3 More Accurate Measurements

Although it is more accurate than Timer(), the
GetTickCount() function still isn’t a perfect measure of
optimizations. Like Timer(), it measures the total time
elapsed between a starting and ending time. Because
other processes run concurrently on a Windows com-
puter besides the one that you want to time, the time
between two measures of GetTickCount() includes time
used by processes irrelevant to your measurement.

The Win32 API also has a GetProcessTimes() function,
however, which measures the elapsed time within a sin-
gle process. Its declaration, and that of a user-defined
type that it requires, is as follows:

Type FILETIME
dwLowDateTime As Long
dwHighDateTime As Long

End Type

Declare Function GetProcessTimes Lib
➥“kernel32” (_

ByVal hProcess As Long, _
lpCreationTime As FILETIME, _
lpExitTime As FILETIME, _

lpKernelTime As FILETIME, _
lpUserTime As FILETIME) _
As Long

If you want to get an even more accurate view of the
relative merits of VB6’s compiler optimizations, replace
the measurements of elapsed time derived from
GetTickCount() with GetProcessTimes().

20.4 Compiler Constants

In this exercise, you create a program that uses a com-
piler constant to conditionally compile code to generate
different messages.

Estimated Time: 15 minutes

To create this exercise, follow these steps:

1. Create a new standard EXE project.

2. In the General Declarations section of a form,
write code to create a compiler constant. Call the
constant ZIPPY and assign it a value of 1.

3. Create a command button on the same form. In
the button’s Click event code, enter the following:

#If ZIPPY = 1 Then
MsgBox “Zippy = 1. What a surprise.”

#ElseIf ZIPPY = 2 Then
MsgBox “Zippy = 2. Alert the media.”

#Else
MsgBox “Zippy = a value wholly unlike 1 or

➥2. Yow!”
#End If

4. Compile and run the project.

5. Now open the Project Properties dialog box to
give ZIPPY a value of 2. Compile and run the pro-
ject again. Notice there’s no effect, because the
coded assignment of step 2 overrides anything
you type in the Project Properties window. You
must first disable the line you created in step 2 to
be able to control the value of ZIPPY from the
Project Properties dialog box.

23 002-8 CH 20 3/1/99 8:43 AM Page 958

Chapter 20 COMPILING A VB APPLICATION 959

A P P LY YO U R K N O W L E D G E

6. Finally, use the command line to set the value of
ZIPPY to 3. Compile and run the project again. If
you wish to attain a truly Zippy-like state of Zen
(and honorary lifetime status as a true Pinhead),
continue the tests, incrementing the value of
ZIPPY by 1 each time, to see whether you ever
produce a different result.

Review Questions
1. Which optimization options are available when

compiling a VB application to native code?

2. What are the differences among interpreted
code, machine code, and pseudocode?

3. The Compile On Demand feature performs
what function?

4. A compiler constant verDEBUG is defined in code
module MOD1.BAS and assigned a value of 1.
On the command line, verDEBUG is assigned a
value of 2. What value will be used when the
constant is encountered in MOD1.BAS?

5. Code that was created in version 4.0 of VB could
provide a single code base for two versions (16-
bit and 32-bit) of an application. What condi-
tional compilation directives were used to keep
the version-specific elements of the code sepa-
rated?

Exam Questions
1. Pseudocode is

A. A natural language description of the opera-
tions of a computer program.

B. A partial compilation of source code into
machine code.

C. A portable code format capable of running on
multiple platforms without modification.

D. A formal means of expressing an algorithm.

2. The total size of the files necessary to distribute
an application will be _____ when the program is
compiled to optimize for size than when com-
piled to optimize for speed.

A. Much smaller

B. Slightly smaller

C. Slightly larger

D. Much larger

3. Native code executes _____ than P-Code.

A. Much faster

B. A little faster

C. No more quickly

D. A little slower

4. A program that has been optimized to run on a
Pentium Pro rather than on a 386 or 486:

A. Will not load into memory.

B. Loads into memory but produces a GPF on
execution.

C. Runs more slowly.

D. Runs just as well.

5. The optional symbolic debug information that
can be created when compiling to native code

A. Significantly increases the size of the exe-
cutable file.

B. Slows down the execution of the executable
file.

23 002-8 CH 20 3/1/99 8:43 AM Page 959

960 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

C. Makes it possible to reverse a program’s execu-
tion during a trace.

D. Is useful only with an external debugger.

6. Compile On Demand makes it possible to

A. Distribute applications that build their EXE
on-the-fly when the user is ready to install a
program.

B. Create application components that are
responsible for compiling themselves.

C. Test portions of an application without fully
compiling the entire program first.

D. View the values of variables without explicitly
setting a Watch window.

7. A compiler constant gDEBUG is defined and
assigned a value of 1 in a global module. The fol-
lowing code is placed in the Load event of form
frmStartUp:

#If gDEBUG Then
MsgBox “Debugging”

#End If

If Compile On Demand is active, what happens
when frmStartUp loads?

A. The form’s Load event code generates a com-
piler error.

B. A message box displays with the message
“Debugging”.

C. The program enters Break mode.

D. The form loads normally, but no message box
displays.

8. A compiler constant verDEBUG has been defined
and assigned a value of 1. Several code blocks are
enclosed by #If verDEBUG / #End If pairs. The
program is compiled by typing:

vb.exe /make ProjectName.vbp /d verDEBUG=0

Which of the following is true:

A. The value of verDEBUG set in code takes prece-
dence.

B. The value of verDEBUG set on the command
line takes precedence.

C. A VB runtime error occurs due to an invalid
command line parameter.

D. The compiled program permits a user to spec-
ify the value of verDEBUG on the command line.

9. A compiler constant is defined #Const Bumble =
1 in the General Declarations section of a form.
The same form has a command button with a
compiler constant defined in its Click event code
as #Const Bumble = 0. The rest of the Click event
code looks like this:

#If Bumble Then
MsgBox “Lookie what Bumble can do!”

#End If

What happens when the project is run and the
command button is clicked?

A. The project will not run due to a compiler
error.

B. The form-level constant takes precedence over
the local constant, so the message box displays.

C. The form-level constant takes precedence over
the local constant, so nothing happens.

D. The local constant takes precedence over the
form-level constant, so nothing happens.

10. A compiler constant verDEBUG has been defined
and assigned a value of 1. Select the combination
of commands to begin and end each code block
that will cause the compiler to ignore a code block
when building a verDEBUG version of a program:

A. #Ifdef verDEBUG
#Endif

23 002-8 CH 20 3/1/99 8:43 AM Page 960

Chapter 20 COMPILING A VB APPLICATION 961

A P P LY YO U R K N O W L E D G E

B. #If verDEBUG = TRUE Then
#Endif

C. #If verDEBUG = TRUE
#End If

D. #If verDEBUG Then
#End If

11. Projects using conditional compilation require
extra lines of code for the preprocessor directives
and for the alternative versions of the project.
Consequently, the size of the executable program
is _____ than if separate versions of the project
were maintained with no use of the preprocessor.

A. Larger (by the size required by the extra lines
of code only)

B. Larger (by the size required by the preproces-
sor code only)

C. Larger (by the size required by both the extra
lines of code and the preprocessor code)

D. No larger

Answers to Review Questions
1. Basic optimization choices include optimizing

for fast code, optimizing for small code, and no
optimization. You also may choose to favor the
Pentium Pro. Advanced optimization choices are:
assume no aliasing, remove array bounds checks,
remove integer overflow checks, remove floating-
point error checks, allow unrounded floating-
point operations, and removing Pentium FDIV
checks. See the individual sections for each of
these under “Basic Optimizations” and
“Advanced Optimizations.”

2. When a program is interpreted, each line of
source code is converted into machine instruc-
tions whenever it is encountered at runtime.
When a program has been compiled to machine
code, this conversion has already been done, so
the program executes more quickly. Pseudocode
stands midway between interpreted code and
machine code. Your source code isn’t compiled
directly to machine code, but instead is turned
into a series of tokens that represent particular
operations. These tokens are passed to the run-
time files, which contain the actual executable
code. See “P-Code Versus Native Code.”

3. Instead of fully compiling your application prior
to testing it, Compile On Demand compiles code
on an as-needed basis during testing. See “Using
Compile On Demand.”

4. The value of verDEBUG will be 1. The value assigned
in the module overrides the assignment on the
command line. See “Scope and Persistence.”

5. The 32-bit-specific code could begin with #If
WIN32 followed by an #Else, and then the 16-bit
code. The block ends with #End If. See
“Predefined Compiler Constants.”

Answers to Exam Questions
1. B. Microsoft’s implementation of pseudocode in

VB partially compiles your program code, which
still must be interpreted by a runtime DLL as it
executes. For more information, see the section
titled “P-Code.”

2. B. The total size is only slightly smaller because
the executable file is a relatively small portion of
the files necessary to distribute an application.

23 002-8 CH 20 3/1/99 8:43 AM Page 961

962 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

The runtime files and custom control files con-
sume a proportionately greater amount of space.
For more information, see the section titled
“Compiling to P-Code.”

3. A. Native code is generally much faster than P-
Code. For more information, see the section
titled “P-Code.”

4. C. The program will run, but not as quickly. For
more information, see the section titled “Favoring
Pentium Pro.”

5. D. You need an external debugger to use the sym-
bolic debug information. For more information,
see the section titled “Creating Symbolic Debug
Info.”

6. C. Using Compile On Demand, an application
need not be fully compiled to test it. For more
information, see the section titled “Using
Compile On Demand.”

7. D. With Compile On Demand activated, the
global module in which gDEBUG is defined will not
have been compiled. For more information, see
the sections titled “Using Debug Mode” and
“Using Compile On Demand.”

8. A. The value set in code overrides the value on
the command line. For more information, see the
sections titled “Declaring in the Command Line”
and “Scope and Persistence.”

9. A. A constant can only be defined to have a sin-
gle value, so the second attempt to define the
constant with a new value generates a duplicate
definition error. For more information, see the
section titled “Declaring in Code.”

10. B. Somewhat of a trick question (because we
want code that will compile and ignore a code
block). The first choice uses the wrong syntax.
(“#Ifdef” isn’t part of VB.) The second choice
fails because TRUE is defined as –1. It is therefore
the correct answer, because we want the compari-
son to fail. The third choice omits “Then”. Choice
D is syntactically correct and will run the code
block—which we don’t want to happen. For
more information, see the section titled “Using
Debug Mode.”

11. D. The extra lines aren’t compiled, so they make
no difference to the size of an EXE file. For more
information, see the section titled “Preprocessor
Directives.”

23 002-8 CH 20 3/1/99 8:43 AM Page 962

OBJECT IVES

21C H A P T E R

Using the Package and
Deployment Wizard to

Create a Setup Program

This chapter helps you prepare for the exam by cover-
ing the following objective and its subobjectives:

Use the Package and Deployment Wizard to
create a setup program that installs a distrib-
uted/desktop application, registers the COM
components, and allows for uninstall
(70-175 and 70-176).

. Package and Deployment Wizard is a utility that
comes with VB6 and that enables you to create
Windows-standard install and uninstall routines
for distribution to end users.

Register a component that implements DCOM
(70-175).

. You can take just a couple of extra steps to make
sure that your application’s setup package imple-
ments DCOM (Distributed COM) on both the
client and server side.

Configure DCOM on a client computer and on
a server computer (70-175).

. Package and Deployment Wizard takes care of dis-
tributing the necessary files for DCOM on both
client and server machines.

Plan and implement floppy disk–based deploy-
ment or compact disc–based deployment for a
distributed/desktop application (70-175 and
70-176).

. After you have created a setup package, you can then
deploy your application by moving its setup package
to the site from where end users will actually install
it. This deployment site might be floppy disks. You
can use Package and Deployment Wizard to auto-
mate the deployment of your application.

24 002-8 CH 21 3/1/99 8:44 AM Page 963

OBJECT IVES OUTL INE

Plan and implement Web-based deployment for
a distributed/desktop application (70-175 and
70-176).

. You can use Package and Deployment Wizard to
deploy your installation package via an Internet- or
intranet-based download.

Plan and implement network-based deployment
for a distributed/desktop application (70-175
and 70-176).

. You can use Package and Deployment Wizard to
deploy your installation package via a network
directory available to all potential users.

Deploy application updates for distributed
applications (70-175 and 70-176).

. After you have deployed an application, you may
not want to re-create the entire installation and
deployment every time you have a minor change.
By knowing some facts about the end products of
Package and Deployment Wizard’s activities, you
can manually re-create the necessary components for
minor changes in the deployment of an application.

Using Package and Deployment Wizard
to Create a Setup Program 966

Preparing to Run Package and Deployment
Wizard 967

Starting Package and Deployment Wizard
and Choosing the Type of Package 968

Choosing the Type of Setup Package 969

Creating a Standard Setup Package 970

Creating an Internet Setup Package 975

Creating a Dependency File 977

Standard Files Used in a Microsoft Setup 978

Setup File Information in SETUP.LST 979

Dependency Information in DEP Files 981

SETUP.EXE and Package and Deployment
Wizard’s Custom Setup 983

Customizing a Standard Setup 984

Customizing SETUP.LST and Your
Application’s DEP File 984

Customizing the Standard VB Setup Project 985

Implementing Application Removal 985

Registering a Component That Implements
DCOM and Configuring DCOM 986

Deploying Your Application 987

Deploying to Floppy Disks 988

Deploying to a Network Directory or to CDs 990

Deploying to the Web 992

Deploying Updates to Your Application 994

Chapter Summary 995

24 002-8 CH 21 3/1/99 8:45 AM Page 964

STUDY STRATEGIES

. Create test projects for both standard EXEs
and COM components. They need not have
code for purposes of experimenting with
Package and Deployment Wizard. Run Package
and Deployment Wizard against these projects
to create standard and Internet setup packages
as well as a dependency file. See the sections
in this chapter about their creation as well as
Exercises 21.1 and 21.2.

. Understand the relationship between the vari-
ous files and file types included in standard and
Internet setup packages. This would include the
SETUP.EXE file, the SETUP.LST file, and
SETUP1.EXE (see “Standard Files Used in a
Microsoft Setup”), as well as the file types with
the following extensions: .CAB and .DDF (see
“Creating a Standard Setup Package”), .INF
(see “Creating an Internet Package Setup”),
.DEP (see “Creating a Dependency File” and
“Dependency Information in .DEP Files”), and
.VBR (see “Registering a Component That
Implements DCOM and Configuring DCOM”).
See discussions of these file types throughout
this chapter.

. Briefly view the source code for VB’s customiz-
able Setup project. See the section
“Customizing the Standard VB Setup Project.”

. Briefly view the contents of a SETUP1.LST file
as created by Package and Deployment Wizard.
See the discussion in “Setup File Information in
SETUP.LST” and “Customizing SETUP.LST and
your Application’s DEP File.”

. Briefly view the contents of an HTML file that
Package and Deployment Wizard creates for an
Internet package.

. Practice compiling applications and components
that will implement DCOM, as discussed in
“Registering a Component That Implements
DCOM and Configuring DCOM.” See also
Exercise 21.3.

. Experiment with Package and Deployment
Wizard to deploy a setup package that you
have created. Try out Internet, floppy disk, and
directory deployment, as discussed in the sec-
tions under “Deploying your Application.” See
also Exercises 21.4, 21.5, and 21.6.

24 002-8 CH 21 3/1/99 8:45 AM Page 965

966 Par t I VISUAL BASIC 6 EXAM CONCEPTS

INTRODUCTION

A setup package is a group of files that can be used to distribute an
application to users or to install component applications on servers.
Package and Deployment Wizard is a VB add-in utility that enables
you to prepare such packages for your VB applications. Package
and Deployment wizard enables you to create either a traditional
Windows setup package (where the user runs SETUP.EXE) or an
Internet setup package (your component application is installed
from a Web page).

The packages created by Package and Deployment Wizard also typi-
cally take care of installing and registering any support files needed
by your application, such as COM components and other elements.

These packages also typically install the necessary utilities and infor-
mation on target computers so that users can use the Windows
Add/Remove utility to cleanly and securely remove your application.

This chapter discusses how you can use Package and Deployment
Wizard to create standard setup packages for your applications and
then deploy those setup packages.

USING PACKAGE AND DEPLOYMENT
WIZARD TO CREATE A SETUP
PROGRAM

. Use the Package and Deployment Wizard to create a setup pro-
gram that installs a distributed/desktop application,
registers the COM components, and allows for uninstall.

The Package and Deployment Wizard in Visual Basic 6 is a com-
plete remake of the Setup wizard of previous versions. As its name
implies, the wizard has two functions:

á Packaging applications into—well, what else—packages. A
package is a set of files necessary to implement an application,
including supporting DLLs, VB runtime libraries, data-access
drivers, and other files.

á Deploying packaged applications—that is, making the pack-
ages available for use from a given environment, such as
a network or the Internet.

24 002-8 CH 21 3/1/99 8:45 AM Page 966

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 967

Package and Deployment Wizard runs as an add-in to VB6. When
you install VB6, Package and Deployment Wizard should install
along with it. You can verify that Package and Deployment Wizard
is available in your environment by checking for it in the Add-Ins
menu, as shown in Figure 21.1.

You run Package and Deployment Wizard after you have finished
your application and are ready to create a distribution vehicle for the
application. Such a distribution vehicle might be either distribution
disks or a special directory on a network. The distribution vehicle
would contain compressed versions of all files necessary to install
and run the application.

If your distribution is for a COM component that you have created,
you can also choose to create an Internet download setup for your
component.

Preparing to Run Package and
Deployment Wizard
Before you run Package and Deployment Wizard, you should per-
form the following steps:

F IGURE 21 .1
Package and Deployment Wizard as an option
in the Add-Ins menu.

24 002-8 CH 21 3/1/99 8:45 AM Page 967

968 Par t I VISUAL BASIC 6 EXAM CONCEPTS

á Use the Project, References option on the VB menu to remove
any unneeded references to data-access libraries (such as ADO
or DAO) or class libraries.

á Remove any unneeded references to ActiveX controls either by:

• Removing the individual references to unused controls
with the Project, Components option on the VB menu.

or

• Making sure that the option Remove information about
unused ActiveX controls is checked on the Make tab of the
Project, Properties dialog box. If your application adds
controls with the Controls.Add method, you must make
sure that this option does not remove references to these
controls.

á Save your application’s project and compile it. (This is not
strictly necessary because Package and Deployment Wizard will
perform this step for you if you forget to do it.)

The following sections give you a tour of the screens that appear
during a typical session with Package and Deployment Wizard.

Starting Package and Deployment
Wizard and Choosing the Type of
Package
You start Package and Deployment Wizard by choosing it from the
Add-Ins menu, as shown earlier in Figure 21.1.

Package and Deployment Wizard’s first screen (shown in Figure
21.2) enables you to choose what you wish to do.

á Package. This option is the main focus of this chapter. It
enables you to create a setup package—that is, a compressed
set of files and other necessary information for your applica-
tion to run in a desktop or network environment. A setup
package also includes all the auxiliary executable and informa-
tion files needed to “unpack” the package and install it
correctly on another system.F IGU R E 21 .2

The first screen of the Package and Deployment
Wizard.

24 002-8 CH 21 3/1/99 8:45 AM Page 968

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 969

á Deploy. This option helps you ready an already created
package for distribution. See the discussion of deployment
later in this chapter under the section titled “Deploying Your
Application.”

á Manage Scripts. This option enables you to save, rename, or
delete Package and Deployment scripts. These scripts are just
records of the options that you choose when using the Package
and Deployment Wizard to create a package. Package and
Deployment Wizard will manage a file with extension .PDM
containing various scripts for your project in the folder where
the project’s VBP file resides. By saving those options in a
Package and Deployment script, you can use them over again
in the future to set up the same project or others like it.

To continue with packaging, you would choose the first option:
Package.

Choosing the Type of Setup Package
After you have chosen Package on Package and Deployment
Wizard’s opening screen, you will see the Package Type screen, as
shown in Figure 21.3.

The Package Type screen offers you two or three choices, depending
on the type of project that you are packaging:

á Standard Setup Package. This option creates CAB files
(cabinet files, the standard archive file type that Microsoft uses
for distribution) and all the other files necessary to install your
application with a standard Windows setup (running
SETUP.EXE).

á Internet Package. This option creates CAB files and other
files necessary to install your package as a download over the
Internet or intranet (not available for standard EXE projects).

á Dependency File. This option creates a single DEP file that
can be used to show your project’s dependencies, or the other
files that your project needs to run correctly on a computer.
For a fuller discussion of the contents and purpose of depen-
dency files, see the section titled “Dependency Information in
DEP Files.”

F IGURE 21 .3
The Package Type screen of the Package and
Deployment Wizard.

N
O

T
E Prompts to Save and Compile At

this point, Package and Deployment
Wizard will sense whether your project
has been saved and compiled and will
prompt you if you have not saved or
compiled. If you receive prompts ask-
ing you to save and compile, you may
just answer “yes” to the prompts, wait
a few instants, and then proceed.

24 002-8 CH 21 3/1/99 8:45 AM Page 969

970 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The following sections discuss how to use Package and Deployment
Wizard to create these three types of setup package.

Creating a Standard Setup Package
As explained in “Choosing the Type of Setup Package”, a standard
setup package provides a setup to the user that enables the user to
run a standard Windows SETUP.EXE to install your application.

You begin to create a standard setup package by running the Package
and Deployment Wizard. You must choose the Package option on
the first screen, and then choose Standard Setup from the second
screen (as mentioned in the sections titled “Starting Package and
Deployment Wizard and Choosing the Type of Package” and
“Choosing the Type of Setup Package”).

The following pages describe the additional steps that you must take
to create your Standard setup package.

After you have selected Standard Setup as the type of package, you will
see the Package Folder screen, as shown in Figure 21.4. You can use this
screen to choose or create a folder where Package and Deployment
Wizard will create your package. The default folder is the folder where
the Project’s VBP file resides. It is usually best to create a separate folder
so as not to mingle development file with distribution package files.

After you have indicated a folder, you can click the Next button to
proceed to the Included Files dialog box, shown in Figure 21.5.
Package and Deployment Wizard displays all the files that it could
determine were needed in the distribution package. You can use this
screen to exclude files from the distribution package: Just uncheck
the box next to the filename.

F IGU R E 21 .4 ▲

The Package and Deployment Wizard’s Package
Folder dialog box.

F IGU R E 21 .5.
The Package and Deployment Wizard’s Included
Files dialog box.

24 002-8 CH 21 3/1/99 8:45 AM Page 970

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 971

If you need to include a file that Package and Deployment Wizard
didn’t automatically detect, you can click the Add button on the
Included Files screen and select the necessary file with the resulting
standard File Open dialog box.

After you have selected a file to include in the package, you may see
the Missing Dependency Information dialog box shown in Figure
21.6. This screen warns you that Package and Deployment Wizard
could not find a dependency (DEP) file for the included file. (See
the section titled “Dependency Information in DEP Files” for a fur-
ther explanation of dependency files.)

If you check the filename on this screen, Package and Deployment
Wizard will not bother you again for this file’s dependencies. If you
leave the filename unchecked, you should create a dependency file
for this file and include the dependency file in the distribution pack-
age for this project. (See the section titled “Creating a Dependency
File” for instructions on dependency file creation.)

After you have finished including file information, you can click the
Next button to proceed to the Cab Options dialog box, shown in
Figure 21.7.

The Cab Options screen enables you to control the number and size
of CAB files that Package and Deployment Wizard will make for
your application’s distribution package.

Cabinet (CAB) files are now the standard format that Microsoft
distribution packages use to compress information.

You can use the dialog box to decide whether to include all the pack-
age’s files in a single CAB file or whether to break the information
into multiple CAB files. If you decide to use multiple CAB files, you
can determine the size of the individual files with the Cab Size drop-
down list, as shown in Figure 21.7.

This screen is significant because it enables you to adjust the maxi-
mum size of your package’s distribution files in accordance with the
type of media that you will use to distribute the application.

Typically, you will choose the Single Cab option whenever you can
make the package available to users from a medium that supports
very large amounts of storage, such as a network installation or a CD.

F IGURE 21 .6 ▲

Package and Deployment Wizard’s Missing
Dependency Information dialog box.

F IGURE 21 .7 ▲

Package and Deployment Wizard’s Cab Options
dialog box.

24 002-8 CH 21 3/1/99 8:45 AM Page 971

972 Par t I VISUAL BASIC 6 EXAM CONCEPTS

If you need to distribute your application to users on media with size
restrictions, such as disks, you will choose the Multiple Cabs option
and adjust the CAB size appropriately.

After Package and Deployment Wizard has finished and has created
your CAB files, you can then deploy them (along with the files
SETUP.EXE and SETUP.LST) to the distribution site. If you chose
to create multiple CAB files, you can deploy them on disks of the
appropriate size. See the following chapter for more information on
application deployment.

After you click the Next button to move beyond the Cab Options
dialog box, you will see the Installation Title dialog box, shown in
Figure 21.8. You can modify the single field on this screen to adjust
the title that users will see on the setup screen when they run the
setup for your application.

The next screen after the Installation Title dialog box is the Start
Menu Items dialog box, shown in Figure 21.9. This screen enables you
to specify whether your application will appear under the Programs
section of the Windows Start menu. You can also, of course, deter-
mine the exact wording that will appear on the menu item.

N
O

T
E Cab Files Replace Compressed

Individual Files In previous versions
of VB and Visual Studio, standard dis-
tribution packages included a sepa-
rate compressed copy of each file to
be distributed (the last letter of the
file’s extension was an underscore—
for example, EX_, DL_). This format
has now been replaced with the CAB
file format, which compresses multi-
ple files into a single CAB file.

F IGU R E 21 .8 ▲

Package and Deployment Wizard’s Installation
Title dialog box.

F IGU R E 21 .9.
Package and Deployment Wizard’s Start Menu
Items dialog box.

If your application is a standalone executable, Package and
Deployment Wizard will automatically supply an entry on the Start
menu items tree. You can remove the item altogether with the
Remove button, add a new item or program group with the New
Group or New Item buttons, or modify the properties of the current
item with the Properties button, as shown in Figure 21.10.

24 002-8 CH 21 3/1/99 8:45 AM Page 972

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 973

Note that Start’s drop-down list contains macros for typical paths on
a machine with a Windows install. Because the exact paths and drive
letters for these paths can vary from one machine to the next, these
macros provide generic tokens that the setup routine will resolve into
the correct paths on each user’s system.

The next screen after the Start Menu Items dialog box asks you for
the Install Locations of the compiled components of your applica-
tion, typically just one file (see Figure 21.11).

F IGURE 21 .1 0 ▲

Specifying the properties for your application’s
Start menu icon.

, F IGURE 2 1 .11
The Package and Deployment Wizard’s Install
Locations dialog box.

Once again, the Install Location drop-down list for the file offers a
choice of path macros as in the Start menu Properties dialog box just
mentioned.

The next screen after the Install Locations screen is the Shared Files
dialog box, shown in Figure 21.12. As does the previous screen, this
screen also lists the compiled components of your application.

The purpose of the Install Locations screen is to specify that your
component can be shared with other applications on the system. If
you mark the application as a Shared file, the system will maintain a
reference count on the file. This means that when other applications
that use the file are added to the system, the reference count will
increase; it also means that when applications that use the file are
removed, the reference count will decrease. The file will only be
removed from the system if the reference count decreases to zero. F IGURE 2 1 .12 ▲

Package and Deployment Wizard’s Shared Files
dialog box.

24 002-8 CH 21 3/1/99 8:45 AM Page 973

974 Par t I VISUAL BASIC 6 EXAM CONCEPTS

After you exit the Finished screen, you will receive a notification screen,
the Packaging Report screen (not shown here). This screen informs you
of the location of the newly created package. It also informs you of the
existence of a batch file (of the form PROJECTNAME.BAT) that you
can use to re-create the project’s CAB file or files if you need to change
files that make up the package and redeploy it.

If you examine the directory where you had Package and
Deployment Wizard create the package, you will note that there are
one or more CAB files as well as SETUP.EXE and SETUP.LST.
These are the files that must be distributed to users who need to
install the application.

Underneath the directory where your package resides, you will find
another directory, named Support. The Support folder contains the
files necessary to rebuild the package, including the following:

á The files that are distributed in the CAB file (including
SETUP1.EXE, SETUP.EXE, SETUP.LST, and the VB
Application Removal utility, ST6UNST.EXE).

á A batch (BAT) file with the same name as the application. You
can use this batch file to run the MakeCab utility to re-create
the project’s CAB files. This file might come in handy if you
update one of the distribution files (say, your project’s EXE
file) and need to re-create the deployment package quickly.
You could just copy the new version of the updated file into
the Support directory, and then run the batch file and thus
update the CAB files.

F IGU R E 21 .13
Package and Deployment Wizard’s Finished
screen.

The next screen is the Finished screen, shown in Figure 21.13.
When you click the Finish button, the Package and Deployment
Wizard builds your package and its support files.

24 002-8 CH 21 3/1/99 8:45 AM Page 974

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 975

á A DDF file with the same name as the application. The DDF
file is a text file read by the MakeCab utility to determine how
to build the CAB files and also to determine which source files
to use.

Creating an Internet Setup Package
As explained in “Choosing the Type of Setup Package,” an Internet
setup package provides a setup to the user that installs your package
as a download over the Internet or intranet.

Internet setup packages are not available for standard EXE applications.

You create an Internet setup package by running the Package and
Deployment Wizard, choosing the Package option on the first
screen, and choosing Internet Setup from the second screen, as men-
tioned in “Starting Package and Deployment Wizard and Choosing
the type of Package” and “Choosing the Type of Setup Package.”

The following pages describe the additional steps that you must take
to create your Internet setup package.

The Package and Deployment Wizard screens for an Internet setup
package are comparable to the Package and Deployment Wizard
screens for a standard setup package. The following is a brief descrip-
tion of the steps for creating an Internet setup package:

á The Package Folder dialog box is the same as the Package
Folder dialog box for a standard setup (see preceding section).

á The Included Files dialog box is the same as the Included
Files dialog box for a Standard setup (see preceding section),
although typically you will see fewer files listed.

á The File Source dialog box, shown in Figure 21.14, is unique to
the Internet setup. This dialog box enables you to specify where
users will get the files for this setup when their browsers attempt
to install the application. For the component files that you cre-
ate, you may specify the current CAB file being created as the
source, or you may specify an alternative URL as the source.

24 002-8 CH 21 3/1/99 8:45 AM Page 975

976 Par t I VISUAL BASIC 6 EXAM CONCEPTS

For the VB6 runtime files, you may also specify the Microsoft
Web site as the source for the files (as illustrated in the figure).
Specifying the Microsoft Web site option guarantees that users
installing your application will always get the latest version of
the VB6 runtime.

á The Safety Settings dialog box, shown in Figure 21.15, is also
unique to an Internet Package setup. The meaning of the two
options, Safe for Scripting and Safe for Initialization, is as fol-
lows:

• Safe For Scripting means that the component can’t be used
to corrupt the user’s computer or get unauthorized infor-
mation from the user’s computer.

• Safe for Initialization means that the component cannot be
used to do harm on a user’s computer when it is initialized.

F IGURE 21 .14▲
The Package and Deployment Wizard’s File
Source dialog box (Internet package setup only).

F IGU R E 21 .15.
The Package and Deployment Wizard’s Safety
Settings dialog box (Internet package setup
only).

These screens provide a Package and Deployment Wizard (Internet
package setup only).

When the Internet package setup completes, you will find a CAB
file (containing the files to be distributed) and an HTML file in the
designated package directory. This HTML file contains the informa-
tion that you would need to embed in a Web page so that browsers
will download your application. Listing 21.1 shows an example of
the contents of such an HTML file.

24 002-8 CH 21 3/1/99 8:45 AM Page 976

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 977

LISTING 21.1

HTML CODE NECESSARY TO IMPLEMENT AN INTERNET

DOWNLOAD FOR YOUR APPL ICAT ION’S PACKAGE

<HTML>
<HEAD>
<TITLE>Project1.CAB</TITLE>
</HEAD>
<BODY>
<OBJECT ID=”Class1”
CLASSID=”CLSID:F4B1B409-7C2F-11D2-9C45-00A024C3B222”
CODEBASE=”Project1.CAB#version=1,0,0,0”>
</OBJECT>
</BODY>
</HTML>

When users navigate to a Web site containing this code, their
browsers will begin a background download of your application.

If you look in the Support folder created under the package direc-
tory, you will see the following:

á The application’s file or files (EXEs, DLLs, or OCX files, for
example).

á An INF file. This file is only created for Internet download
packages and becomes part of the CAB file. It is a text file that
contains dependency information needed by the end user’s
browser. Based on the information in the INF file, the browser
will download and install other files that your application
needs to run.

á The batch (BAT) file needed to run the MakeCab utility and
re-create the CAB file.

á The DDF file that the MakeCab utility needs to read to find
instructions on how to create the CAB file.

Creating a Dependency File
As explained earlier, a dependency file shows your project’s depen-
dencies or the other files that your project needs to run correctly on
a computer. For a fuller discussion of the contents and purpose of
dependency files, see the section in this chapter titled “Dependency
Information in DEP Files.”

24 002-8 CH 21 3/1/99 8:45 AM Page 977

978 Par t I VISUAL BASIC 6 EXAM CONCEPTS

You create a dependency file by running the Package and Deployment
Wizard, choosing the Package option on the first screen, and choosing
Dependency File from the second screen.

The following pages describe the additional steps that you must take
to create your dependency file.

The Package and Deployment Wizard screens for creating a depen-
dency file are comparable to the Package and Deployment Wizard
screens for a standard setup package. Following is a brief description
of the steps for creating a dependency file:

á The Package Folder screen is the same as the standard setup
package’s Package Folder screen.

á The Included Files screen is the same as the standard setup
package’s Included Files screen.

á The Cab Information Screen dialog box is unique to a Package
and Deployment Wizard dependency file setup (see Figure
21.16).

á The Install Locations screen is the same as the standard setup
package’s Install Locations screen.

After Package and Deployment Wizard has finished creating the
dependency file, the DEP file will appear in the directory you speci-
fied (preferably, the same directory where you store the application’s
executable).

STANDARD FILES USED IN A
MICROSOFT SETUP

A standard Microsoft setup routine requires the user to invoke
SETUP.EXE.

SETUP.EXE is not the customized setup routine that Package and
Deployment Wizard created, however. The customized setup exe-
cutable is normally named SETUP1.EXE, although this is not a
required name. SETUP.EXE runs this customized setup routine.

SETUP.EXE uses a special text file named SETUP.LST to
determine the name of the customized setup routine and the names
of files needed by the setup routine to run on the user’s system.

F IGU R E 21 .16
The Package and Deployment Wizard’s Cab
Information Screen dialog box (dependency file
setup only).

24 002-8 CH 21 3/1/99 8:45 AM Page 978

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 979

SETUP.LST also contains the names of other files that
SETUP1.EXE needs to install on the user’s system. Package and
Deployment Wizard also writes to SETUP.LST.

The following sections explain the relationship between
SETUP.EXE—the custom setup routine (usually named
SETUP1.EXE), SETUP.LST, and other files.

Setup File Information in SETUP.LST
As just mentioned, Package and Deployment Wizard creates a spe-
cial text file named SETUP.LST for each application that you set up.
SETUP.LST looks a lot like an INI file (see the example in Listing
21.2). It has named sections with headers surrounded by brackets.
Each section, in turn, contains entries of the form:

ItemName=value

The entries under the [Bootstrap Files] and [Setup1] sections are
the names of files to be copied to the user’s system. Each file entry
contains a long comma-delimited list detailing the file’s compressed
and uncompressed names as well as installation instructions and ver-
sion information.

SETUP.LST’s [BootStrap] and [Bootstrap Files] sections contain
information about actions that SETUP.EXE must perform on the
user’s system before the main setup routine can run.

If the main setup routine is a VB program (as it always is if you have
created it with Package and Deployment Wizard), for instance, users
may not have the necessary files installed on their workstations to
run a VB application of the appropriate version. SETUP.EXE must
copy and register the VB runtime libraries on the user’s system
before the main setup routine (written in VB) can run.

The Spawn entry under the [Bootstrap] section gives the name
of the main Setup routine. By default, it is SETUP1.EXE. The
[Bootstrap] section also gives other information about the setup
environment in general, including the initial dialog box title and
prompt as well as CAB file and uninstall information.

The [Bootstrap Files] section lists the files that SETUP.EXE must
copy to and register on the end user’s system before the main setup
routine can run.

24 002-8 CH 21 3/1/99 8:45 AM Page 979

980 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A couple of other groups may exist ([Icon Groups] and a section
named with your application’s title) if you chose to create an entry or
a group for your application on the Windows Start Menu/Programs
menu.

The [Setup] section contains general information needed during the
setup process, such as screen captions and install directories.

The [Setup1] section lists other files that the main setup routine
must copy to and register on the user’s system.

LISTING 21.2

CONTENTS OF A TYPICAL SETUP.LST FILE

[Bootstrap]
SetupTitle=Install
SetupText=Copying Files, please stand by.
CabFile=Project2.CAB
Spawn=Setup1.exe
Uninstal=st6unst.exe
TmpDir=msftqws.Package and Deployment Wizard
Cabs=1

[Bootstrap Files]
File1=@VB6STKIT.DLL,$(WinSysPathSysFile),,,5/20/98 11:00:00
➥PM,102400,6.0.81.41
File2=@COMCAT.DLL,$(WinSysPathSysFile),$(DLLSelfRegister),,
➥11/18/97 12:00:00 AM,22288,4.71.1441.1
File3=@STDOLE2.TLB,$(WinSysPathSysFile),,,5/21/98 12:00:00
➥AM,17920,2.30.4260.1
File4=@ASYCFILT.DLL,$(WinSysPathSysFile),,,5/21/98 12:00:00
➥AM,147728,2.30.4260.1
File5=@OLEPRO32.DLL,$(WinSysPathSysFile),$(DLLSelfRegister),,
➥5/21/98 12:00:00 AM,164112,5.0.4260.1
File6=@OLEAUT32.DLL,$(WinSysPathSysFile),$(DLLSelfRegister),,
➥5/21/98 12:00:00 AM,598288,2.30.4260.1
File7=@MSVBVM60.DLL,$(WinSysPathSysFile),$(DLLSelfRegister),,
➥5/21/98 12:00:00 AM,1417216,6.0.81.41

[IconGroups]
Group0=My Standalone
PrivateGroup0=True
Parent0=$(Programs)

[My Standalone]
Icon1=Project2.exe
Title1=My Standalone
StartIn1=$(AppPath)

[Setup]
Title=My Standalone

24 002-8 CH 21 3/1/99 8:45 AM Page 980

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 981

DefaultDir=$(ProgramFiles)\Project1
AppExe=Project2.exe
AppToUninstall=Project2.exe

[Setup1 Files]
File1=@Project2.exe,$(AppPath),,,11/14/98 10:42:55
➥PM,16384,1.0.0.0

; The following lines may be deleted in order to obtain extra
; space for customizing this file on a full installation
➥diskette.
;
; XX
; XX
; XX
; XX
; XX

The developer may customize the setup process by changing the
information in this file with a text editor.

Dependency Information in DEP Files
When Package and Deployment Wizard includes a file in your pro-
ject’s setup, that file might also require the presence of other, support-
ing files on the user’s system to run properly.

Certain Windows common controls (listed in the Project,
Components dialog box as Microsoft Windows Common Controls-3)
that are implemented in the file COMCT332.OCX, also require
other files to run properly.

Package and Deployment Wizard can include these additional files
in the setup if each component that it needs to distribute has an
accompanying dependency (.DEP extension) file.

A dependency file is a text file with the same name (but a different
extension, of course) as the file whose dependencies it describes. The
contents of a dependency file look like an INI file: section headers
set off by square brackets ([])and individual key entries of the for-
mat Keyname=value.

The dependency file for the Windows common controls that are
implemented in COMCT332.OCX is named COMCT332.DEP,
for example. Listing 21.3 shows some of the opening and closing
lines from that file.

24 002-8 CH 21 3/1/99 8:45 AM Page 981

982 Par t I VISUAL BASIC 6 EXAM CONCEPTS

LISTING 21.3

PART OF A TYPICAL DEPENDENCY FILE

[Version]
Version=6.0.0.8096

[msvbvm60.dll]
Register=$(DLLSelfRegister)
Dest=$(WinSysPathSysFile)
Version=6.0.80.91
CABFilename=MSVBVM60.cab
CABDefaultURL=http://activex.microsoft.com/controls/vb6
CABINFFile=MSVBVM60.inf
Uses1=

[STDOLE2.TLB]
Register=$(TLBRegister)
Dest=$(WinSysPathSysFile)
Version=2.30.4256.1
CABFilename=
CABDefaultURL=
CABINFFile=
CABRunFile=
Uses1=OleAut32.dll
Uses2=OlePro32.dll
Uses3=AsycFilt.dll
Uses4=

;...other information omitted for clarity

; Localized Dependencies -------------------------------------

; ** German (DE) ***
; (0007 = German)
;
[COMCT332.OCX <0007>]
Uses1=CmCt3DE.dll
Uses2=

;...other localized dependencies follow (French, Japanese, etc.)

If a component of your setup has an accompanying DEP file,
Package and Deployment Wizard can include the other files that the
component needs in the final setup.

If Package and Deployment Wizard can’t find a component’s DEP
file, it will warn you. You can still continue to create the setup, but
the distributed version of your application might not run on a user’s
system if the component requires other files (such as DLLs) to run,
and if these files are missing from the user’s system.

N
O

T
E Modifying VB6DEP.INI If you have

additional files that you want to dis-
tribute to your users with every VB-
based product that you install, you
can add the information about these
files to the VB6DEP.INI file on your
development machine.

To enable bidirectional text display
features for VB applications running
under versions of Windows that sup-
port this feature (such as Arabic
Windows), for instance, you can add
an entry for VBAME.DLL to
VB6DEP.INI.

24 002-8 CH 21 3/1/99 8:45 AM Page 982

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 983

Package and Deployment Wizard also reads the dependency file
named VB6DEP.INI to be sure that it is distributing all the files
needed by the VB6 runtime environment.

Microsoft recommends that you always generate a dependency file
for an application that you are distributing, especially if the applica-
tion is a COM component: If future applications use your compo-
nent, you will need to supply dependency information for your
component for those applications’ setups to function correctly.

Your application’s DEP file will normally be a compendium of all
the DEP files that Package and Deployment Wizard found for your
application’s various components, as well as the contents of the
VB6DEP.INI file.

SETUP.EXE and Package and
Deployment Wizard’s Custom Setup
Microsoft’s SETUP.EXE utility is the file that the end user will
run to install your application. SETUP.EXE itself contains no
customized information about a specific application, however.
Rather, its job is to prepare the environment for the main setup rou-
tine and start the main setup routine running.

SETUP.EXE’S main tasks are as follows:

1. Read the text file SETUP.LST (see previous information).

2. Copy all the files in SETUP.LST’s BootStrap Files section to
the user’s system.

3. Run the file for the main setup routine indicated in
SETUP.LST’s Bootstrap section.

At this point, the main setup routine (whose default name is
SETUP1.EXE) takes over and finishes the installation of your appli-
cation, copying the other files listed in SETUP.LST and performing
any customized tasks.

N
O

T
E VB Dependency Filename in Other

Versions of VB Previous versions of
VB also provide dependency informa-
tion for Package and Deployment
Wizard, but the name of the depen-
dency file for these earlier versions
varies. The VB5 dependency file has a
similar name to the VB6 filename,
and the dependency filename for ear-
lier versions of VB is SWDEPEND.INI.

24 002-8 CH 21 3/1/99 8:45 AM Page 983

984 Par t I VISUAL BASIC 6 EXAM CONCEPTS

CUSTOMIZING A STANDARD SETUP

Package and Deployment Wizard’s automated process will generate a
fully usable, professional setup that you can distribute to users or to
Internet developers. Sometimes, however, you will need to go
beyond Package and Deployment Wizard’s end products and alter
the standard setup that it creates. You might need to customize
Package and Deployment Wizard’s product in situations such as the
following:

á The setup process needs to perform special operations, such as
providing a dialog box to determine user preferences for your
application.

á You need to modify the distribution files slightly, providing a
different name or a different version of an existing file or
providing an extra supporting file.

Customizing SETUP.LST and Your
Application’s DEP File
You can modify the information about files that you need to distrib-
ute with your application’s setup by editing SETUP.LST and your
application’s DEP file. By editing SETUP.LST and the DEP file, you
can avoid having to rerun Package and Deployment Wizard for
minor changes in your application’s setup configuration.

Suppose, for example, that your application no longer uses a particu-
lar custom control, say DBGrid (you have removed all functionality of
DBGrid from your application). Instead of rerunning Package and
Deployment Wizard just to create a new setup that lacks DBGrid, you
could edit the copy of SETUP.LST on your master distribution
media. You would just open SETUP.LST in Notepad or another
text editor and search for the line in SETUP.LST that refers to
DBGrid.OCX. You could remove the line, and then save and exit the
file. Then, you could go to the DEP file for your application and
remove the reference there for DBGrid.

24 002-8 CH 21 3/1/99 8:45 AM Page 984

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 985

Customizing the Standard VB Setup
Project
You can modify the setup routine for your application by locating and
editing its VB source code. Recall that Package and Deployment
Wizard provides the setup program (SETUP1.EXE) for your applica-
tion. Setup1 is a VB application known as the “Setup Toolkit project,”
and its VB project exists under your VB directory in the path
\Wizards\Package and Deployment Wizard\Setup1\SETUP1.VBP.

If you want to customize the Setup1 project (known as the “Setup
Toolkit project”), you should save the customized version in a sepa-
rate directory so that future sessions of Package and Deployment
Wizard won’t use it for all applications. The Setup Toolkit project
contains many files, but the main focus of your customization efforts
will probably be the Load event of the Setup1 project’s main form,
frmSetup1 (see Figure 21.17).

N
O

T
E The Relationship Between

SETUP.EXE and Customized Setup
Routines For an explanation of the
relationship between Microsoft’s
SETUP.EXE and your customized setup
routine, see the section in this chap-
ter titled “SETUP.EXE and Package and
Deployment Wizard’s Custom Setup.”

F IGURE 21 .1 7
You can customize an application’s setup rou-
tine by opening and modifying SETUP1.VBP. The
designer for frmSetup1 is shown here.

Implementing Application Removal
Setup1 creates a log file (ST6UNST.LOG) in the application direc-
tory containing information about the modifications that it makes
to the system (such as files copied and Windows Registry entries).
Setup1 also furnishes a VB6 application removal utility,
ST6UNST.EXE.

24 002-8 CH 21 3/1/99 8:45 AM Page 985

986 Par t I VISUAL BASIC 6 EXAM CONCEPTS

The application appears on the Add/Remove facility of the Control
Panel. If the user calls Add/Remove to remove the application, the
system uses ST6UNST.EXE, which reads the log file and undoes the
work of the setup.

Application removal can fail under the following circumstances:

á If the user or another application copies, moves, or removes
application files and directories manually.

á The application setup log is removed from the application
directory.

á The user installs the application more than once to more than
one directory.

REGISTERING A COMPONENT THAT
IMPLEMENTS DCOM AND
CONFIGURING DCOM
. Register a component that implements DCOM.

. Configure DCOM on a client computer and on a server
computer.

If your application uses remote code components, you must make
sure that DCOM is properly installed and configured on the client
computer.

If your application implements remote code components, you must
make sure that DCOM is properly installed and configured on the
server.

To make sure that the correct DCOM components are installed on a
client or server computer for a client application or a server compo-
nent, you call up the Project, Properties dialog box from the VB
menu and choose the Component tab. Then check the Component
tab’s Remote Server Files option, as shown in Figure 21.18.

24 002-8 CH 21 3/1/99 8:45 AM Page 986

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 987

When you compile either the client or the server project, the com-
piler will create a VBR (remote support) file in the same folder as
the VBP file.

When you use Package and Deployment Wizard to create the compo-
nent or the client application, Package and Deployment Wizard auto-
matically packages the necessary information into the client and
component installation packages to implement DCOM on either end.

DEPLOYING YOUR APPLICATION

. Plan and implement floppy disk–based deployment or com-
pact disc–based deployment for a distributed/
desktop application.

. Plan and implement Web-based deployment for a
distributed/desktop application.

. Plan and implement network-based deployment for a
distributed/desktop application.

. Deploy application updates for distributed applications.

After you have created a setup package, you can deploy your
application from a location that’s accessible to all potential users.
Deployment is the term that Microsoft uses to mean moving your
setup package to the location from which users can install your
application.

You can choose one of several deployment methods:

á Disk-based deployment (Microsoft still calls this deployment
to “floppy disks”).

á Deployment to a network directory.

á Deployment to CD.

á Web publishing.

The following sections discuss each of these deployment options.
Note that Microsoft considers network and CD deployment to be
suboptions of the same deployment method, so these two options
appear together in one section.

F IGURE 21 .1 8
Setting the Remote Server Files option for a VB
project.

24 002-8 CH 21 3/1/99 8:45 AM Page 987

988 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Deploying to Floppy Disks
You deploy to disks in a situation where

á Users are in many locations without any common central
connection.

á Not all users have access to the Web.

á Not all users have a CD drive.

A typical application requiring disk deployment would be one whose
users were salespeople with various types of laptop PCs scattered
across a wide geographic area. You might not be able to guarantee
that every salesperson has a CD drive or a fast modem.

As you can see from this example, a disk deployment is a “lowest
common denominator” solution. Deploying to disks will cast the
widest net around possible users of the application.

To deploy an application to disks, you must take the steps in Step by
Step 21.1.

S T E P B Y S T E P
21.1 Deploying an Application to Disks

1. Create an installation package as discussed in the first part
of this chapter and make sure that you have saved the
packaging script. Note that the installation package must
have created multiple CAB files, and the size chosen for
the CAB files must be less than or equal to the capacity of
the disk media that you will be using.

2. From within the project, run Package and Deployment
Wizard, choosing the Deployment icon (the middle icon)
on the opening screen.

3. Choose Floppy Disks as the deployment method (see
Figure 21.19).

24 002-8 CH 21 3/1/99 8:45 AM Page 988

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 989

4. Choose a disk drive (see Figure 21.20). You may also elect
to have the wizard format each disk before copying infor-
mation to the disk.

5. Rename your deployment script from the standard name
supplied by the wizard (see Figure 21.21).

, F IGURE 2 1 .19
Choosing the Floppy Disks option.

F IGURE 21 .2 0 ▲

Choosing a disk drive.

6. After you have clicked the Finish button, you’re not done!
Setup wizard will begin copying information to disks. It
prompts you before it begins with each disk (see Figure
21.22). This is also the first time that you know how
many disks the deployment will require (the information
appears in the prompt).

, F IGURE 2 1 .21
Assigning a name to the floppy disk deployment
script.

24 002-8 CH 21 3/1/99 8:45 AM Page 989

990 Par t I VISUAL BASIC 6 EXAM CONCEPTS

7. If you chose to format the disks (see step 4), then the wiz-
ard will present you with a Format dialog box, as shown in
Figure 21.23.

F IGU R E 21 .22.
The Package and Deployment Wizard prompt to
insert a disk.

8. Setup wizard will copy information to each disk (see
Figure 21.24).

9. You will repeat steps 6 through 8 until you have created all
the disks that the deployment requires.

Deploying to a Network Directory
or to CDs
Network and CD deployment are essentially the same deployment
method from the point of view of Package and Deployment Wizard.

Using this option, you deploy to a single location instead of deploy-
ing to multiple disks as you do when deploying to disks.

To implement a network or CD deployment, you should follow the
procedure in Step by Step 21.2.

F IGU R E 21 .23.
Package and Deployment Wizard’s Format dia-
log box.

F IGU R E 21 .24 ▲

Package and Deployment Wizard copies infor-
mation to a deployment disk.

24 002-8 CH 21 3/1/99 8:45 AM Page 990

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 991

S T E P B Y S T E P
21.2 Deploying to Network or CDs

1. Create an installation package as discussed in the first part
of this chapter and make sure that you have saved the
packaging script. Note that the installation package may
have created a single CAB file—because for practical pur-
poses, your distribution medium (the network or a CD)
has unlimited space available.

2. From within the project, run Package and Deployment
Wizard, choosing the Deployment icon (the middle icon)
on the opening screen.

3. Choose Folder Disks as the deployment method (see
Figure 21.25).

4. On the Folder screen, choose a folder to create the deploy-
ment. Notice that a Package folder is created
underneath the folder you choose (see Figure 21.26)

F IGURE 21 .2 5 ▲

Choosing the Folder option. You also choose
this option when you deploy to CDs.

, F IGURE 2 1 .26
Choosing a deployment folder or CD drive.

5. On the Finished screen give a name to the deployment
script (see Figure 21.27).

24 002-8 CH 21 3/1/99 8:45 AM Page 991

992 Par t I VISUAL BASIC 6 EXAM CONCEPTS

Deploying to the Web
At first glance, it might appear that Web deployment would be lim-
ited to applications that actually run as Internet applications (such as
DHTML applications or ActiveX components embedded in a Web
page).

It is possible, however, to distribute just about any VB application
over the Web. You just need to package the application’s CABs with
an HTML page that points to the CAB files, and then place that
page on the Web server. When users point their browsers to the
page, they will download the application’s setup files and the setup
will run automatically on their machines.

Because you can deploy almost any application to the Web, Web dis-
tribution becomes an attractive choice. It offers several advantages
over older forms of application deployment:

á The logistics of application distribution become simpler. You
do not have to concern yourself with getting disks or CDs out
to every user.

á Management of new software updates is more automatic. Users
can get a new version of an application just by pointing their
browsers to the setup’s Web page.

To deploy a setup package via the Web, follow Step by Step 21.3.

F IGU R E 21 .27
Naming the deployment script.

24 002-8 CH 21 3/1/99 8:45 AM Page 992

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 993

S T E P B Y S T E P
21.3 Deploying on the Web

1. Create an Internet or standard installation package as dis-
cussed in the first part of this chapter, and make sure that
you have saved the packaging script.

2. From within the project, run Package and Deployment
Wizard, choosing the Deployment icon (the middle icon)
on the opening screen.

3. Choose Web Publishing as the deployment method (see
Figure 21.28).

, F IGURE 2 1 .28
Choosing Web deployment.

4. The Items to Deploy screen enables you to indicate files
to put on the Web deployment site (see Figure 21.29).

5. The Additional Items to Deploy screen enables you to
specify more items to deploy (see Figure 21.30).

F IGURE 21 .2 9 ▲

The Items to Deploy dialog box.

, F IGURE 2 1 .30
The Additional Items to Deploy dialog box.

24 002-8 CH 21 3/1/99 8:45 AM Page 993

994 Par t I VISUAL BASIC 6 EXAM CONCEPTS

6. On the Web Publishing Site screen (see Figure 21.31),
specify the site to which you will deploy the installation.

7. When you click the Next button, the wizard may prompt
you to save the publishing site information to the
Windows Registry (see Figure 21.32).

8. On the Finished screen, assign a name to the deployment
script, as in Figure 21.33.

F IGU R E 21 .31.
Specifying a Web publishing site.

F IGU R E 21 .32 ▲

Option to save publishing site information to
the Windows Registry.

Deploying Updates to Your Application
When you need to make changes to a distributed application, you
will get the changes out to users by updating the setup package and
redeploying the parts of the setup package that have changed.

There are two major techniques for deploying updates:

F IGU R E 21 .33.
Assigning a name to the Web deployment
script.

24 002-8 CH 21 3/1/99 8:45 AM Page 994

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 995

á Automatic redeployment. For this option to work best, you
should save the scripts for both the packaging and the deploy-
ment. Just rerun the packaging and deployment scripts.

á Manual redeployment. You can choose one of two levels of
automation for manual redeployment:

• Rerun Package and Deployment Wizard for packaging, and
then for deployment.

• Manually re-create one or more of the setup package ele-
ments, and then manually deploy it (usually by copying
one or more files).

This chapter covered the following topics:

á Creating a standard setup package with Package and
Deployment Wizard

á Creating an Internet setup package with Package and
Deployment Wizard

á Creating a dependency file with Package and Deployment
Wizard

á Standard files used in a Microsoft setup, such as SETUP.EXE,
SETUP.LST, and SETUP1.EXE

á The significance of dependency files

á Customizing a standard setup by modifying SETUP.LST or
the standard SETUP1.VBP project

á Implementing application removal

á Implementing DCOM

á Deploying a setup package to disks

á Deploying a setup package to a network directory or CDs

á Deploying a setup package via the Internet or an intranet

á Updating a deployment

CHAPTER SUMMARY

KEY TERMS
• CAB file

• Cabinet file

• DCOM

• DDF file

• DEP file

• Dependency file

• Deployment

• INF file

• Macro

• Remote support file

• VBR file

24 002-8 CH 21 3/1/99 8:45 AM Page 995

996 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

Exercises

21.1 Creating a Standard Setup Package

In this exercise, you use Package and Deployment
Wizard to create a standard setup package. You will also
use the setup package that you create in this exercise in
Exercises 21.4 and 21.5.

Estimated Time: 35 minutes

1. Create a new VB6 standard EXE project. Save
and compile the project.

2. Invoke the Package and Deployment Wizard
from the Add-Ins manager (see Figure 21.1) and
choose the Package option from the first screen
(see Figure 21.2).

3. Choose the Standard Setup package from the
Package Type screen (see Figure 21.3).

4. On the Package Folder screen, create a new folder
under the application’s folder (see Figure 21.4).

5. View the Included Files screen (see Figure 21.5),
but make no changes.

6. On the Cab Options screen (see Figure 21.7),
indicate Multiple cabs and choose the cab size
(1.44MB, for example) that corresponds to the
capacity of disk drives of the machines where
users will install your application.

7. View the Installation Title screen (see Figure
21.8) and make changes if you like.

8. View the Start Menu Items screen (see Figure
21.9), making changes if you like.

9. View the Install Locations screen (see Figure
21.11). Modify the Install Location if you like.

10. On the Shared Files screen, make sure that the
compiled file’s name is checked (see Figure
21.12).

11. On the Finished screen, give a name to the script
for this package. Enter the name MyFirst.

12. Go past the Finished screen (see Figure 21.13)
and view the Packaging Report screen. When
done viewing this screen, close it.

13. The setup is now finished. In Windows Explorer,
navigate to the folder that you designated for the
package in step 4. View the contents of the pro-
ject’s LST file.

14. Examine the contents of the support directory
created under the package’s setup folder.

15. View the contents of the project’s BAT file, which
will call the MakeCab utility to rebuild the CAB
file, based on the instructions in the DDF file.

16. View the DDF file, which contains instructions
used by the MakeCab utility to create the CAB
file.

17. Do not delete this setup package from your
machine, as you will use it in Exercises 21.4
and 21.5.

21.2 Creating an Internet Setup Package

In this exercise, you create an Internet setup package,
noting the differences between such a package and the
standard setup package that you created in Exercise
21.1. You will also use the setup package that you cre-
ate in this exercise in Exercise 21.6.

Estimated Time: 25 minutes

24 002-8 CH 21 3/1/99 8:45 AM Page 996

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 997

A P P LY YO U R K N O W L E D G E

1. Create a new VB6 ActiveX control project. Save
and compile the project.

2. Invoke the Package and Deployment Wizard
from the Add-Ins manager (see Figure 21.1) and
choose the Package option from the first screen
(see Figure 21.2).

3. Choose the Internet Setup package from the
Package Type screen (see Figure 21.3).

4. On the Package Folder screen, create a new folder
under the application’s folder (see Figure 21.4).

5. View the Included Files screen (see Figure 21.5),
but make no changes. Note that fewer files are
listed for this package than for the standard
package of Exercise 21.1.

6. When you proceed beyond the Included Files
screen, note that there is no Cab Options screen,
Installation Title screen, or Start Menu Items
screen as there are in a Standard Package setup.

7. Instead of the Standard Package’s Install
Locations screen, you will see the File Source
screen (see Figure 21.14). In the Files list, select
the compiled component’s name and notice that
you have two file-source options available to you
(Include in This Cab and Download from
Alternate Web site). Select the VB6Runtime and
OLE Automation option in the File list, and you
will see that Download from Microsoft Web site
is also available (in fact, it’s the default).

8. On the Safety Settings screen, manipulate the
Safe for Scripting and Safe for Initialization
options (see Figure 21.15).

9. Assign a name to your packaging script, such as
MyInternetSetup.

10. Go past the Finished screen and view the
Packaging Report screen. Close the screen after
you have finished looking at it.

11. The Internet Package is now finished. In
Windows Explorer, navigate to the folder that you
designated for the package in step 4. Note the
absence of the SETUP.LST and SETUP.EXE files.

12. Package and Deployment Wizard created an
HTML file in the Internet Package’s target direc-
tory. Use a text editor to view the file.

13. Examine the contents of the support directory
created under the package’s setup folder. Package
and Deployment Wizard has created a BAT file
and a DDF file, just as it did for a standard pack-
age.

14. Unlike the standard package’s Support folder, the
Internet package’s Support folder contains an
INF file. View the contents of the INF file with a
text editor. This file will be bundled into the
CAB file with some of the support files for your
component. The INF file contains instructions
that tell the browser where to get the support files
not included in the CAB file. The INF file’s
information should reflect the information that
you specified on the File Source screen in step 7.

15. Do not delete this setup package from your
machine; you will use it in Exercise 21.6

24 002-8 CH 21 3/1/99 8:45 AM Page 997

998 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

21.3 Implementing DCOM

In this exercise, you follow the simple steps necessary to
implement DCOM for a project.

Estimated Time: 20 minutes

1. Begin an ActiveX DLL project.

2. Choose the Project, Properties menu item and
select the Component tab. On the Component
tab, check the Remote Server Files option.

3. Compile the project.

4. Run Package and Deployment Wizard to create
a standard Package, as described in Exercise 21.1.
You have now created a package that can be
deployed to a server and can implement DCOM.

5. If you create a client application for your compo-
nent, you can enable it for DCOM in the same
way, following steps 2–4.

21.4 Deploying an Application to Floppy
Disks

In this exercise, you use Package and Deployment
Wizard to deploy the setup package that you created in
Exercise 21.1 to disks. To fully complete the exercise,
you will need two 1.44MB disks.

Estimated Time: 20 minutes

1. Open the project you worked with in Exercise
21.1 and run Package and Deployment Wizard
from the Add-Ins menu.

2. Click the middle icon (Deploy) on the first screen
of Package and Deployment Wizard.

3. On the Package to Deploy screen, make sure that
you select the name of the package that you cre-
ated in Exercise 21.1 (MyFirst) and click the
Next button.

4. On the Deployment Method screen, choose the
Floppy Disks option and click the Next button
(see Figure 21.19).

5. On the Floppy Drive screen, choose the disk
drive to which you want to deploy. If you wish,
you may check the option to format the disks
during deployment. Click the Next button to
proceed to the next screen (see Figure 21.20).

6. On the Finished screen, assign a name to the
deployment script (see Figure 21.21).

7. Click the Finish button to begin deploying your
application to disks.

8. The wizard will prompt you to insert a disk.
Notice that the prompt tells you the total num-
ber of disks that the deployment will require (see
Figure 21.22). Make sure that you have enough
disks available.

9. If you chose the Format option in step 5, the wiz-
ard will also display a Format dialog box to
prompt you for formatting options (see Figure
21.23). Click the Start button to format the disk.
After the formatting process has finished, press
the Close button on the Formatting dialog box.

10. The wizard will copy one of the CAB files to the
disk (see Figure 21.24).

11. After the wizard finishes copying the CAB file, it
will prompt you for the next disk. Repeat steps 8
and 9 until the wizard asks you for no more disks.

24 002-8 CH 21 3/1/99 8:45 AM Page 998

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 999

A P P LY YO U R K N O W L E D G E

12. After the wizard finishes copying the last CAB
file to disk, you will see a Deployment report.
You can close this screen. Your deployment to
floppy disks is complete.

13. Examine the contents of the disks where you cre-
ated the deployment.

21.5 Deploying an Application to a CD-ROM
or a Network Drive

In this exercise, you use Package and Deployment
Wizard to deploy the setup package that you created in
Exercise 21.1 to a CD-ROM or a network drive.

Estimated Time: 20 minutes

1. Open the project you worked with in Exercise
21.1 and run Package and Deployment Wizard
from the Add-Ins menu.

2. Click the middle icon (Deploy) on the first
screen of Package and Deployment Wizard.

3. On the Package to Deploy screen, make sure that
you select the name of the package that you cre-
ated in Exercise 21.1 (MyFirst) and click the
Next button.

4. On the Deployment Method screen, choose the
Folder option and click the Next button (see
Figure 21.25).

5. The action you take in the Folder dialog box (see
Figure 21.26) will depend on whether you are
setting up for network or CD distribution:

• Network setup. Browse to the network folder
where you want to deploy your setup package.
Note that you may create a new folder during
the browse, if necessary.

• CD setup. You may either choose to tem-
porarily deploy to a network folder (for later
transferral to a CD), or, if you are able to write
to CDs from your machine, you may choose the
CD drive itself and insert a writeable CD.

6. Click the Next button to proceed to the Finished!
screen. Give your deployment script a name (such
as MyFirstNetwork), as illustrated in Figure 21.27.

7. Click the Next button to view the Deployment
report. Close the Report screen. Your network
deployment is complete.

8. View the contents of the network folder where
you deployed your installation package.

21.6 Deploying an Application on an Intranet
or the Internet

In this exercise, you use Package and Deployment
Wizard to deploy the setup package that you created in
Exercise 21.2 to a Web site (either an intranet or the
Internet).

Estimated Time: 20 minutes

1. Open the project you worked with in Exercise
21.1 and run Package and Deployment Wizard
from the Add-Ins menu.

2. Click the middle icon (Deploy) on the first screen
of Package and Deployment Wizard.

3. On the Package to Deploy screen, make sure that
you select the name of the package that you cre-
ated in Exercise 21.2 (MyInternetSetup) and click
the Next button.

24 002-8 CH 21 3/1/99 8:45 AM Page 999

1000 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

4. On the Deployment Method screen, choose the
Web Publishing option, and click the Next but-
ton (see Figure 21.28).

5. On the Items to Deploy dialog box, you have the
chance to add setup package items to the deploy-
ment or to remove them. Make no changes here.
Click the Next button after viewing the screen
(see Figure 21.29).

6. On the Additional Items to Deploy dialog box,
you have yet another chance to deploy other files
related to your project. Make no changes here.
Click the Next button after viewing the screen
(see Figure 21.30).

7. On the Web Publishing Site dialog box, enter the
name of the Web server where you want to
deploy your installation package. Click the Next
button to continue (see Figure 21.31).

8. The wizard may prompt you to save information
about the Web publishing site to the Windows
Registry. You do not need to do so. (Perhaps in
this case you will elect not to clutter your
Registry with the results of an exercise.) You can
respond to this dialog box, and then continue
(see Figure 21.32).

9. On the Finish screen, you can give a name to
your deployment script (see Figure 21.33).

10. Click the Finish button to finish the Web server
deployment.

Review Questions
1. What is the purpose of a dependency file?

2. How can you customize the behavior of a stan-
dard setup routine?

3. How do setup routines created with Package and
Deployment Wizard enable possible removal of
the application?

4. What is the standard compression format for files
created with the Package and Deployment
Wizard?

5. What basic steps must you take to install and
configure DCOM on a client and server?

Exam Questions
1. You can use the Manage Scripts icon in Package

and Deployment Wizard to

A. Manipulate the default behavior of a setup
project.

B. Manipulate the creation of Internet download
scripts.

C. Manipulate Internet download scripts directly.

D. Manipulate Package and Deployment Wizard
default behavior when you run Package and
Deployment Wizard in the future.

2. The name of the file that contains the depen-
dency information for Visual Basic is

A. SWDEPEND.INI

B. VB6DEP.INI

C. SWSETUP.DEP

D. VB6SETUP.DEP

3. You create a project that is installed by a network-
based install and that includes your own custom
in-process COM component. The component is

24 002-8 CH 21 3/1/99 8:45 AM Page 1000

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 1001

A P P LY YO U R K N O W L E D G E

installed to reside on each user’s workstation.
Later, you need to make a change to the compo-
nent because of a bug in the way it runs. The
best way to get the component changed in user
installs is to

A. Send the DLL as an attachment to emails to
all the users, asking them to copy it to the
appropriate place on their local hard drives.

B. Update the CAB file on the network, and ask
all users to rerun the setup.

C. Put the DLL on each user’s hard drive your-
self, and edit the Windows Registry.

D. Unregister the old copy of the component
with the RegSvr32 utility, place the new copy
on each user’s hard drive, and then reregister
with RegSvr32.

4. If you want to distribute a standard EXE applica-
tion to users on disks, you should use Package
and Deployment Wizard to

A. Specify a single CAB file.

B. Specify floppy disks.

C. Specify multiple directories.

D. Specify multiple CAB files.

5. You want to display your own custom graphics
(“billboards”) to users while the setup routine
runs for your application. The best way to do
this is to

A. Modify the DDF file belonging to each
CAB file.

B. Modify the setup package’s INF file.

C. Modify the VB source code for
SETUP1.EXE.

D. Modify the setup package’s SETUP.LST file.

6. A user installs your application once and then
installs it again in a different directory. When the
user runs Control Panel’s Application Removal
utility against the application,

A. The first install is removed.

B. The second install is removed.

C. Both installs are removed.

D. The Application Removal utility fails.

7. You can create remote support (VBR) files for
distribution with a DCOM project by

A. Using a text editor to manually edit a VBR
file of the same name as the project.

B. Compiling the project with the correct
options selected.

C. Letting Package and Deployment Wizard cre-
ate the VBR file automatically.

D. Using Microsoft’s Compress utility to create
the VBR file.

8. To install an application on end-users’ systems
that can use components through DCOM, you
should

A. Use Package and Deployment Wizard to spec-
ify the appropriate setup files.

B. Use RegSvr32 to register the component.

C. Edit the Windows Registry.

D. Mark the appropriate option in the project

24 002-8 CH 21 3/1/99 8:45 AM Page 1001

1002 Par t I VISUAL BASIC 6 EXAM CONCEPTS

A P P LY YO U R K N O W L E D G E

before you compile it.

9. When you deploy to floppy disks, you must

A. Specify a single CAB file in the packaging
phase.

B. Specify multiple CAB files in the packaging
phase.

C. Specify either single or multiple CAB files in
the packaging phase.

D. Specify a destination directory for the deploy-
ment.

Answers to Review Questions
1. A dependency file specifies the supporting files

that a particular file needs to be successfully
installed on a system. See “Dependency
Information in DEP Files.”

2. You customize the behavior of a standard setup
routine by modifying the standard VB setup pro-
ject, the SETUP.LST file, or dependency files. See
“Customizing a Standard Setup.”

3. A VB6 setup package furnishes a copy of
ST6UNST.EXE to the host system. The VB
setup package creates a log file, ST6UNST.LOG,
in the application directory. When a user uses the
Windows Add/Remove utility to remove the
application, ST6UNST.EXE runs, using the
information in the log file to remove files and
registry entries. See “Implementing Application
Removal.”

4. The standard compression format for Package
and Deployment Wizard files is the CAB (cabi-

net) format. See “Creating a Standard Setup
Package.”

5. To enable a client or a server to use DCOM, cre-
ate a client application or component, check the
Remote Server Files option on the Project,
Properties Component tab, compile the project
(this will create a VBR file), create a setup pack-
age for the project, and install it on the client or
the server, whichever is appropriate. See
“Registering a Component That Implements
DCOM and Configuring DCOM.”

Answers to Exam Questions
1. D. You can use the Manage Scripts icon in

Package and Deployment Wizard to manipulate
Package and Deployment Wizard’s default behav-
ior when you run it in the future. For more infor-
mation, see the section titled “Starting Package
and Deployment Wizard and Choosing the Type
of Package.”

2. B. The name of the VB6 dependency file is
VB6DEP.INI. For more information, see the sec-
tion titled “Dependency Information in DEP
Files.”

3. B. The best way to distribute a changed compo-
nent to local installations with a network-based
install is to update the CAB file containing the
component on the network server and ask all
users to rerun the setup. For more information,
see the section titled “Creating an Internet Setup
Package.”

4. D. Specify multiple CAB files to distribute a
standard EXE application to users on disks. You
can specify the size of the CAB files, and then

24 002-8 CH 21 3/1/99 8:45 AM Page 1002

Chapter 21 USING THE PACKAGE AND DEPLOYMENT WIZARD TO CREATE A SETUP PROGRAM 1003

A P P LY YO U R K N O W L E D G E

copy the CAB files that the Package and
Deployment Wizard creates to the disks. For
more information, see the sections titled
“Creating a Standard Setup Package” and
“Deploying to Floppy Disks.”

5. C To change the behavior of the custom setup
routine as it runs, you can modify the VB source
code for SETUP1.EXE (SETUP1.VBP). For
more information, see the section titled
“Customizing the Standard VB Setup Project.”

6. D. The Application Removal utility will fail if
the user attempts to remove an application that
has been installed twice in separate directories.
For more information, see the section titled
“Implementing Application Removal.”

7. B. You can create the necessary remote support
(VBR) files for a project that uses DCOM by
compiling the project with the Remote Server
Files option checked in the Components tab of
the Project, Properties dialog box. This will cre-
ate the necessary files in the same folder as the

project, and Package and Deployment Wizard
will distribute these files as necessary. For more
information, see the section titled “Registering a
Component That Implements DCOM and
Configuring DCOM.”

8. D. To implement DCOM in an application, you
should mark the Remote Server Files option on
the Compile tab of the Project, Properties dialog
box before you compile the project. For more
information, see the sections titled “Registering a
Component That Implements DCOM and
Configuring DCOM” and “Deploying Updates
to Your Application.”

9. B. To deploy to disks, you need to specify multi-
ple CABs when you package the setup. Each
CAB will go on a different disk. If you specify
only one CAB, the CAB may be too big to fit on
the disk. You don’t specify a folder during deploy-
ment to disks—this option is only for
network/CD deployment. You do, however, spec-
ify the drive for the disks. For more information,
see the sections titled “Deploying to Floppy
Disks” and “Deploying to a Network Directory
or to CDs.”

24 002-8 CH 21 3/1/99 8:45 AM Page 1003

24 002-8 CH 21 3/1/99 8:45 AM Page 1004

II
FINAL REVIEW

Fast Facts

Study and Exam Prep Tips

Practice Exams

P A R T

25 002-8 Part 2 3/1/99 8:46 AM Page 1005

25 002-8 Part 2 3/1/99 8:46 AM Page 1006

Now that you have read through this book, worked
through the exercises, and acquired as much hands-on
experience using VB6 as you could, you are ready for
the exam. This last chapter is designed as a “final cram
in the parking lot” before you walk into the exam. You
can’t reread the whole book in an hour, but you will be
able to read this chapter in that time.

This chapter is organized by objective category, giving
you not just a summary, but a review of the most
important points from this book. Remember that this
is meant to be a review of concepts and a trigger for
you to remember those tidbits of information you will
need when taking the exam. If you know what is in
here and the concepts that stand behind it, chances are
the exam will be a snap.

DEVELOPING THE
CONCEPTUAL AND LOGICAL
DESIGN

Given a conceptual design,
apply the principles of
modular design to derive the
components and services of
the logical design (70-175).

á A conceptual design is based on user scenarios.

á Part of the logical design process involves deriv-
ing business objects from the user scenarios of
the conceptual design.

Fast Facts

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1007

1008 FAST FACTS

because it would give you the proverbial “mainte-
nance nightmare” by requiring many individuals
(at assuredly varying levels of system competence)
to perfectly perform the same action at the same
time when you needed to distribute changes.

á It is sometimes appropriate to use a “thick client”
solution that implements user interface and busi-
ness rules on the client workstation to best address
concerns of scalability and performance. The key
to both these considerations is the fact that such a
design will offload a lot of processing to client
workstations. If the workstations are powerful
enough (and so capable of handling the extra
work) and there is little maintenance anticipated
to the system, a thin client can be viable. The net-
work will be less likely to bottleneck because more
users are quickly added to the system (so scalabil-
ity is served), and performance will also degrade
less because individual workstations will be more
responsible for the performance for each user. This
solution definitely does not address maintainabil-
ity, because (1) it will be harder to make changes
to business logic components that are scattered
over many user workstations and (2) are inter-
twined with the user interface.

á An IIS application solution would favor main-
tainability (it is centralized and therefore easily
changeable), availability (any user with a Web
connection and any major Web browser), and
performance from the user’s point of view,
although not for the server, because the server
will be doing most of the work. It might not be
the best solution for scalability, because it is more
server-intensive than a DHTML application; it is
probably not very easily extensible, either, because
its logic is centered around one type of solution.
Security could also be an issue, because users are
connecting to your server and your corporate
data through the Internet.

DERIVING THE
PHYSICAL DESIGN

Assess the potential impact
of the logical design on
performance, maintainability,
extensibility, scalability,
availability, and security
(70-175 and 70-176).

á The user-interface component of an application
normally resides on client workstations, because it
is the part that actually provides the user connec-
tion to the rest of the system.

á A “thin client” (that is, a workstation client that
implements as little functionality as possible) can
improve a software solution’s maintainability,
because more processing will be implemented on
servers. Such centralization of functionality means
that there are less locations where software changes
have to be distributed. By putting more processing
burden on servers, however, performance can
degrade dramatically as more demand is placed on
the server through the addition of new users.

á A business-rules component is the best place to
enforce constraints such as customer credit
enforcement and shipping-charge rules. Both
constraints are part of the way that the organiza-
tion does business. These rules could change over
time, or even change in different directions for
different parts of the same organization.

á Putting a COM component for business rules or
a data-access component on individual worksta-
tions would generally be an inferior solution,

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1008

FAST FACTS 1009

Design Visual Basic
components to access data
from a database in a multitier
application (70-175 and
70-176).

á Data-access components in an n-tier model can be
a component such as a COM server (ActiveX EXE
or DLL) that sits between the business objects and
the database engine and uses data-aware classes.

á It is usually not a good idea to implement data-
access components in the stored procedures and
triggers of the DBMS itself.

á The data-access interface of an application nor-
mally resides on the server so that it can provide
consistent service and server resource manage-
ment. It is also more maintainable if it resides in
a single central location.

á A COM component with data-aware object
classes is the best solution for implementing a
data-access component whose data-access plat-
form will change in the future. This provides the
best maintainability, because it isolates the other
tiers from needing to be aware of the type of data
access that’s needed.

á A COM component with data-aware classes
would be the best choice for implementing a data
access tier for centralized users. Though an IIS
application could be a part of the solution, it is
not really appropriate for a data access tier, but
would work better for a user interface tier. The
same could be said of a DHTML application and
of a standard client-side executable.

á An independent data-access component is the
best place to enforce rules of referential integrity.
If the logical design calls for no separate data-
access component, stored procedures and triggers
in the actual database would be the best choice.

When an independent data-access component is
one of your options, however, you should nor-
mally favor that location.

Design the properties,
methods, and events of
components (70-175 and
70-176).

á It is best to keep the functions of data access and
business rules separate in an n-tier application, to
separate the functions of the data-services tier
itself (data-integrity rules) with the data-access
methods specific to the application itself.

á Data entry and display rules are best implemented
as part of the user-interface component.

ESTABLISHING THE
DEVELOPMENT ENVIRONMENT

Establish the environment for
source-code version control
(70-175 and 70-176).

á Pinning enables you to use an earlier version of a
file (not the current version) in a VSS project. It
is good for creating maintenance releases of a pro-
ject while new development on the same project
is going on at the same time.

á A developer can check a file out of Visual
SourceSafe to get a modifiable copy.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1009

1010 FAST FACTS

Although the other editions enable you to con-
nect to SQL Server data, they don’t actually come
with a copy of SQL Server.

Configure a server computer
to run Microsoft Transaction
Server (MTS) (70-175)

á To run Transaction Server in Windows NT, you are
required to have at least Service Pack 3 installed.

á Choose a custom install, and be sure to select the
option under Transaction Server that includes the
developer documentation. Developer documenta-
tion is not included by default.

á A typical installation of the NT Server 4 Option
Pack will install the MTS runtime environment
and everything you need to perform administra-
tive tasks on your MTS machine, which includes
the MTS Explorer and the core documentation.
The only thing a Typical Installation lacks is the
developer samples and documentation, which can
only be installed through a custom installation.

á Windows 95 require DCOM support to be
installed if you intend to call MTS objects on it
from a remote machine. DCOM support is not
built in to Windows 95, but can be downloaded
for free from Microsoft.

á Anyone can administer an MTS machine imme-
diately after it is installed. To limit access, you
must first add users to the Administrator role for
the system package.

á To limit a user from accessing the MTS Explorer
to do administrative tasks, they should be added
to the Reader role of the System package.
Additionally, their user account, or any NT
group of which they are a member, must not be
mapped to the Administrator role.

á You can use the share, pin, and branch model to
create a maintenance or “service pack” release on
the production version of an application that
already is under development for a new major
version.

á Developers can check working code in at the end
of each day to make sure that the project always
has the latest working copies of source code.

á You can share some or all of a project’s files to
make it the basis for a second, new project that
needs to share changes with the first project. If
there is a need in the future for the projects to
diverge their copies of these files, you could
branch the second project at that time.

á Branching a project cuts off the link between
changes in the projects.

á To keep track of all of a project’s older version’s
source code as a group, you can label the older
version.

á To move information from one SourceSafe data-
base, you can archive it from the first database
and restore it to the second database. You should
never attempt to directly manipulate the contents
of the VSS database.

Install and configure Visual
Basic for developing desktop/
distributed applications
(70-175 and 70-176).

á Only the Enterprise Edition of VB6 actually
includes SQL Server, although it is possible to
access SQL Server data from the other editions.

á The lowest-end product that provides you with
all the tools necessary to develop a solution
using SQL Server is the Enterprise Edition.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1010

FAST FACTS 1011

Configure a client computer
to use an MTS component
(70-175).

á In general, coding a client application that calls
MTS components need be no different from cod-
ing a client application that calls other types of
COM objects. There are no special considera-
tions. The only thing that needs to be done
before coding begins, is that the client has to be
configured to allow the developer to reference the
MTS component.

á A client setup package would be run on a
machine that is intended to be used for develop-
ing with the components in the MTS package, or
that will be running software that uses the com-
ponents in this package. This is true for both
Windows client software and for Web servers that
will call the component.

á If a client workstation is running software that
makes calls to MTS components, it is important to
run the client setup package on the workstation.

á Anytime you modify the contents of a package,
such as by adding new components, you must re-
export the package. This will cause the client
setup package to be rebuilt to support the
changes and additions to the package.

CREATING USER SERVICES

Implement navigational design
(70-175 and 70-176).

á The two methods used by Visual Basic to create
menus for an application are the VB Menu
Editor and the Win32 API. Both methods can
be used from VB to generate menu systems.

The built-in Menu Editor is a simple dialog box
that enables the user to create a hierarchy of menu
items and menu item order. The Win32 API is an
external set of functions provided by the operating
system, and allows for a wide variety of functions.

á The term top-level menu is used to refer to a
menu item found directly under a window’s title
bar. This menu item is used to group other items
into a submenu, which will appear under the top-
level item when it is selected.

á When creating menus with the Menu Editor, the
programmer uses the left and right arrows. The
arrows allow the menu hierarchy to be customized
as required. The up and down arrows of the editor
allow the items to be ordered from top to bottom.

á The MouseUp event can be used to determine which
mouse button has been clicked. By using a specific
object’s MouseUp event, the programmer can deter-
mine whether the right mouse button was used. If
so, the form’s PopupMenu method can be called.

á The menu provided when a user right-clicks on
an object has a variety of names. One of the most
common terms used is the “pop-up menu.”
Other terms are the “context-sensitive menu” and
“right mouse menu.” Certain objects and the
operating system provide the menu or they can
be created in Visual Basic.

á By setting the index value of one menu item at
design time, new items can be dynamically
loaded and controlled through code.

á The Unload statement can only be used to remove
instances of menu items or other control array ele-
ments created at runtime. If the first element in
the array—assuming it is the design time item—is
passed to Unload, an application error will occur:
Can’t unload controls created at design time.

á To place an instance of a control on a form,
double-click on the control’s icon in the toolbox.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1011

1012 FAST FACTS

á When a TextBox’s Enabled property is False, the
text in the box will be grayed and the user won’t be
able to set focus to the TextBox. When the Locked
property is True, the user can set focus to the
TextBox (assuming that Enabled is True) and navi-
gate through its contents, but cannot make changes.

á An access key for a TextBox control can be pro-
vided in an accompanying Label control, pro-
vided the Label immediately precedes the TextBox
in the Tab order.

Create data input forms and
dialog boxes (70-175 and
70-176).

á The four styles of the ListView are Icon, Small
Icon, List, and Report. They are set by using the
View property of the object.

á Only a single image format can be used in an
ImageList. 16×16, 32×32, 48×48 icons, and
bitmaps must be loaded into separate ImageLists.
After an image of one format is loaded, images of
different formats cannot be loaded.

á The ShowTips property of the toolbar dictates
whether ToolTips are displayed.

á The ToolTipText property of the Button object
on the toolbar identifies the text that will be dis-
played when the user rests the mouse pointer over
a button.

á Each Visual Basic application has one Controls
Collection per loaded form. Controls Collections
are created and maintained for you automatically.

á To create text boxes dynamically from a control
array, you must place at least one text box on
your form at design time, and you must also set
the Index property of that control to 0 to create a
control array.

A second technique will be to single-click on the
control and then use the mouse to draw its rec-
tangular outline on the container’s surface.

á Some objects that can contain controls
(Container objects) are Forms, PictureBoxes, and
Frames. Note that Image controls cannot contain
other controls.

á The default property of a CommandButton is the
Value property, a True/False property that you can
set in code to fire the CommandButton’s Click event.

á The default property of a Label is the Caption
property, which represents the text that the user
sees on the Label’s surface.

á The default property of a TextBox is the Text
property, which represents editable text that
appears in the TextBox.

á When you rename a control, a brand-new event
procedure appears with a new name based on the
new control’s name. If you wrote code in the
event procedure before the name change, that
code stays in the procedure with the old name.
Therefore, any code that you wrote in the old
event procedure before you changed the control’s
name is no longer associated with the renamed
control’s event.

á You can specify that a menu control will be a
separator bar by specifying a dash as the Caption
property. This is the only way to get a separator
bar.

á The value of the Name property can’t be changed
at runtime. It can be read.

á To prevent the user from being able to give focus
to a control under any circumstances, you can set
the control’s Enabled property to False. Setting
TabStop will only affect the user’s navigation with
the Tab key. The user can still use the mouse as
long as the Enabled property is True.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1012

FAST FACTS 1013

á The Load statement and Show statement will both
load a Form object into memory. Load will load
the form, but not show it. Show will automatically
load the form and display the form onscreen. Any
reference to a Form object’s intrinsic members
will cause an implied load in Visual Basic. The
form will be loaded, but not shown.

á The Unload method will remove a form from mem-
ory. When the form is reloaded, all controls con-
tained on the form will be re-initialized. Using the
Hide method rather than Unload will hide the form
from the display, but will still allow the program-
matic reference to the controls as set by the user.

á When forms are created and then saved, two files
can be generated. The first file is an FRM ASCII
text file that contains information related to the
form, the form’s objects, properties of the objects,
and any source code for those objects. The sec-
ond file is a binary file that contains graphic
information related to the form. If a picture con-
trol is used, an FRX file will contain the graphics
information required by the control.

á The keyword used to reference the currently
running form is ME.

á The keyword used to create a runtime version of
an object created at design time is NEW. An object
variable is declared or initialized as a NEW object.
This tells VB to create another instance of the
Form object at runtime. The following code
demonstrates this syntax: Dim x as New Form1.

á The Forms Collection contains references to
forms that are loaded into memory through
design time and runtime actions. If a project con-
tains multiple forms, but a particular form is not
loaded into memory, the Forms Collection will
not contain a reference to that form.

á The Visual Basic Forms Collection has only one
property, Count, and it returns the total number
of forms that are currently loaded in memory.

á A VB collection provides an item number that is
an ordinal index value assigned to each individual
object as it is added to the collection. You can use
the item number to programmatically access indi-
vidual forms and their associated properties. For
instance, you could refer to the Caption property
of the first form in the collection with this syntax:
Forms(0).Caption.

á ObjectEvent is an event procedure for objects
of type VBObjectExtender. When you add an
ActiveX control to a form with Controls.Add,
you can declare the control to be of type
VBObjectExtender, using the WithEvents keyword.
You can then program the ObjectEvent procedure
to react to events raised by the control.

á ActiveX controls are implemented in files with
the extension .OCX. The .VBX extension was
used for 16-bit controls in older versions of VB.

á TLB files are type library files and don’t imple-
ment ActiveX controls.

á The Sorted, SortKey, and SortOrder properties
determine whether, and how, ListItems will be
sorted in a ListView.

á Icons (*.ICO) and bitmaps (*.BMP) files can be
loaded into the ImageList control.

á Images used by the ToolBar control can only
come from an ImageList control that has been
placed on the same form.

á Status information is displayed in one or more
Panel objects on a StatusBar.

á You can only remove controls that you have
created dynamically.

á The If TypeOf statement can be used to deter-
mine the class of an object. It is important to
check the type before referencing any properties
or methods of an object to avoid runtime errors.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1013

1014 FAST FACTS

You can also use the keyword NEW to create a
new instance of any object variable type. When
dimensioning an object variable, it can have any
name you choose. The key is to Dim ‘var’ as NEW
object. The NEW keyword will create a runtime
object from the object name following NEW.

á The Form Collection’s Count property, or the
Count property of any collection, returns the total
number of loaded forms in the collection. The
collection’s first item index is 0, however, which
means that the highest index in the Form
Collection would be Forms.Count – 1. The Form
and Controls Collections always start at element
0; as items are removed, other items are reorga-
nized to lower numbers.

á When you use the Controls.Add method, you
must specify the ProgID for all controls. When
specifying the ProgID for most intrinsic controls,
the ProgID is a string composed of “VB.” plus
the programmatic name of the control type (for
example, “VB.CommandButton” or “VB.Label”). You
can find the ProgID for ActiveX controls by look-
ing in vendor documentation or by searching the
Windows Registry.

á When you dynamically add a control, you should
not access standard properties through the Object
property, which provides access to custom proper-
ties only.

á When you dynamically add controls to the
Controls Collection, you must use the
VBObjectExtender data type for programming with
any ActiveX control. When you program with
intrinsic controls, you can use the object model
provided for the control by the VB environment.

á A license key to use with the Controls.Add method
is the second argument to the Licenses.Add
method and must be licensed to you, in order for
you to use it legally with software that you distrib-
ute to end users. You must provide the license key
by invoking Licenses.Add on all user machines.

á An ImageList contains ListImage objects.
ListImage objects are referenced through the
ListImages collection.

á The valid relationships of a ListItem to new
items are tvwFirst, tvwLast, tvwNext,
tvwPrevious, and tvwChild.

á Key values of the ListItems collection (and all
collections) must be strings.

á The number of columns in a ListView control is
controlled by the number of objects in the
ColumnHeaders collection.

á The Style property controls the behavior of a
button in the Toolbar control. Valid values
include tbrDefault, tbrCheck, tbrButtonGroup,
tbrSeparator, and tbrPlaceholder.

á If you use a For I = ... statement to access the
elements of a Controls Collection, the index
value of Controls Collection ranges from 0 to
n–1, where n is the number of controls on the
form (as returned by Controls.Count).

á The Load statement can be used to explicitly load
a Form object into memory. If the Hide method of
the form is used, an implied Load would happen
first followed directly by hiding the form. Both
would load a form into memory.

á The Hide statement can be used to remove a Form
object from the screen view, but keep it loaded in
memory. The Unload statement will remove it from
the screen, but will also remove it from memory.

á To specify the Startup object of a VB project, the
VB IDE provides the Project, Project Properties
dialog boxes. The Startup object combo box can
be found under the General tab.

á The keyword NEW is used to create a runtime
Form object based on a template form. This
instructs VB to create another new object based
on the object name following the NEW keyword.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1014

FAST FACTS 1015

Write code that validates user
input (70-175 and 70-176).

á GotFocus and LostFocus events are no longer nec-
essary for field validation in VB6, because VB6
has introduced the Validate event for controls.

á You can prevent changes to TextBox by setting its
Locked property to True when there might be
more data in the TextBox than the user could see,
and you wanted to allow the user to set focus to
the TextBox to scroll through the data.

á A control’s Validate event will fire when the user
attempts to set focus to another control whose
CausesValidation property is True.

á The form’s KeyPreview property by default is
False. Setting it to True enables the form’s KeyUp,
KeyDown, and KeyPress events.

á The KeyPress event detects a character; the KeyUp
and KeyDown events detect physical keystrokes.

á A control’s Validate event fires when the user sets
focus to another control on the same form whose
CausesValidation property is True. The user does
not have to make a change in order for the event
to fire. Firing of the Validate event depends on
the setting of the CausesValidation property of
the control that is receiving focus (not the control
that loses focus).

á To process keystrokes at the form-wide level, you
must set the form’s KeyPreview property to True
and program at least one of the KeyDown, KeyUp,
or KeyPress events.

á The timing of the KeyPress event is before KeyUp,
but after KeyDown.

á You can programmatically cancel a user’s keystroke
by setting the KeyPress event’s parameter (known
as KeyAscii) to 0. KeyAscii is of type integer.

á A line of code in the KeyUp or KeyDown event pro-
cedure that checks to see whether Ctrl was one of
the Shift keys being pressed when F3 was pressed
might read:

If (KeyCode = vbKeyF3) And (Shift And
➥vbCtrlMask) Then

To find out whether a particular key press caused
the KeyUp or KeyDown event to fire, you must
check the value of the KeyCode parameter, com-
paring it with the appropriate VB internal con-
stant (in this case, vbKeyF3). To check the state of
the Shift keys (Ctrl, Alt, and Shift) in the KeyUp
or KeyDown events, you must use the Shift para-
meter. The Shift parameter is a bit mask contain-
ing information about the state of all three Shift
keys. To extract information about a single Shift
key, you can AND the corresponding VB internal
constant for the key with the Shift parameter, as
the preceding example does with (Shift AND
vbCtrlMask).

Write code that processes data
entered on a form (70-175 and
70-176).

á Invoking the End statement will immediately
terminate the application without running any
further events. Events such as Form_Unload or
Terminate events will not run.

á The “Stop button” in the VB IDE has the same
effect as calling the End statement from code.
Therefore, if you press this button to end a design
time instance of your program, you will not fire
the Unload events of forms or of other ending
events such as QueryUnload and Terminate.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1015

1016 FAST FACTS

á A form’s DeActivate event will not fire when the
user navigates to another application with the
mouse.

á You can cause a form’s Terminate event to fire by
unloading the form and then setting the form
equal to Nothing in code. If you have any other
Form object variables that refer to the form, they
must be set to Nothing as well before Terminate
will fire.

á The Terminate event fires when you set the form
to Nothing after the Unload event begins. The
Terminate event cannot fire before the form
unloads, and does not fire until the form is
destroyed by setting it to Nothing. The Unload
event by itself does not destroy a form com-
pletely, because it leaves the form’s properties in
memory. Therefore, the Unload by itself cannot
trigger the firing of the Terminate event.

á The QueryUnload and Unload events both have a
Cancel parameter, which the programmer can set
to True to halt the unloading action.

á The QueryUnload event has an UnloadMode
parameter, whose purpose is to show why the
unloading is taking place.

á The QueryUnload and Unload events fire at differ-
ent times in an MDI application: when the MDI
parent form unloads, events happen in the fol-
lowing order: 1) The MDI parent’s QueryUnload;
2) all the loaded children’s QueryUnload events;
3) all the loaded children’s Unload; 4) the Unload
event of the MDI parent.

á It is okay to call another form’s Show method
from a Load event procedure. The first form ends
up as the active form when everything is finished.

á A form’s QueryUnload event always precedes its
Unload event. The QueryUnload event receives
the Cancel and UnloadMode parameter; the
Unload event receives only the Cancel parameter.

á You should put code in the Initialize event
procedure to assign the beginning values of the
form’s Public variables, or of Private variables
that represent the stored values of form custom
properties (properties implemented with Property
procedures). This will make the form’s behavior
consistent with other VB classes, because the
Initialize event behaves like the Initialize
event of any other VB class.

á The Show method will cause an implicit load of a
form if the form was not already in memory, and
so will fire the Load event. If the form was already
in memory, the Show method merely makes it vis-
ible, but does not fire the Load event. Depending
on the argument you pass to the Show method,
the form will display modally as a dialog box
(vbModal) or modelessly (vbModeless, the default).
Note that referring to an intrinsic method or
property of a form can cause an implicit load.

á You should put code in the Activate event proce-
dure if a) you want it to run every time the user
makes the form the active form in the application,
or b) if you need to perform initialization tasks that
require the form to already be loaded in memory
(such as drawing graphics or using a data control’s
connection). Otherwise, it is okay to put initializa-
tion code in the form_Load event procedure.

á The Activate and DeActivate events fire whenever
focus changes in the current application between
the current form and another form. The GotFocus
and LostFocus events only fire if there is no other
object on the form capable of receiving focus.

á Although DeActivate and LostFocus fire when
the form loses its status as the active form, a form
is the active form only with respect to the appli-
cation where it is running. So, when the user
moves to another application, the active form of
the current application does not change and these
two events do not fire.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1016

FAST FACTS 1017

Note that, in the case of MDI child forms, a
form’s Unload event might not directly follow its
QueryUnload event: When the main MDI form
unloads, all child form QueryUnload events happen
together, followed by all child form Unload events.

á A DeActivate event fires only when the currently
active form or an object on the currently active
form loses focus to another form in the current
application. DeActivate will not occur when a
form unloads. Neither will DeActivate occur
when an application terminates.

á Although making any reference to a form’s prop-
erties or methods will normally cause an implicit
Load, there is an exception to this rule for calls to
a form’s custom members (that is, properties
implemented as Public variables, methods imple-
mented as Public procedures, or properties
implemented with Property procedures). In such
cases, no implicit Load occurs. The Initialize
event will still run in such cases, however,
provided the form is not already instantiated.

Add an ActiveX control to the
ToolBox (70-175 and 70-176).

á To add an ActiveX control to the ToolBox,
choose Project, Components from the VB menu.
See “Add an ActiveX Control to the ToolBox.”

á On the Project, Properties Make tab, the option
Remove Information about unused ActiveX
Controls should be unchecked to prevent a
runtime error when adding an element to the
Controls Collection, if that control type is
available in the ToolBox but has no design time
instance on the form. There is only a problem
of this nature when the control appears in the
ToolBox. See “Keeping a Reference in the Project
to an ActiveX Control.”

Create dynamic Web Pages
by using Active Server Pages
(ASP) and Web classes
(70-175).

á An IIS (or Web Class) application runs on a Web
server. The Web server invokes an instance of an
IIS application to modify HTML pages that it
sends to clients. Clients have no awareness of the
IIS application.

á The tag pair <%...%> demarcates ASP code within
a Web page file.

á The ProcessTag event fires each time that the IIS
application encounters a pair of substitution tags
in an HTML template.

á The UserEvent event of a WebClass fires when a
dynamically named event fires. The UserEvent
procedure’s parameter gives the name of the event
that just fired.

á The proper syntax for referring to a WebClass tag
in an HTML template would be

<WC@MYTAG>ELIZABETH</WC@MYTAG>

assuming that WC@ is the TagPrefix for that Web
Template item. You must use an HTML tag pair that
includes the full name of the tag. The tag pair sur-
rounds the default initial value of the tag. The tag
name includes the Web Template item’s Tag Prefix.

á No extra files are needed on the user’s machine
for an IIS application. Recall that IIS applications
run server side to help the Web browser prepare a
standard HTML page. DHTML applications, of
course, are a different story, as they implement an
ActiveX DLL that runs client side. Some special
files may be required on the Web server only
(such as MSWCRRUN.DLL and the applica-
tion’s compiled DLL).

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1017

1018 FAST FACTS

where MyVarName is a variable name that will cause
the firing of a like-named event. You then can
write event-handling code to detect the custom
event names in the UserEvent procedure of the
WebItem.

Create a Web page by using
the DHTML Page Designer to
dynamically change attributes
of elements, change content,
change styles, and position
elements (70-175 and 70-176).

á A DHTML application runs on the same
machine as the end-user’s browser (a Web client).
The DHTML application is in the form of an
ActiveX DLL that downloads with a Web page to
the browser.

á You often must refer to the Style property of a
DHTML page element to make visible format-
ting changes to a DHTML page element. For
example, you must write the code

TextField2.Style.BorderStyle = “none”

á You can manipulate a background color of a
DHTML page TextField element named
TextField1 with the syntax
TextField1.Style.Color.

á The property names for DHTML control objects
are not always the same as the corresponding
standard VB control property names. For exam-
ple, the BackColor property in straight VB would
correspond to the .style.BackGroundColor in
DHTML.

á An HTML file that you use as an HTML tem-
plate in an IIS application should be created in a
directory separate from the project’s development
directory. When you run, save, or compile the
project for the first time after adding the template
to the project, VB makes a copy of the template
in the project’s directory (the directory where the
project’s .VBP file resides).

á Events defined by the programmer within the
WebClass project get their own event procedures
(and so UserEvent doesn’t fire), and the WebItem’s
default event (which you can implement by call-
ing URLFor with only one argument) is the
Respond event.

á The ProcessTag event of the HTML template
object may fire as an indirect result of the
WriteTemplate method (when the Web server
reads the tags in the template).

á You use the TagPrefix property to specify the sub-
stitution tag prefix for an HTML Template WebItem.

á The ProcessTag event’s first parameter specifies
the name of a single tag. ProcessTag fires sepa-
rately for each substitution tag pair encountered
in an HTML template, and so only handles one
tag at a time.

á The UserEvent procedure runs only for events
whose names were generated on the fly in HTML
code. You can create such calls with syntax such as

Response.Write “<A HREF=””” & _
URLFor(MyItem) & “””>MyItem
”

in the Start event of the WebClass.

á To enable the firing of a custom WebItem’s
Respond event, you can put code such as

Response.Write “<A HREF=””” & _
URLFor(MyItem, MyVarName) &

➥“””>MyItem
”

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1018

FAST FACTS 1019

á The event names for DHTML control objects
are usually not the same as the corresponding
standard VB event names. The DHTML event
names are often the same as the VB event names,
except that the DHTML event names are pre-
fixed with the word on. The DHTML events—
onclick, onmouseup, onkeypress, and onfocus, for
example—correspond to the VB events Click,
MouseUp, KeyPress, and Focus, respectively. An
exception to this general rule is the DHTML
onblur event, which corresponds to the VB
LostFocus event. Several events that have the
same name in DHTML and standard VB are
Load, UnLoad, Terminate, and Initialize.

á You can refer to the InnerText property of a stan-
dard HTML object to change its displayed text in
a DHTML application without affecting the
visible format.

á Changing the OuterText property would perform
the text replacement, but it would possibly
change the visible formatting of the element,
because it would replace the HTML tags sur-
rounding the element.

Use data binding to display and
manipulate data from a data
source (70-175 and 70-176).

á Connection and Command objects can be placed on
the surface of a Data Environment Designer.

á In a Data Environment setting, the Recordset
object’s name is automatically derived from its
corresponding Command object’s name by placing
the letters rs before the Command object’s name.

á You can place a DataGrid on a form that is auto-
matically bound to the Recordset of a Data
Environment’s Command object by dragging the
Command object with the right mouse button from
the Data Environment to the form.

á A VB control’s DataMember property refers to a
Command object in a Data Environment. The
Datasource property can refer to an ADO Data
Control, a Data Environment, or one of VB’s
older data control types.

Instantiate and invoke a
COM component (70-175 and
70-176).

á An object variable can be defined with early
binding as follows:

Dim objApp as Application

If necessary, you can define and create the object
as follows:

Dim objApp as new Application

The second method implements early binding,
instantiating the variable as soon as you declare it.

á You can implement late binding with statements
such as

Dim x as Object
Set x = New Application

This method only instantiates the object on the
second line. See “Creating an Instance of an
Object with the Set Statement.”

á The CreateObject statement can be used to create
the instance of an object. This is done as follows:

Dim objX as Object
Set objX = CreateObject(“MyApp.SpreadSheet”)

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1019

1020 FAST FACTS

Create callback procedures
to enable asynchronous
processing between COM
components and Visual Basic
client applications (70-175
and 70-176).

á To implement callback functionality from a class
to its calling code in a standard executable, pro-
vide a custom Class event with at least one By
Reference parameter.

á A callback object is manipulated in the server (by
calling a Notify method), but is instantiated in
the client before being passed to the server.

Implement online user
assistance in a distributed
application (70-175) or a
desktop application (70-176).

á A reference to a Help file for an application can
be set through the Project Properties window.
From the Project menu, choose <project name>
Properties. Either type the Help filename in the
Help File Name field, or browse for and select
the file.

á If the name and/or location of a Help file is not
known at design time, a reference to the file can
be set at runtime by using the HelpFile property
of the App object. After the filename has been set,
pressing F1 in the application will display the
online help.

á You can declare an object for programming with
its events as follows:

Private WithEvents xl as Excel.Application

á You can’t use the NEW keyword in a WithEvents
declaration.

á WithEvents declarations must go into the General
section of a module, and they cannot be placed in
a standard code module.

á Type library references are usually found in type
library files, executables, or dynamically linked
libraries.

á If a type library reference is absent for an object
that you instantiate, the application will not
compile.

á The type library will provide the information
needed for early binding such as the object types,
properties, and methods supported.

á The CreateObject statement requires a ProgID
that is made up of the application name and the
object name.

á GetObject behaves differently according to the
different syntax options you use. If you call it
with the format

Set X = GetObject(, “Server.Class”)

you will receive an error if there is no instance of
the requested ActiveX Server already running on
the machine. If you use the format

Set X = GetObject(“”, “Server.Class”)

you will always create a reference to a new object.

á You can find an object’s preloaded event procedures
by using the drop-down boxes in the code window
(just as you would for any control or form).

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1020

FAST FACTS 1021

á The current standard format for Microsoft Help
files is HTML Help, and the extension for an
HTML Help file is chm. The HTML Help format
replaces the WinHelp format as the standard, and
the extension for WinHelp files is HLP.

á Pop-up tips for controls in Visual Basic applica-
tions can be implemented by just putting the
desired text in the ToolTipText property of con-
trols. For ToolTips to work on ToolBars and
TabStrips, you must also set the ShowTips
property of these controls to True.

á To add context-sensitive help to an application,
you need to know the mapping between topic IDs
that will be used in the project and topics in the
Help file. The mapping is usually created by the
person who writes the Help file. Cooperation
between the help author and developer is impor-
tant to ensure that the correct topic IDs are associ-
ated with the proper objects in the application.

á The format for topic files in an HTML Help pro-
ject is as a Web page (*.HTM).

á The format #define TopicIDName TopicIDValue is
appropriate to context ID mapping files for
HTML Help topic files as well as to context ID
mapping files for PopUp (WhatsThisHelp) topics.
The [MAP] section of an HTML Help file con-
tains a list of topic filenames and locations, and
the [ALIAS] section contains a mapping between
topic filenames and topic ID constant names.

á WhatsThisHelp must be set to True whether you
are using ShowWhatsThis, WhatsThisMode, or a
WhatsThisButton on your form.

á ToolTips don’t come from a Help file. They come
from the ToolTipText property of the control for
which the tip is intended.

á Help will automatically be invoked with the F1
key when the App.HelpFile property is set and
when the Help file is identified on the Project
Properties dialog box.

á Visual Basic will check the active control for a
HelpContextID first. If one is not found there, the
container of the active control will be checked next.

á The purpose of the [ALIAS] section in an HTML
Help project file is to map topic ID names to
topic filenames.

á The WhatsThisHelpID identifies the help topic
that will be used.

á You can implement error codes from a COM
component either by setting a method’s return
value or by raising an error to the client. See
“Handling Errors in the Server and the Client.”

á You can check App.NonModalAllowed in an ActiveX
DLL component’s code to see whether the client
supports nonmodal forms. See “Managing Forms
in an In-Process Server Component.”

á In VB5, a server could not have any forms and be
marked for Unattended Execution. In VB6, how-
ever, this is possible. For more information, see
the section titled “Managing Threads in ActiveX
Controls and In-Process Components.”

Implement error handling for the
user interface in distributed/
desktop applications (70-175
and 70-176).

á The Err object provides information about run-
time errors. Its Description property gives a brief
description of the error.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1021

1022 FAST FACTS

Use an Active document to
present information within a
Web Browser (70-175).

á You can use the Hyperlink object in a UserDocument
only when the container is Internet aware.

á NavigateTo and GoBack are methods of the
Hyperlink object.

á The following HTML code will open an Active
document called mydoc.vbd:

Open User Document

CREATING AND MANAGING
COM COMPONENTS

Create a COM component that
implements business rules or
logic. Components include
DLLs, ActiveX controls, and
Active documents (70-175 and
70-176).

á Automation components can be implemented
as either executables or dynamic link libraries
(DLLs). See “Overview and Definition of COM
Components.”

á One of the easiest methods to increasing speed of a
COM components is to implement the component
as a dynamic link library (DLL). In addition, you
can use early binding on the client side to signifi-
cantly improve function invocation performance.

á The Raise method of the Err objects enables you to
return error information from a class module. The
arguments of the Raise method specify the error
number, description, source, and help information.

á When a runtime error occurs, Visual Basic
searches up through the calling chain for an error
handler. If none is found, a fatal error occurs.

á To enable inline error handling, place the statement

On Error Resume Next

in your code. This will prevent VB’s runtime
error-handling system from taking over when an
error occurs and will make you, the programmer,
responsible for reacting to any error conditions
that are generated.

á Err.Description is a brief description of the
error. Err.Number is the Visual Basic number
corresponding to the error.

á On Error Goto 0 disables error handling.

á Use of the vbObjectError differentiates Visual
Basic errors from user-defined errors.

á The recommended way to generate runtime
errors is with the Err.Raise method. The Error
statement can also be used, but it is available in
Visual Basic 6 only for the purpose of backward
compatibility.

á The LastDLLError property of the Err object is
only available in 32-bit environments.

á The Err.Source property is used to identify the
location of an error. This property is a text prop-
erty that the programmer of the application can
set to indicate the procedure, object, or
application where the error occurred.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1022

FAST FACTS 1023

See “Overview and Definition of COM
Components” in Chapter 12, “Creating a COM
Component that Implements Business Rules or
Logic,” and “Late and Early Binding of Object
Variables” in Chapter 10, “Instantiating and
Invoking a COM Component.”

á The WithEvents keyword is used to define a vari-
able that supports events. An example of defining
a variable that supports events is shown as follows:

Private WithEvents m_obj as TextBox

See “Declaring with Events.”

á “In-process” refers to ActiveX DLLs, and “out-of-
process” refers to ActiveX EXEs. See “Comparing
In-Process and Out-of-Process Server
Components.”

á After you declare an object variable, you can inni-
tialize it by setting the variable to a new instance
of the class. For more information, see the section
titled “Overview and Definition of COM
Components.”

á Each copy of a SingleUse ActiveX EXE program
can provide one object. Creating a second object
would cause another copy of the EXE to be
loaded in memory. For more information, see the
section titled “Using SingleUse Instancing for
Separate Instances of Every Object.”

á You must write code for all the methods and
properties of an interface that you use in a class
with the Implements keyword. Not doing so will
lead to a compile-time error. For more informa-
tion, see the section titled “Using Interfaces to
Implement Polymorphism.”

á The Implements keyword is used to specify that a
specific module will provide an implementation
of a specific interface. For more information, see
the section titled “Creating the Interface Class.”

á An event procedure for a Class’s custom event
appears in a VB application’s code window after
you use WithEvents to declare an object variable
of the Class. See “Handling a Class Event.”

á An ActiveX component project’s Name option as
found on the Project tab of the Options dialog
box will be the servername when a client instanti-
ates servername.objecttype in the component.
See “Steps to Create a COM Component.”

á An ActiveX control would be the best way to
implement rules for data entry, because it natu-
rally provides a user interface. See “Choosing the
Right COM Component Type.”

á An ActiveX component residing on a network
server would be the best implementation for busi-
ness rules in general. See “Implementing Business
Rules with COM Components.”

á The IDispatch interface supports the Invoke,
GetIDsOfNames, GetTypeInfo, and
GetTypeInfocount methods.

á The IUnknown interface supports the AddRef,
Release, and QueryInterface methods.

á You will cause vtable binding by correctly using
the NEW keyword in code. See “Under-the-Hood
Information about COM Components.”

Create ActiveX controls
(70-175 and 70-176).

á Events are raised by controls by using the
RaiseEvent statement. The RaiseEvent statement
allows a control to fire an event that its container
may respond to if something of interest occurs. If
the user changes the Text property of an ActiveX
control, for example, it may fire a Changed event to
notify its container that the property has changed.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1023

1024 FAST FACTS

á The UserControl’s GetDataMember event fires
whenever a data consumer sets its DataSource
property to an instance of the ActiveX control.

á Events can be raised by using the RaiseEvent
statement.

á The ReadProperties event receives a property bag
from the container used to read a property.

á An ActiveX control can read and write its proper-
ties from a persistent location. ActiveX controls can
be used from any container that supports ActiveX
controls, such as Visual Basic, PowerBuilder, or
Microsoft Internet Explorer. In addition, ActiveX
controls can be visible or invisible at runtime.

á The GetDataMember event is the place where you
would initiate a data connection and recordset to
provide to data consumers (bound controls). You
do so by setting the second parameter to the ini-
tialized recordset. The first parameter is a string
used to identify members of DataBindings collec-
tions. The event only fires when a bound con-
trol’s DataSource is set to this control.

á To allow other programmers to program your
ActiveX Datasource control’s Recordset, you can
expose it by implementing a property of type
Recordset and initializing it in the GetDataMember
event procedure. You must set the UserControl’s
DataSourceBehavior property to vbDataSource to
implement a DataSource control, but this does
not implement an exposed recordset by itself.

á You should make your ActiveX control the startup
project when you want to test it with a container
application. When you want to test it with an EXE
project, make the EXE project the startup project.

á The UserControl provides the developer with
three events that help loading or writing proper-
ties. These events are the InitProperties,
WriteProperties, and ReadProperties. The
ReadProperties and WriteProperties events pro-
vide a PropertyBag object that is used to read or
write property values so that they can become
persistent.

á The developer of the ActiveX control can prevent
the control from being visible at runtime by
using the InvisibleAtRuntime property or by set-
ting the Top or Left properties so that they are
outside the visible portion of the screen. The
developer should not use the Visible property.

á The PropertyBag object is used to read and write
properties from a persistent location provided by
the container. The PropertyBag object is only
accessible when the ReadProperties or the
WriteProperties events are fired.

á To test your control with Internet Explorer, make
sure that the Debug tab of the Project, Properties
menu dialog box indicates that the control should
be loaded automatically, and that it should be
loaded in the Web browser.

á The name of the collection that provides the con-
trols being modified by a property page is
SelectedControls.

á To enable an ActiveX control to be a data con-
sumer (that is, give it a DataSource and DataField
property), you must set the UserControl’s
DataBindingBehavior property, and you must use
the Tools, Procedure Attributes dialog box to
specify a property that is bound to data and is
associated with the DataField property.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1024

FAST FACTS 1025

á Before switching from an ActiveX control project
to the EXE test project, you need to close the
ActiveX control’s designer. Otherwise, the control
will be disabled in the ToolBox when you switch
to the EXE project, and any instances of the con-
trol that you have already placed in the EXE will
be disabled.

Create an Active document
(70-175 and 70-176).

á Active documents, like automation components,
can be implemented either as dynamic linked
libraries or executables. Active documents can be
viewed inside any container that supports Active
documents such as Microsoft Internet Explorer or
Microsoft Binder. Active documents can obtain
data asynchronously from an URL or a file. The
data in an Active document can be saved to a
persistent location such as a file.

á Depending on the settings of the UserDocument’s
MinHeight and MinWidth properties, scrollbars that
enable the user to navigate around the displayable
area may appear.

á During a Write operation, the developer uses the
PropertyChanged property of the Active document
to notify the container that data has been changed
in the Active document. At some point, the
ActiveX container will fire the WriteProperties
event of the Active document. The container
supplies a PropertyBag object when the
WriteProperties event is fired. This PropertyBag
object can be used to write data to a persistent
location by using the WriteProperty method.

á During a read operation (usually when the Active
document is loaded or returned to be a browser
application), the ReadProperties event is fired by
the Active document container. As with the
WriteProperties event, a PropertyBag object is
supplied that allows the object to be read from
the persistent location by using the ReadProperty
method.

á You can use the TypeName function call to detect
the type of container that currently is hosting the
Active document.

á You need to know the type of container that is
hosting an Active document, because different
containers have different object models. In partic-
ular, the techniques for navigating between docu-
ments differ from one container type to another.

á Global variables defined in a module can be effec-
tively used to pass data between documents.

á When an Asynchronous Data Request is completed
for an Active document, the AsyncReadComplete
event is fired to notify the client.

á The AsyncRead method starts an Asynchronous
Data Request, and a CancelAsyncRead terminates
the request.

á Active documents can be used with any container
that supports Active documents, such as the OLE
control or the Microsoft Binder application.

á The PropertyChanged method signals whether the
Active document data has changed.

á A client application can use automation to create
an instance of an Active document. The only
variables that the client has access to are variables
defined as Public variables.

á A VBD file is used by a container to open an
Active document.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1025

1026 FAST FACTS

Debug Visual Basic code
that uses objects from a
COM component (70-175
and 70-176).

á References to ActiveX components, even in the
same project group, must be created by using the
Project, References menu option.

á You can create as many instances of your ActiveX
components as you want to when testing your
components with project groups, but you can
never include more than one copy of the same
project in a project group.

Choose the appropriate
threading model for a COM
component (70-175 and
70-176).

á Apartment Model Threading is the default
threading model for Visual Basic applications.

á If you want a COM server to run unattended
and support multiple threads, you must set the
Unattended Execution option. Any existing user-
interface messages will be logged according to the
application’s logging options and the operating
system.

á The Thread per Object option in a COM com-
ponent project initiates a thread for each new
SingleUse class that a client instantiates. Note
that Thread per Object is not available for in-
process servers (ActiveX DLLs), but only for out-
of-process servers (ActiveX EXEs).

á You can’t specify the number of threads for an in-
process server.

Design and create components
that will be used with MTS
(70-175).

á In general, coding a client application that calls
MTS components need be no different from cod-
ing a client application that calls other types of
COM objects. There are no special considerations.
The only thing that needs to be done before cod-
ing begins, is that the client has to be configured
to allow the developer to reference the MTS
component.

á MTS components must be in the form of an
ActiveX DLL.

á MTS uses a Context object to store information
about current transactions.

á A transaction is atomic when all operations
included in the transaction must execute success-
fully for the changes to be committed. If for any
reason a part of the transaction fails, the whole
transaction is rolled back.

á When a component that supports transactions is
created, it may be enlisted in a transaction if the
client has a transaction in progress. If there is no
transaction present, however, objects from the com-
ponent will be instantiated without a transaction.

á Setting the transaction support option to Requires
a transaction will cause your component to always
participate in a transaction.

á SetComplete, which is a method of the Context
object of any MTS object, will cause a transac-
tion to commit.

á The SetAbort method of the Context object will
cause a transaction to be rolled back. Therefore,
any changes that the component made on any
ODBC data sources within the body of the
transaction will automatically be rolled back.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1026

FAST FACTS 1027

Create a package by using the
MTS Explorer (70-175).

á An MTS package can be named when it is cre-
ated, or renamed at any time.

á By default, when you import a package from a
package file, all of the components that were in the
package when it was exported will be imported.

á The Package and Deployment Wizard from VB
enables you to create a setup package that will
register your component on the MTS machine
and will install all necessary support files.

á The easiest way to duplicate a package across
multiple MTS systems is to export it to a PAK
file, and then import that PAK file on each of the
target systems.

Add Components to an MTS
package (70-175).

á Dragging and dropping an ActiveX DLL onto a
package in the Explorer will cause it to be added
to that package. If the component is not regis-
tered, it will automatically be registered on the
machine that is running MTS.

á New components can be added to an existing
package by either dragging and dropping the
DLL file for the component onto the package
in MTS Explorer, or by using the Component
wizard. From within the Component wizard,
you can either add components that are already
registered or you can browse to DLLs using the
Windows Explorer.

á The operating system uses the values from the
Identity tab to determine how to apply permis-
sions to any activity performed by an MTS object.

á When identity settings are configured, and a
package is configured to use an NT user account,
the password for that account is not verified. If
the wrong password is entered, a runtime error
will occur on any clients that call the component.

Use role-based security to
limit use of an MTS package
to specific users (70-175).

á For role-based security to take effect, authoriza-
tion tracking must be enabled. This is done from
the Security tab in the Package Properties window.

á Roles are created from the Roles folder, which is a
child of the package in MTS Explorer.

á Standard user and group accounts from the local or
domain account database can be added to a role.

á Roles are stored at the package level. Any compo-
nent within the package can use a role from the
package to apply security. If separate packages
have identical needs in regards to a given role,
the role must be created for each package.

á Role-based security can be assigned to compo-
nent interfaces, which allows more granularity
and flexibility.

Compile a project with
class modules into a COM
component (70-175 and
70-176).

á To implement a read-only property in a class,
only define a Property Get procedure and omit
the corresponding Property Let or Set. This is
useful when the property is not supposed to be
set by the object’s client.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1027

1028 FAST FACTS

á A COM component can have its Instancing
property set to MultiUse if it is an EXE (out-
of-process component) or DLL (in-process
component). ActiveX DLLs cannot be SingleUse.

á An ActiveX EXE project may be defined as
SingleUse, MultiUse, GlobalSingleUse, or
GlobalMultiUse.

á The PublicNotCreatable instancing property set-
ting means that clients can see the class, but that
those clients must use other classes in the compo-
nent to access it.

á A GlobalSingleUse or GlobalMultiUse class will
be available to clients without the need for object
syntax.

á The Instancing property of an in-process server
class may be set to GlobalMultiUse, MultiUse,
PublicNotCreatable, or Private. SingleUse and
GlobalSingleUse can only be set for out-of-
process servers.

á The default scope for a property is Public.

á A dependent class must be defined as
PublicNotCreatable and is passed to the client
via a function provided in the Application.

á You implement a collection’s built-in features by
writing wrapper procedures in the Collection
class.

á When implementing a collection in an applica-
tion, you would put the statement to declare the
Collection object within the dependent
Collection class.

á A class’s Terminate event will always run when all
object variables referring to the class go out of
scope. The END statement ends the component
abruptly without any opportunity to run events.

á Creating a property by using a Property proce-
dure pair (Property Get/Let or Get/Set) allows
for error checking, and ensures that the value
passed is valid.

á Returning a value from a Property Get procedure
is the same as returning a value from a function.
Set the name of the procedure to the return value
in the body of the procedure.

á When implementing custom properties with
Get/Let/Set procedures, you store the value of
the property in a Private variable of the Class
event.

á To implement a custom method in a COM com-
ponent, create a new Public subroutine or func-
tion in a class module.

á When you declare a class as SingleUse in a COM
component, each client gets its own copy of an
ActiveX EXE program. Each copy of the ActiveX
EXE program uses up memory as the EXE is
loaded.

á When you create a class whose Instancing
property is set to MultiUse (as opposed to
GlobalMultiUse), client applications must declare
instances of that class with the syntax:

Dim InstanceName As Servername.Classname

When you create a class whose Instancing prop-
erty is GlobalMultiuse, client applications can
declare instances of the class with this syntax:

InstanceName As ClassName

á Using a Public variable in the General
Declarations section of a class module will define
a new property for that class. However, Property
procedures are the recommended way to imple-
ment properties.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1028

FAST FACTS 1029

á A collection’s built-in Item method has a single
variant parameter. This parameter can be used
either as a traditional Integer-type index number
or as a String-type unique key value to identify
the specific item.

á To cause a custom Class event to fire, you use the
RaiseEvent statement in the class module’s code.

á An Interface may be referenced in other classes
with the Implements keyword.

á The Friend keyword makes a member available
throughout a component project, but not in
clients.

Use Visual Component
Manager to manage
components (70-175 and
70-176).

á You can publish either a component’s source code
or the compiled component itself in Visual
Component Manager.

Register and unregister a
COM component (70-175
and 70-176).

á REGSVR32.EXE is the name of the utility used
to register COM components on a machine’s
system Registry.

á To register an out-of-process COM server (an
ActiveX EXE), you can run it standalone or run
it with the /REGSERVER option.

CREATING DATA SERVICES

Access and manipulate a data
source by using ADO and the
ADO Data Control (70-175 and
70-176).

á A Recordset always requires an open cursor.

á ADO Connection and Recordset objects are the
only two ADO objects that support events.

á The ADO Data Control’s RecordSource property
contains the settings for creating a Recordset.
The Recordset property actually exposes the
Recordset. (The Recordset property is not avail-
able at design time.)

Access and manipulate data
by using the Execute Direct
model (70-175).

á The Execute Direct data manipulation model is
appropriate when you need to perform one-time-
only operations on the data or you need to exe-
cute queries typed by users.

á The Execute Direct data-access model would be
most appropriate in situations where you want to
run a query just once that will not be run again.

á You can implement the Execute Direct model
with an argument to the Connection object’s
Execute method, an argument to the Recordset
object’s Open method, an argument to the Command
object’s CommandText property, or an argument to
the Command object’s Execute method.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1029

1030 FAST FACTS

á The Stored Procedures data manipulation model
is appropriate when you need to execute the same
query over many sessions and from many differ-
ent workstations.

á You can implement the Stored Procedures model
with an argument to the Connection object’s
Execute method, an argument to the Recordset
object’s Open method, an argument to the Command
object’s CommandText property, or an argument to
the Command object’s Execute method.

á Stored procedures take up fewer workstation
resources than inline SQL statements, provide
persistent data-manipulation models, help to
encapsulate business rules, and perform faster.

á The following SQL Server statement will cor-
rectly create a stored procedure with two parame-
ters and a return value:

CREATE PROCEDURE Find_Result AS
Int @MyParm1 Output,
Int @MyParm2

@MyParm1 = Select LastName from Employee
➥Where

EmployeeID = @MyParm2
If ISNULL @MyParm1

Return 0
Else

Return 1
GO

á After you have executed a SQL Server stored pro-
cedure that implements a return value, you can
check the value that the stored procedure
returned by checking element 0 of the Parameters
collection.

á The Execute Direct model would be more appro-
priate when you don’t plan to repeat the same
query twice during the same session of the pro-
gram (the Execute Direct model is more efficient
for a single execution, but Prepare/Execute is
more efficient for subsequent executions after the
first one).

Access and manipulate data
by using the Prepare/Execute
model (70-175).

á The Prepare/Execute model would be more
appropriate when you need to execute the same
dynamic query several times during a single ses-
sion of your application.

á The Prepare/Execute data manipulation model is
appropriate when you need to execute the same
dynamic query several times during a single ses-
sion of your application.

á You can implement the Prepare/Execute model
only with a Command object, because you prepare
the data statement by setting the Command object’s
Prepared property to True.

Access and manipulate data
by using the Stored Procedures
model (70-175).

á The Stored Procedures model would be more
appropriate when you need to execute the same
query over many sessions and from many differ-
ent workstations.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1030

FAST FACTS 1031

Retrieve and manipulate
data by using different cursor
locations. Cursor locations
include client-side and
server-side (70-175).

á A client-side cursor can be better than a server-
side cursor for smaller rowsets, can be more scal-
able than a server-side cursor as users are added
to the system, and is the only option for persis-
tent Recordset objects. A server-side cursor pro-
vides better visibility of other users’ changes.

á A server-side cursor does not support the
AbsolutePosition, Bookmark, and RecordCount
properties of the Recordset.

Retrieve and manipulate data
by using different cursor types.
Cursor types include Forward-
Only, Static, Dynamic, and
Keyset (70-175).

á The Static cursor type doesn’t make other users’
updates visible, and it doesn’t make other users’
deletions or inserts visible. A Static cursor allows
user updates on server data, however.

á A Keyset cursor gives visibility of other users’ edits
to existing records; allows movement in any direc-
tion through the Recordset; and enables the user
to update, add, and delete records in the underly-
ing database. However, a Keyset cursor does not
give visibility of other users’ additions or deletions
of records. Only a Dynamic cursor does this.

Use the ADO Errors collection
to handle database errors
(70-175).

á The ADO Errors collection contains the last
errors generated by an ADO action. It does not
clear before every ADO action, but rather when a
different error has occurred or when you call the
Clear method of the Errors collection.

Manage database transactions
to ensure data consistency and
recoverability (70-175).

á A nested transaction is one that occurs com-
pletely within another transaction.

á Calling a rollback on a transaction will cancel all
transactions nested within the current transaction.

á A transaction will be committed when there is an
update without an explicitly defined transaction.
A rollback will occur if the application terminates
in the middle of an explicitly defined transaction.

Write SQL statements that
retrieve and modify data
(70-175).

á The SELECT keyword begins a SQL statement to
retrieve records.

á A SQL statement to delete all records from the
employees table would read as follows:

DELETE FROM employees

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1031

1032 FAST FACTS

Use appropriate locking
strategies to ensure data
integrity. Locking strategies
include Read-Only, Pessimistic,
Optimistic, and Batch
Optimistic (70-175).

á The most resource-efficient combination of cursor-
type and cursor-locking strategy is the so-called
firehose cursor, which is a forward-only, read-only
cursor.

á Pessimistic locking strategies typically lock a
record early on in the retrieve-edit-save cycle;
optimistic locking strategies, on the other hand,
wait till the last possible moment to lock the
record (the moment the record’s changes are
saved).

á An optimistic locking strategy locks data when
the Update method is called.

á VB ADO’s default locking strategy is
adLockReadOnly.

TESTING THE SOLUTION

Given a scenario, select the
appropriate compiler options
(70-175 and 70-176).

á Microsoft’s implementation of pseudocode in VB
partially compiles your program code, which still
must be interpreted by runtime DLLs as it executes.

á A SQL statement to insert a new record might
read as follows:

INSERT INTO employees
(LastName, FirstName)
VALUES (“Romero”, “Jose Antonio”)

Write SQL statements that use
joins to combine data from
multiple tables (70-175).

á A SQL statement to display matching records
between a table named Customer and a table
named Orders might read like this:

SELECT * FROM Orders
INNER JOIN Customers
ON Orders.CustID = Customer.CustID

á An outer join shows all records from one of the two
tables, and only matching records from the other.
A right join is an outer join that shows all records
from the second named table, and only matching
records from the first named table. A left outer join
shows all records from the first named table, and
only matching records from the second table.

á The SQL statement

SELECT * FROM customers LEFT JOIN orders
ON customers.custid = orders.custid

will display all customers, regardless of whether
they have any orders.

á A SQL statement that uses the JOIN clause to
match records from two tables, showing all
records from one of the tables regardless of
whether they have matches in the other table
might be called an equijoin.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1032

FAST FACTS 1033

á Native code is generally faster than pseudocode.

á You need an external debugger, such as that sup-
plied with Microsoft C++, to use the symbolic
debug information.

á Instead of fully compiling your application before
testing it, compile-on-demand compiles code on
an as-needed basis during testing.

á With compile-on-demand, an application need
not be fully compiled to test it.

á Basic compiler optimization choices include opti-
mizing for fast code, optimizing for small code,
and no optimization. You also may choose to
favor the Pentium Pro.

á Advanced compiler optimization choices are
assume no aliasing, remove array bounds checks,
remove integer overflow checks, remove floating-
point error checks, allow unrounded floating-point
operations, and removing Pentium FDIV checks.

Control an application by
using conditional compilation
(70-175 and 70-176).

á A value for a compiler option set on the com-
mand line overrides the value set in code.

Set Watch expressions during
program execution (70-175).

á The Watch on Demand feature isn’t available in
the Watch window; it appears like a ToolTip when
the mouse pointer lingers over an expression.

á Deactivating a breakpoint in code doesn’t resume
program execution.

á Assertions are not compiled into an executable
program; they are only available in the debug
environment.

á In Break mode, a program is temporarily sus-
pended during execution so that the programmer
can inspect the program state.

Monitor the values of
expressions and variables by
using the Immediate window
(70-175 and 70-176).

á A program must be in Break mode to use the
Immediate window.

á Either ? or Print is shorthand for Debug.Print
when entered into the Immediate window.

á The Debug object’s Print method displays values
in the Immediate window.

á Procedures can be executed by typing them into
the Immediate window.

á Arrays and user-defined types appear in
Locals/Watch windows with a boxed plus sign to
the left of their name. Their data elements can be
selectively displayed or hidden by toggling the
boxed symbol between “+” and “–”.

á A boxed plus sign indicates that a variable con-
tains sub-elements not currently displayed.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1033

1034 FAST FACTS

á You don’t need to do anything to create a tempo-
rary Registry entry for an ActiveX DLL compo-
nent that you are testing—VB automatically
takes care of that for you.

á References to ActiveX controls in the same pro-
ject group are created automatically for all pro-
jects in the group.

á References to ActiveX components, even in the
same project group, must be created by using the
Project, References menu option.

á You can create as many instances of your ActiveX
components as you want to when testing your
components with project groups, but you can
never include more than one copy of the same
project in a project group.

Given a scenario, define
the scope of a Watch variable
(70-175).

á A Watch may be set at three different levels: the
procedure level, module level, or global level.

á The greater the scope of a Watch, the slower it
may be calculated. A Watch set at the procedure
level executes more quickly than a Watch set at the
global level.

á Performance considerations may require you to
narrow the scope of a Watch so that it can calcu-
late more quickly. If you don’t need to observe a
variable in certain contexts, you may want to
exclude it from certain contexts in the Watch.

á The Context group of controls on the Watches
dialog box determines the scope of the watch.

Implement project groups to
support the development and
debugging process (70-175).

á Any type of project can be a startup project, with
the sole exception of ActiveX controls. ActiveX
controls always need another project to host them
before they can be executed.

á Visual Basic’s error-trapping settings apply to all
projects.

á In particular, the Break on All Errors setting is a
Visual Basic environment setting that affects all
projects.

á When running in the Visual Basic environment,
you do not need to compile any of your ActiveX
projects before you can run them. The calling
project has to be the startup project, not the
ActiveX DLL itself. When working with ActiveX
controls, you do not have to do anything (except
place the control on your form), but ActiveX
DLLs and EXEs need to be referenced with the
Project, References dialog box.

á Reference and compile information are all stored
with each individual project and stay intact when
the project(s) is opened outside of the project
group.

á ActiveX controls are executed when they are dis-
played, both in Design and Execution modes. For
more information, see the section titled “Using
Project Groups to Debug ActiveX Controls.”

á The design time testing of an ActiveX control can
be done in a project group, among other options.
In VB5, project groups were the only method you
could use, but this is no longer true in VB6. See
“Using Project Groups to Debug ActiveX
Controls.”

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1034

FAST FACTS 1035

á The Context group enables you to select from
among the modules and procedures in the cur-
rent project. Global scope is specified by selecting
All Modules and All Procedures in the Module
and Procedure combo boxes.

á Global variables are visible to watches of all scope
levels.

á Module-level variables are visible to watches set at
either the module level or procedure level.

á A Public form variable is essentially a property of
the form, making it globally accessible through-
out the program.

DEPLOYING AN APPLICATION

Use the Package and
Deployment Wizard to create
a setup program that installs
a distributed/desktop
application, registers the COM
components, and allows for
uninstall (70-175 and 70-176).

á A dependency file specifies the supporting files
that a particular file needs to be successfully
installed on a system.

á You customize the behavior of a standard setup
routine by modifying the standard VB setup pro-
ject, the SETUP.LST file, or dependency files.

á A VB6 setup package furnishes a copy of
ST6UNST.EXE to the host system. The VB
setup package creates a log file, ST6UNST.LOG,
in the application directory. When a user uses the
Windows Add/Remove utility to remove the
application, ST6UNST.EXE runs, using the
information in the log file to remove files and
Registry entries.

á The standard compression format for Package
and Deployment Wizard files is the CAB
(cabinet) format.

á You can use the Manage Scripts icon in Package
and Deployment Wizard to manipulate Package
and Deployment Wizard’s default behavior when
you run it in the future.

á The name of the VB6 dependency file is
VB6DEP.INI.

á To change the behavior of the custom setup
routine as it runs, you can modify the VB source
code for SETUP1.EXE (SETUP1.VBP).

á The application removal utility will fail if the user
attempts to remove an application that has been
installed twice in separate directories.

Register a component that
implements DCOM (70-175).

á You can create the necessary remote support
(VBR) files for a project that uses DCOM by
compiling the project with the Remote Server
Files option checked in the Components tab of
the Project, Properties dialog box. This will create
the necessary files in the same folder as the pro-
ject, and Package and Deployment Wizard will
distribute these files as necessary.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1035

1036 FAST FACTS

Plan and implement Web-based
deployment for a distributed/
desktop application (70-175
and 70-176).

á The best way to distribute a changed component
to local installations with a browser-driven install
is to update the CAB file containing the compo-
nent on the network server and ask all users to
rerun the setup.

Plan and implement
network-based deployment
for a distributed/desktop
application (70-175 and
70-176).

á Specify a folder during deployment to
network/CD. Specify the drive for the disk
deployment.

MAINTAINING AND
SUPPORTING AN APPLICATION

Implement load balancing
(70-175).

á Availability, extensibility, and performance con-
siderations affect decisions about whether to
make load balancing static or dynamic.

á To implement DCOM in an application, you
should mark the Remote Server Files option on
the Compile tab of the Project, Properties dialog
box before you compile the project.

Configure DCOM on a client
computer and on a server
computer (70-175).

á To enable a client or a server to use DCOM, cre-
ate a client application or component, check the
Remote Server Files option on the Project,
Properties Component tab, compile the project
(this will create a VBR file), create a setup pack-
age for the project, and install it on the client or
the server, whichever is appropriate.

Plan and implement floppy
disk–based deployment or
compact disc-based
deployment for a distributed/
desktop application (70-175
and 70-176).

á To deploy to disks, you need to specify multiple
CABs when you package the setup. Each CAB
will go on a different disk. If you specify only one
CAB, the CAB may be too big to fit on the disk.

á Specify multiple CAB files to distribute a stan-
dard EXE application to users on disks. You can
specify the size of the CAB files and then copy
the CAB files that the Package and Deployment
Wizard creates to the disks.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1036

FAST FACTS 1037

Fix errors and take measures
to prevent future errors
(70-175 and 70-176).

á The Break On All Errors option will stop execu-
tion in the IDE every time an error occurs,
regardless of any error handling in place. This
option is set on the General tab of the environ-
ment’s Options dialog box.

á Because most ActiveX components consist of
class modules, you usually want to use the Break
In Class Modules option in the event that an
error does occur during testing.

Deploy application updates
for distributed/desktop
applications (70-175 and
70-176).

á You can rerun the Packaging script in Package
and Deployment wizard and then put the
changed components in the network distribution
location, on floppy disks, or on the Web page
used for distribution.

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1037

26 002-8 Fast Facts 3/1/99 8:48 AM Page 1038

This chapter provides you with some general guidelines
for preparing for the exam. It is organized into three
sections. The first section addresses your pre-exam
preparation activities and covers general study tips.
This is followed by an extended look at the Microsoft
Certification exams including a number of specific tips
that apply to the Microsoft exam formats. Finally,
changes in Microsoft’s testing policies and how they
might affect you are discussed.

To better understand the nature of preparation for the
test, it is important to understand learning as a process.
You probably are aware of how you best learn new mate-
rial. You may find that outlining works best for you, or
you may need to “see” things as a visual learner.
Whatever your learning style, test preparation takes place
over time. Obviously, you can’t start studying for these
exams the night before you take them; it is very impor-
tant to understand that learning is a developmental
process. Understanding it as a process helps you focus on
what you know and what you have yet to learn.

Thinking about how you learn should help you recog-
nize that learning takes place when we are able to
match new information to old. You have some previous
experience with computers and networking, and now
you are preparing for this certification exam. Using this
book, software, and supplementary materials will not
just add incrementally to what you know; as you study
you actually change the organization of your knowledge
as you integrate this new information into your existing
knowledge base. This will lead you to a more compre-
hensive understanding of the tasks and concepts out-
lined in the objectives and of computing in general.
Again, this happens as a repetitive process rather than a
singular event. Keep this model of learning in mind as
you prepare for the exam, and you will make better
decisions concerning what to study and how much
more studying you need to do.

Study and Exam Prep Tips

27 002-8 ExamTips 3/1/99 8:49 AM Page 1039

1040 STUDY AND EXAM PREP TIPS

An outline provides two approaches to studying. First,
you can study the outline by focusing on the organiza-
tion of the material. Work your way through the points
and sub-points of your outline with the goal of learning
how they relate to one another. For example, be sure
you understand how each of the main objective areas is
similar to and different from another. Then do the
same thing with the subobjectives; be sure you know
which subobjectives pertain to each objective area and
how they relate to one another.

Next, you can work through the outline, focusing on
learning the details. Memorize and understand terms
and their definitions, facts, rules and strategies, advan-
tages and disadvantages, and so on. In this pass through
the outline, attempt to learn detail rather than the big
picture (the organizational information that you
worked on in the first pass through the outline).

Research has shown that attempting to assimilate both
types of information at the same time seems to interfere
with the overall learning process. Separate your study-
ing into these two approaches and you will perform
better on the exam.

Active Study Strategies
The process of writing down and defining objectives,
subobjectives, terms, facts, and definitions promotes a
more active learning strategy than merely reading the
material. In human information-processing terms, writ-
ing forces you to engage in more active encoding of the
information. Simply reading over it exemplifies more
passive processing.

Next, determine whether you can apply the informa-
tion you have learned by attempting to create examples
and scenarios on your own. Think about how or where
you could apply the concepts you are learning. Again,
write down this information to process the facts and
concepts in a more active fashion.

STUDY TIPS

There are many ways to approach studying just as there
are many different types of material to study. However,
the tips that follow should work well for the type of
material covered on the certification exams.

Study Strategies
Although individuals vary in the ways they learn infor-
mation, some basic principles of learning apply to
everyone. You should adopt some study strategies that
take advantage of these principles. One of these princi-
ples is that learning can be broken into various depths.
Recognition (of terms, for example) exemplifies a more
surface level of learning in which you rely on a prompt
of some sort to elicit recall. Comprehension or under-
standing (of the concepts behind the terms, for exam-
ple) represents a deeper level of learning. The ability to
analyze a concept and apply your understanding of it in
a new way represents a further depth of learning.

Your learning strategy should enable you to know the
material at a level or two deeper than mere recognition.
This will help you do well on the exams. You will know
the material so thoroughly that you can easily handle
the recognition-level types of questions used in multiple-
choice testing. You will also be able to apply your
knowledge to solve new problems.

Macro and Micro Study Strategies
One strategy that can lead to this deeper learning
includes preparing an outline that covers all the objec-
tives and subobjectives for the particular exam you are
working on. You should delve a bit further into the
material and include a level or two of detail beyond the
stated objectives and subobjectives for the exam. Then
expand the outline by coming up with a statement of
definition or a summary for each point in the outline.

27 002-8 ExamTips 3/1/99 8:49 AM Page 1040

STUDY AND EXAM PREP TIPS 1041

The hands-on nature of the Step by Step tutorials and
the Exercises at the ends of the chapters provide further
active learning opportunities that will reinforce con-
cepts as well.

Common-Sense Strategies
Finally, you should also follow common-sense practices
when studying. Study when you are alert, reduce or
eliminate distractions, take breaks when you become
fatigued, and so on.

Pre-Testing Yourself
Pre-testing enables you to assess how well you are learn-
ing. One of the most important aspects of learning is
what has been called “meta-learning.” Meta-learning
has to do with realizing when you know something
well or when you need to study some more. In other
words, you recognize how well or how poorly you have
learned the material you are studying.

For most people, this can be difficult to assess objec-
tively on their own. Practice tests are useful in that they
reveal more objectively what you have learned and what
you have not learned. You should use this information
to guide review and further studying. Developmental
learning takes place as you cycle through studying,
assessing how well you have learned, reviewing, and
assessing again until you feel you are ready to take the
exam.

You may have noticed the practice exams included in
this book. Use it as part of the learning process. The
TestPrep software on the CD-ROM also provides a vari-
ety of ways to test yourself before you take the actual
exam. By using the Practice Exams, you can take an
entire practice test. By using the Study Cards, you can
take an entire practice exam, or you might choose to
focus on a particular objective area, such as Planning,
Troubleshooting, or Monitoring and Optimization. By
using the Flash Cards, you can test your knowledge at a

level beyond that of recognition; you must come up with
the answers in your own words. The Flash Cards also
enable you to test your knowledge of particular objective
areas.

You should set a goal for your pre-testing. A reasonable
goal would be to score consistently in the 90-percent
range.

See Appendix C, “What’s on the CD-ROM,” for a
more detailed explanation of the test engine.

EXAM PREP TIPS

Having mastered the subject matter, the final prepara-
tory step is to understand how the exam will be pre-
sented. Make no mistake, a Microsoft Certified
Professional (MCP) exam will challenge both your
knowledge and test taking skills. This section starts
with the basics of exam design, reviews a new type of
exam format, and concludes with hints targeted to each
of the exam formats.

The MCP Exam
Every MCP exam is released in one of two basic formats.
What’s being called exam format here is really little more
than a combination of the overall exam structure and the
presentation method for exam questions.

Each exam format uses the same types of questions.
These types or styles of questions include multiple-rating
(or scenario-based) questions, traditional multiple-choice
questions, and simulation-based questions. It’s important
to understand the types of questions you will be asked
and the actions required to properly answer them.

Understanding the exam formats is key to good prepa-
ration because the format determines the number of
questions presented, the difficulty of those questions,
and the amount of time allowed to complete the exam.

27 002-8 ExamTips 3/1/99 8:49 AM Page 1041

1042 STUDY AND EXAM PREP TIPS

The typical format for the fixed-form exam is as follows:

á 50–60 questions.

á 75–90 minute testing time.

á Question review is allowed, including the
opportunity to change your answers.

Adaptive Form
An adaptive-form exam has the same appearance as a
fixed-form exam, but its questions differ in quantity
and process of selection. Although the statistics of
adaptive testing are fairly complex, the process is con-
cerned with determining your level of skill or ability
with the exam subject matter. This ability assessment
begins by presenting questions of varying levels of diffi-
culty and ascertaining at what difficulty level you can
reliably answer them. Finally, the ability assessment
determines if that ability level is above or below the
level required to pass that exam.

Examinees at different levels of ability will see quite dif-
ferent sets of questions. Examinees who demonstrate
little expertise with the subject matter will continue to
be presented with relatively easy questions. Examinees
who demonstrate a high level of expertise will be pre-
sented progressively more difficult questions.
Individuals of both levels of expertise may answer the
same number of questions correctly, but because the
higher-expertise examinee can correctly answer more
difficult questions, he or she will receive a higher score
and is more likely to pass the exam.

The typical design for the adaptive form exam is as
follows:

á 20–25 questions.

á 90 minute testing time, although this is likely to
be reduced to 45–60 minutes in the near future.

á Question review is not allowed, providing no
opportunity to change your answers.

Exam Format
There are two basic formats for the MCP exams: the
traditional fixed-form exam and the adaptive form. As
its name implies, the fixed-form exam presents a fixed
set of questions during the exam session. The adaptive
form, however, uses only a subset of questions drawn
from a larger pool during any given exam session.

Fixed-Form
A fixed-form computerized exam is based on a fixed set
of exam questions. The individual questions are pre-
sented in random order during a test session. If you
take the same exam more than once you won’t necessar-
ily see the exact same questions. This is because two or
three final forms are typically assembled for every fixed-
form exam Microsoft releases. These are usually labeled
Forms A, B, and C.

The final forms of a fixed-form exam are identical in
terms of content coverage, number of questions, and
allotted time, but the questions are different. You may
notice, however, that some of the same questions
appear on, or rather are shared among, different final
forms. When questions are shared among multiple final
forms of an exam, the percentage of sharing is generally
small. Many final forms share no questions, but some
older exams may have a 10 percent to 15 percent dupli-
cation of exam questions on the final exam forms.

Fixed-form exams also have a fixed time limit in which
you must complete the exam. The TestPrep software on
the CD-ROM that accompanies this book carries fixed-
form exams.

Finally, the score you achieve on a fixed-form exam,
which is always reported for MCP exams on a scale of
0 to 1,000, is based on the number of questions you
answer correctly. The exam’s passing score is the same
for all final forms of a given fixed-form exam.

27 002-8 ExamTips 3/1/99 8:49 AM Page 1042

STUDY AND EXAM PREP TIPS 1043

The Adaptive-Exam Process
Your first adaptive exam will be unlike any other testing
experience you have had. In fact, many examinees have
difficulty accepting the adaptive testing process because
they feel that they were not provided the opportunity
to adequately demonstrate their full expertise.

You can take consolation in the fact that adaptive exams
are painstakingly put together after months of data gath-
ering and analysis and are just as valid as a fixed-form
exam. The rigor introduced through the adaptive testing
methodology means that there is nothing arbitrary about
what you’ll see. It is also a more efficient means of test-
ing, requiring less time to conduct and complete.

As you can see from Figure 1, there are a number of
statistical measures that drive the adaptive examination
process. The most immediately relevant to you is the
ability estimate. Accompanying this test statistic are the
standard error of measurement, the item characteristic
curve, and the test information curve.

When you begin an adaptive exam, the standard error
has already been assigned a target value it must drop
below for the exam to conclude. This target value
reflects a particular level of statistical confidence in the
process. The examinee ability is initially set to the mean
possible exam score (500 for MCP exams).

As the adaptive exam progresses, questions of varying
difficulty are presented. Based on your pattern of
responses to these questions, the ability estimate is recal-
culated. Simultaneously, the standard error estimate is
refined from its first estimated value of one toward the
target value. When the standard error reaches its target
value, the exam terminates. Thus, the more consistently
you answer questions of the same degree of difficulty,
the more quickly the standard error estimate drops, and
the fewer questions you will end up seeing during the
exam session. This situation is depicted in Figure 2.

F IGURE 2▲
The changing statistics in an adaptive exam.

F IGURE 1▲
Microsoft’s Adaptive Testing Demonstration Program.

The standard error, which is the key factor in deter-
mining when an adaptive exam will terminate, reflects
the degree of error in the exam ability estimate. The
item characteristic curve reflects the probability of a
correct response relative to examinee ability. Finally,
the test information statistic provides a measure of the
information contained in the set of questions the
examinee has answered, again relative to the ability
level of the individual examinee.

As you might suspect, one good piece of advice for tak-
ing an adaptive exam is to treat every exam question as
if it is the most important. The adaptive scoring algo-
rithm attempts to discover a pattern of responses that
reflects some level of proficiency with the subject mat-
ter. Incorrect responses almost guarantee that addi-
tional questions must be answered (unless, of course,
you get every question wrong). This is because the
scoring algorithm must adjust to information that is
not consistent with the emerging pattern.

27 002-8 ExamTips 3/1/99 8:49 AM Page 1043

1044 STUDY AND EXAM PREP TIPS

even clicking the simulation launch button again.

It is important to understand that your answer to the
simulation question will not be recorded until you move
on to the next exam question. This gives you the added
capability to close and reopen the simulation application
(using the launch button) on the same question without
losing any partial answer you may have made.

The third step is to use the simulator as you would the
actual product to solve the problem or perform the
defined tasks. Again, the simulation software is designed
to function, within reason, just as the product does. But
don’t expect the simulation to reproduce product behav-
ior perfectly. Most importantly, do not allow yourself to

New Question Types
A variety of question types can appear on MCP exams.
Examples of multiple-choice questions and scenario-
based questions appear throughout this book and the
TestPrep software. Simulation-based questions are new
to the MCP exam series.

Simulation Questions
Simulation-based questions reproduce the look and feel
of key Microsoft product features for the purpose of test-
ing. The simulation software used in MCP exams has
been designed to look and act, as much as possible, just
like the actual product. Consequently, answering simula-
tion questions in a MCP exam entails completing one or
more tasks just as if you were using the product itself.

The format of a typical Microsoft simulation question
consists of a brief scenario or problem statement along
with one or more tasks that must be completed to solve
the problem. An example of a simulation question for
MCP exams is shown in the following section.

A Typical Simulation Question
It sounds obvious, but your first step when you
encounter a simulation is to carefully read the question
(see Figure 3). Do not go straight to the simulation
application! You must assess the problem being pre-
sented and identify the conditions that make up the
problem scenario. Note the tasks that must be per-
formed or outcomes that must be achieved to answer
the question and review any instructions on how to
proceed.

The next step is to launch the simulator by using the
button provided. After clicking the Show Simulation
button, you will see a feature of the product, as shown
in the dialog box in Figure 4. The simulation applica-
tion will partially cover the question text on many test
center machines. Feel free to reposition the simulation
or move between the question text screen and the sim-
ulation by using hotkeys, point-and-click navigation, or

F IGURE 3▲
Typical MCP exam simulation question with directions.

F IGURE 4▲
Launching the simulation application.

27 002-8 ExamTips 3/1/99 8:49 AM Page 1044

STUDY AND EXAM PREP TIPS 1045

Figure 5 shows the solution to the simulation example
problem.

There are two final points that will help you tackle sim-
ulation questions. First, respond only to what is being
asked in the question; do not solve problems that you
are not asked to solve. Second, accept what is being
asked of you. You may not entirely agree with condi-
tions in the problem statement, the quality of the
desired solution, or the sufficiency of defined tasks to
adequately solve the problem. Always remember that
you are being tested on your ability to solve the prob-
lem as it is presented.

The solution to the simulation problem shown in Figure
5 perfectly illustrates both of those points. As you’ll recall
from the question scenario (refer to Figure 3), you were
asked to assign appropriate permissions to a new user,
Frida E. You were not instructed to make any other
changes in permissions. Thus, if you had modified or
removed the Administrator’s permissions, this item
would have been scored wrong on a MCP exam.

Putting It All Together

Given all these different pieces of information, the task
now is to assemble a set of tips that will help you suc-
cessfully tackle the different types of MCP exams.

More Pre-Exam Preparation Tips
Generic exam-preparation advice is always useful. Tips
include the following:

á Become familiar with the product. Hands-on
experience is one of the keys to success on any
MCP exam. Review the exercises and the Step by
Steps in the book.

á Review the current exam-preparation guide on
the Microsoft MCP Web site. The documenta-
tion Microsoft makes available over the Web
identifies the skills every exam is intended to test.

á Memorize foundational technical detail, but
remember that MCP exams are generally heavy
on problem solving and application of knowledge
rather than just questions that require only rote
memorization.

á Take any of the available practice tests. We rec-
ommend the one included in this book and the
ones you can create using the TestPrep software
on the CD-ROM. Although these are fixed-form
exams, they provide preparation that is just as
valuable for taking an adaptive exam. Because of
the nature of adaptive testing, these practice
exams cannot be done in the adaptive form.
However, fixed-form exams use the same types of
questions as adaptive exams and are the most
effective way to prepare for either type. As a sup-
plement to the material bound with this book,
try the free practice tests available on the
Microsoft MCP Web site.

á Look on the Microsoft MCP Web site for sam-
ples and demonstration items. These tend to be

F IGURE 5
The solution to the simulation example.

become flustered if the simulation does not look or act
exactly like the product.

27 002-8 ExamTips 3/1/99 8:49 AM Page 1045

1046 STUDY AND EXAM PREP TIPS

Building from this basic preparation and test-taking
advice, you also need to consider the challenges pre-
sented by the different exam designs. Because a fixed-
form exam is composed of a fixed, finite set of
questions, add these tips to your strategy for taking a
fixed-form exam:

á Note the time allotted and the number of ques-
tions appearing on the exam you are taking.
Make a rough calculation of how many minutes
you can spend on each question and use this to
pace yourself through the exam.

á Take advantage of the fact that you can return to
and review skipped or previously answered ques-
tions. Record the questions you can’t answer con-
fidently, noting the relative difficulty of each
question, on the scratch paper provided. Once
you’ve made it to the end of the exam, return to
the more difficult questions.

á If there is session time remaining once you have
completed all questions (and if you aren’t too
fatigued!), review your answers. Pay particular
attention to questions that seem to have a lot of
detail or that require graphics.

á As for changing your answers, the general rule of
thumb here is don’t! If you read the question care-
fully and completely and you felt like you knew
the right answer, you probably did. Don’t second-
guess yourself. If, as you check your answers, one
clearly stands out as incorrectly marked, however,
of course you should change it in that instance. If
you are at all unsure, go with your first impression.

Adaptive Exams
If you are planning to take an adaptive exam, keep
these additional tips in mind:

á Read and answer every question with great care.
When reading a question, identify every relevant
detail, requirement, or task that must be per-

particularly valuable for one significant reason:
They help you become familiar with any new
testing technologies before you encounter them
on a MCP exam.

During the Exam Session
The following generic exam-taking advice you’ve heard
for years applies when taking a MCP exam:

á Take a deep breath and try to relax when you first
sit down for your exam session. It is very impor-
tant to control the pressure you may (naturally)
feel when taking exams.

á You will be provided scratch paper. Take a
moment to write down any factual information
and technical detail that you committed to short-
term memory.

á Carefully read all information and instruction
screens. These displays have been put together to
give you information relevant to the exam you are
taking.

á Accept the Non-Disclosure Agreement and pre-
liminary survey as part of the examination
process. Complete them accurately and quickly
move on.

á Read the exam questions carefully. Reread each
question to identify all relevant detail.

á Tackle the questions in the order they are pre-
sented. Skipping around won’t build your confi-
dence; the clock is always counting down.

á Don’t rush, but also don’t linger on difficult ques-
tions. The questions vary in degree of difficulty.
Don’t let yourself be flustered by a particularly
difficult or verbose question.

Fixed-Form Exams

27 002-8 ExamTips 3/1/99 8:49 AM Page 1046

STUDY AND EXAM PREP TIPS 1047

formed and double-check your answer to be sure
you have addressed every one of them.

á If you cannot answer a question, use the process of
elimination to reduce the set of potential answers,
then take your best guess. Stupid mistakes invari-
ably mean additional questions will be presented.

á Forget about reviewing questions and changing
your answers. Once you leave a question, whether
you’ve answered it or not, you cannot return to it.
Do not skip any questions either; once you do,
it’s counted as incorrect.

Simulation Questions
You may encounter simulation questions on either the
fixed-form or adaptive-form exam. If you do, keep
these tips in mind:

á Avoid changing any simulation settings that don’t
pertain directly to the problem solution. Solve
the problem you are being asked to solve and
nothing more.

á Assume default settings when related information
has not been provided. If something has not been
mentioned or defined, it is a non-critical detail
that does not factor into the correct solution.

á Be sure your entries are syntactically correct, pay-
ing particular attention to your spelling. Enter
relevant information just as the product would
require it.

á Close all simulation application windows after
completing the simulation tasks. The testing sys-
tem software is designed to trap errors that could
result when using the simulation application, but
trust yourself over the testing software.

á If simulations are part of a fixed-form exam, you
can return to skipped or previously answered

questions and change your answer. However, if
you choose to change your answer to a simulation
question or even attempt to review the settings
you’ve made in the simulation application, your
previous response to that simulation question will
be deleted. If simulations are part of an adaptive
exam, you cannot return to previous questions.

FINAL CONSIDERATIONS

Finally, there are a number of changes in the MCP pro-
gram that will impact how frequently you can repeat an
exam and what you will see when you do.

á Microsoft has instituted a new exam retake pol-
icy. This new rule is “two and two, then one and
two.” That is, you can attempt any exam twice
with no restrictions on the time between
attempts. But after the second attempt, you must
wait two weeks before you can attempt that exam
again. After that, you will be required to wait two
weeks between subsequent attempts. Plan to pass
the exam in two attempts or plan to increase your
time horizon for receiving a MCP credential.

á New questions are being seeded into the MCP
exams. After performance data is gathered on new
questions, the examiners will replace older ques-
tions on all exam forms. This means that the
questions appearing on exams will be regularly
changing.

á Many of the current MCP exams will be repub-
lished in adaptive form in the coming months.
Prepare yourself for this significant change in test-
ing as it is entirely likely that this will become the

27 002-8 ExamTips 3/1/99 8:49 AM Page 1047

1048 STUDY AND EXAM PREP TIPS

preferred MCP exam format.

These changes mean that the brute-force strategies for
passing MCP exams may soon completely lose their
viability. So if you don’t pass an exam on the first or
second attempt, it is entirely possible that the exam’s
form will change significantly the next time you take it.
It could be updated to adaptive form from fixed form

27 002-8 ExamTips 3/1/99 8:49 AM Page 1048

Practice ExamsThis portion of the Final Review section consists of two
exams of 61 questions each. These practice exams are
representative of what you should expect on the actual
exams. The answers are at the end of each exam. It is
strongly suggested that when you take this exam, you
treat it just as you would the actual exam at the test
center. Time yourself, read carefully, and answer all the
questions as best you can.

Some of the questions are vague and require deduction
on your part to come up with the best answer from the
possibilities given. Many of them are verbose, requiring
you to read a lot before you come to an actual question.
These are skills you should acquire before attempting
the actual exam. Run through the test, and if you score
less than 750 (missing more than 15), try rereading the
chapters containing information where you were weak
(use the index to find keywords to point you to the
appropriate locations).

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1049

1050 PRACTICE EXAMS

C. When it is first referenced on line 3.

D. When the event procedure has finished.

4. Assuming that the component has been properly
registered, which of the following code examples
will always create a new instance of MyClass?
Select all that apply.

A. Set MyObject = New MyClass

B. Set MyObject = CreateObject(“MyClass”)

C. Set MyObject = GetObject(,”MyClass”)

D. Set MyObject = GetObject(“MyClass”)

E. Set MyObject = GetObject(“”,”MyClass”)

5. You will be designing an application for a state
government agency. The agency is involved
with issuing occupational licenses to qualified
applicants. In your analysis, you determine
that a license will contain such information as
applicant ID, expiration date, and fee amount.
Which object attribute would you use to support
these items?

A. Method

B. Event

C. Property

D. Trigger

6. In building your class module, you’ve been asked
to make a property write-only. How can you
specify a write-only property for a class?

A. Define a Property Set procedure without a
Property Let procedure.

B. Define a Property Let procedure without
a Property Set procedure.

C. Define a Property Let procedure without a
Property Get procedure.

EXAM 1: DEVELOPING
DISTRIBUTED APPLICATIONS
(70-175)

1. One of the strengths of ActiveX Data Objects
(ADO) is its support for asynchronous operations.
Some of these operations issue events before they
begin and/or after they complete. To test this, you
decide to create and populate a recordset object
from a connection object method. Which ADO
event will indicate that the recordset has been
populated?

A. CommitTransComplete

B. ConnectComplete

C. ExecuteComplete

D. FetchComplete

2. You have declared an object variable to be of type
ADODB.Recordset, but when you pull down the
object combo box in the code window, you don’t
find your variable listed. Why is it not listed?

A. ADODB.Recordset objects don’t support events.

B. You didn’t declare the variable Private.

C. You didn’t declare the variable Public.

D. You didn’t use the WithEvents keyword.

3. Review the following code. The line numbers are
for your reference only.

1. Private Sub Command1_Click()
2. Dim oSomeObject As New Object
3. oSomeObject.SomeMethod
4. End Sub

When will oSomeObject actually be created?

A. oSomeObject won’t get created.

B. When it is declared on line 2.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1050

PRACTICE EXAMS 1051

D. You cannot make a property write-only in a
Visual Basic class module.

7. Which of the following are valid approaches to
registering an out-of-process component (.exe
file) on a client’s system?

A. Run REGSVR32.EXE.

B. Run the executable.

C. Run the executable with a /Regserver
command-line argument.

D. Specify the client’s shared folder when
compiling the executable.

E. Use the Package and Deployment Wizard.

8. You and your team have spent hundreds of hours
developing an ActiveX control to be used by the
medical insurance industry. How can Visual Basic
help you protect your investment?

A. Require a License Key.

B. Enable the control’s safety settings.

C. Digitally sign the control.

D. Mark the control’s source file read-only just
prior to compiling the OCX.

9. In developing an ActiveX DLL, one of the
requirements for your class is to expose a public
event. Client applications will use this event to
display a progress bar during a lengthy, asynchro-
nous task. How would you write the event decla-
ration to allow the user to cancel this process?

A. Public Event PercentDone (ByVal Percent
as Single)

B. Public Event PercentDone (ByVal Percent as
Single) as Boolean

C. Public Event PercentDone (ByVal Percent
as Single, Cancel as Boolean)

D. Public Event PercentDone (ByVal Percent
as Single, ByVal Cancel as Boolean)

10. You’ve been asked to design an application that
will support a user interface as well as expose its
classes to potential client applications. Which
project template should you select?

A. ActiveX DLL

B. ActiveX EXE

C. ActiveX control

D. Standard EXE

11. Before delivering your compiled ActiveX docu-
ment application to the client, you decide to
explore the CD-ROM to ensure that it contains
the correct files. What two file extensions should
you look for?

A. HTM

B. VBD

C. DOB

D. OCX

E. DLL

12. Several months ago, you developed a business
component that your company uses to validate
information collected from a trucking scale. The
Visual Basic component contains a single class and
was distributed to more than 20 end users who are
running a custom Visual FoxPro application.

Recently, you’ve been asked to add functionality
to your component to support a new line of
instruments. What information will you need to
provide Visual Basic in order to maintain binary
compatibility with the previous component?

A. The class ID (CLSID) of the original
component

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1051

1052 PRACTICE EXAMS

15. Your UserDocument contains the following code:

Private Sub UserDocument_Initialize()
MsgBox TypeName(UserDocument.Parent)

End Sub

After compiling the ActiveX document, you
launch Internet Explorer 3.0 and drag the com-
piled document into the main window. What will
be displayed in the message box?

A. IWEBBROWSER

B. IWEBBROWSERAPP

C. String

D. Nothing will be displayed because an error
will result.

16. Your company’s COM component will include
three classes. The main class will encapsulate
insurance policy processing. This class will instan-
tiate and manipulate two private classes to sup-
port financial processing. The specifications call
for client applications to be able to access some
properties and methods from the financial classes
but they will never be allowed to instantiate them
directly. What strategy should you chose?

A. Make the properties and methods Public.

B. Make the properties and methods Friend.

C. Change the Instancing property to
GlobalMultiUse.

D. Change the Instancing property to
PublicNotCreateable.

17. Why would you want to change the DLL Base
Address of your component? Select the best answer.

A. To avoid collisions

B. To decrease load time

C. To avoid rebasing

D. All of the above

B. The interface ID (IID) of the original
component

C. The location of the original component

D. The location of the original project

13. During a recent meeting, it was revealed that your
DLL component has been crashing several applica-
tions. You have been asked to make the component
more stable. One idea presented would be to
recompile the DLL in such a way that each applica-
tion would get its own instance of the class, rather
than one instance serving all applications, as it is
now. How would you enable this in Visual Basic?

A. Convert the project to an ActiveX DLL project.

B. Change the Instancing property to SingleUse.

C. Change the Instancing property to MultiUse.

D. ActiveX DLL components cannot behave in
this manner.

14. You’ve been asked to author an ActiveX control
for use by your company. Your ActiveX control
contains a constituent label control that exposes
its caption property. How could you enable the
control’s caption property to reflect its name
when it is placed on a form at design time?

A. Private Sub UserControl_InitProperties()
LblCaption.Caption = Me.Name

End Sub

B. Private Sub UserControl_InitProperties()
LblCaption.Caption = UserControl.Name

End Sub

C. Private Sub UserControl_InitProperties()
LblCaption.Caption = Extender.Name

End Sub

D. Private Sub UserControl_Initialize ()
LblCaption.Caption = Me.Name

End Sub

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1052

PRACTICE EXAMS 1053

18. Which two properties of a text box control are
used to bind to data at runtime?

A. DataField and DataMember.

B. DataSource and DataMember.

C. DataSource and DataField.

D. You can only bind to data at design time.

19. In reviewing your associate’s Visual Basic project,
you see that she has chosen to make updates
through a cursor opened with a LockType of
adLockOptimistic. Without further review, what
assumption can you make about the update
routine?

A. This routine should provide adequate
consistency.

B. This routine should provide adequate
concurrency.

C. This routine could allow for disconnected
Recordset updates.

D. This will be a forward-only cursor.

20. Which of these SQL statements will return all
Invoice information for the calendar year of 1998?

A. SELECT * FROM Invoices WHERE InvDate IN
➥(‘1/01/1998’,’12/31/1998’)

B. SELECT * FROM Invoices WHERE InvDate
➥BETWEEN ‘12/31/1997’ AND ‘1/1/1999’

C. SELECT * FROM Invoices WHERE InvDate
➥BETWEEN ‘1/1/1998’ AND ‘12/31/1998’

D. SELECT * FROM Invoices WHERE InvDate LIKE
➥‘1998’

21. Your SQL Server DBA has been complaining
that your application is consuming precious
resources for every active client in the company.

After analyzing the Visual Basic code, you locate
the ADO Recordset object that is consuming
server resources. Which recordset property should
you check first?

A. CursorLocation

B. CursorType

C. ConnectionTimeout

D. SourceOfData

22. You have been hired as an architect to design a
client’s distributed database application. You won’t
be involved with the physical design. During dis-
cussions with the client, a business requirement is
revealed: Each workstation must be able to browse
a list of users currently running the software.

How should this design be implemented?

A. Using the Registry

B. Using a component

C. Using a table

D. Using a Recordset

23. A hydrologic plant-monitoring application is being
designed by your shop. This will be a distributed
application, using Microsoft Transaction Server and
Microsoft Message Queue Server. Users will execute
queries to retrieve real-time hydrologic data. The
users will construct these queries by selecting from
various combo boxes on a central form.

Which cursor type should you use to populate
the combo boxes?

A. ForwardOnly

B. Dynamic

C. KeySet

D. Static

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1053

1054 PRACTICE EXAMS

27. Review your associate’s SQL statement:

SELECT Customers.CompanyName, Orders.OrderDate
FROM Customers LEFT OUTER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID

When executed via an ADO connection object,
what will be the outcome of this statement?

A. All customers will be returned.

B. All orders will be returned.

C. Only customers with orders will be returned.

D. Nothing will be returned because the state-
ment is invalid.

28. You’ve been asked to deploy the client tier of your
distributed application via floppy disks. The com-
piled executable is small enough to fit on a single
disk. What method should you use to deploy
your application?

A. Use the Package and Deployment Wizard to
create a single CAB file.

B. Use the Package and Deployment Wizard to
create multiple CAB files.

C. Copy and distribute the .EXE to the floppy
disk.

D. Manually compress and distribute all files
required to install the application.

29. Your distributed application has been installed and
running for weeks. Recently, improvements have
been made to the client tier and it is time to re-
deploy. You run the Package and Deployment
Wizard, regenerating a single CAB file and then
email it to your users. After running the setup,
your users complain that they do not see any of
the improvements. What is the most likely reason?

A. You forgot to include the Visual Basic
runtime library.

24. Here is a section of source code that you have
been asked to optimize:

Public Function SoftwareVersion() as String
SoftwareVersion = App.Major & “.” &

➥App.Minor & “.” & App.Revision
End Function

How could you make this section of code perform
faster?

A. Make it a Sub instead of a Function.

B. Use With and End With statements.

C. Change the function type to Variant.

D. Use the + operators instead of the & operators.

25. You create a new form and immediately place on
it a text box, naming it txtLastName. Next, you
place another text box, naming it txtFirstName.
After running the application a few times, you
decide you would like to change the tab order so
that the cursor initially appears in txtFirstName.

What is the best way to do this?

A. Add txtFirstName.SetFocus to the
Form_Load() event procedure.

B. Set txtFirstName.TabIndex = 0.

C. Set txtFirstName.TabIndex = 1.

D. Set txtLastName.TabStop = False.

26. In order to make inventory changes offline, you’ve
decided to implement a disconnected Recordset.
You declare, create, and populate the Recordset
correctly. How do you go about disconnecting it?

A. Set rsInventory = Nothing

B. Set rsInventory.Connection = Nothing

C. Set rsInventory.ActiveConnection = Nothing

D. rsInventory.Disconnect

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1054

PRACTICE EXAMS 1055

B. You should have generated multiple CAB files.

C. You forgot to maintain binary compatibility.

D. You forgot to increment the project’s version.

30. A distributed application is in its final stage of
implementation by your department. Because all
computers involved with this application are run-
ning 32-bit operating systems, the developers have
chosen DCOM to communicate with the
Microsoft Transaction Server components. Your
responsibility is to deploy the client tier. How will
you configure DCOM on each user workstation?

A. Use the Package and Deployment Wizard.

B. Use DCOMCNFG.

C. Use REGEDIT.

D. Have a developer select the Remote Server
Files on the Components tab of Project
Properties.

31. You’ve been asked to add programmatic security to
a client application. The DLL was created in Visual
Basic and deployed to Microsoft Transaction Server.
An associate has started writing the code:

Dim objContext As ObjectContext
Set objContext = GetObjectContext()
If Not objContext Is Nothing Then

‘ Missing code goes here
End if

Specifications require that only users in the
Marketing role be allowed to call a specific
method. Select the appropriate section of code to
insert in the preceding code:

A.If objContext.IsCallerInRole(“Marketing”)
➥Then

If objContext.IsSecurityEnabled Then

‘ Call method

End If

End If

B. If objContext.IsSecurityEnabled Then
If objContext.IsCallerInRole

➥(“Marketing”) Then

‘ Call method

End If

End If

C. If objContext.IsCallerInRole Then
If objContext.IsSecurityEnabled

➥(“Marketing”) Then

‘ Call method

End If

End If

D. If objContext.IsSecurityEnabled
➥(“Marketing”) Then

If objContext.IsCallerInRole Then

‘ Call method

End If

End If

32. At the initial meeting about your corporation’s
enterprise-wide application project, you’ve
decided to explore the merits of Windows DNA
(Distributed interNet Applications) architecture.
Which element of Windows DNA provides for
automatic management of object instances,
processes, and threads?

A. MSMQ

B. DCOM

C. Windows NT

D. MTS

33. The client has requested a flowchart that shows
the flow of data from the database to the client
application through the middle-tier. Which of the
following demonstrates proper component-based
architecture?

A. Database > Business Service Object > Data
Service Object > Client

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1055

1056 PRACTICE EXAMS

36. The MTS administrator is about to implement
role-based security. Initially, there will be one
role (custodian) and six users performing custo-
dian duties. How should the administrator
implement this?

A. Create an NT group and add it to an MTS
role.

B. Create an MTS role and add it to an NT
group.

C. Create the NT users and add them to an
MTS role.

D. Create an MTS role and add it to the NT
users.

37. Microsoft Transaction Server has been installed
and running for only a few weeks. Security has
never been enabled or configured, although sev-
eral Visual Basic DLLs have been deployed suc-
cessfully. Now that your distributed application
has gone into production, how can you ensure
that you are the only person in the company to
have administrative access to MTS?

A. Remove all users IDs from the administrator
role of the system package.

B. Map your user ID to the administrator role of
the system package.

C. Remove everyone from the administrator role
of the system package.

D. Remove guests from the administrator role of
the system package.

38. Your Visual Basic DLL has been thoroughly
tested and is ready to be deployed on Microsoft
Transaction Server. You create a new package
with default Identity settings and then you suc-
cessfully install the DLL into this package. When
a client application calls the component, what
identity will the component assume?

B. Database > Data Service Object > Client

C. Database > Business Service Object > Client

D. Database > Data Service Object > Business
Service Object > Client

34. During initial brainstorming sessions, your devel-
opment team debates whether to design the cor-
porate purchasing system as a two-tier (client/
server) or a three-tier (Windows DNA) applica-
tion. You decide to list the strengths and weak-
nesses for both architectures on the whiteboard.
Which strengths could be listed for three-tier
architecture? Select all that apply.

A. Less overall programming

B. Reusability

C. Scalable

D. Load balancing

E. Security

F. Low developer learning curve

35. Your next project will be to build a Visual Basic
component to be deployed to Microsoft
Transaction Server. This component will use
ActiveX Data Objects to communicate with
Microsoft SQL Server 7.0 Efficiency and scalabil-
ity are essential requirements. What guidelines
should you follow? Select all that apply.

A. Compile an out-of-process component.

B. Compile an in-process component.

C. Compile a type library.

D. Make the component self-registering.

E. Make the component single-threaded.

F. Manage state.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1056

PRACTICE EXAMS 1057

A. No identity

B. The identity of the user currently running the
client application

C. Your identity, since you installed the compo-
nent

D. The identity of the user currently logged on
to the Windows NT server account

39. An order-processing component is being built by
your team. You have been assigned the task of
creating the class that will post changes to the
inventory tables in the database. It is important
that these database updates happen automatically
and inside their own transaction. Keep in mind
that other classes already involved in their own
transactions may be instancing your class. How
should you enforce these requirements?

A. Compile your class into its own component.

B. Set your MTSTransactionMode property to
RequiresTransaction.

C. Set the Instancing property of your class
module.

D. Set your MTSTransactionMode property to
RequiresNewTransaction.

40. Corporate headquarters has created a Visual Basic
out-of-process component to assist each district
office with calculating quarterly earnings. This
will merge nicely with a custom application that
you are currently building. In order to achieve the
fastest binding possible, you would like to use
vtable binding. How can you ensure vtable
binding to the component?

A. Declare your variables as explicit class types.

B. Declare your variables as Object.

C. vtable binding is not supported by out-of-
process components.

D. You’ll need access to the component’s source
code to achieve this.

41. In debugging a section of your manager’s Visual
Basic application, you see these statements:

#If Win32 Then
Declare Sub MessageBeep Lib “User32.dll”
➥(ByVal N As Long)
#Else
Declare Sub MessageBeep Lib “User.dll”
➥(ByVal N As Integer)
#End If

What is the behavior of this structure?

A. At compile time, Visual Basic will determine
which DLL to call.

B. At runtime, the Win32 constant will
determine which DLL to call.

C. At runtime, the Win32 variable will determine
which DLL to call.

D. At runtime, the Win32 command-line
argument will determine which DLL to call.

42. In designing your company’s order entry system,
you’ve decided to use the text box control for most
of the data input. One of the validation rules is to
require all purchasing codes to be entered in
uppercase. Which two attributes of the text box
control would you use to enforce this rule?

A. KeyPress property

B. KeyDown event

C. KeyPress event

D. UpperCase function

E. UCase function

F. KeyAscii argument

43. Transactional processing will become an impor-
tant feature of your database application. Your
team has chosen Visual Basic, ActiveX Data
Objects, and SQL Server to implement its design.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1057

1058 PRACTICE EXAMS

Then, by manipulating two input buttons, the
user can increase or decrease the number of
months allowed to pay off the loan. The calculated
monthly payment then shows at the bottom of the
page. The DHTML page was deployed and has
been working fine for weeks.

You have recently been asked to modify the
DHTML page and add a feature that will make
the monthly payment appear in red if it is higher
than the budget allowance. Here is the section of
code you started:

Private Sub ComputeMonthlyPayment()
txtPay.Value = Pmt(txtRate.Value / 12,

➥txtMonths.Value, (txtLoan.Value * –1))
If txtPay.Value > txtBudget.Value Then

‘ Missing code goes here
End If

End Sub

Select the appropriate line to insert in the
preceding code:

A. txtPay.Color = “Red”

B. txtPay.Color = Red

C. txtPay.Style.Color = “Red”

D. txtPay.Style.Color = Red

46. Your IIS application has run into some difficulties.
Your HTML forms have been submitting data via
the GET method and this has caused problems
triggering the corresponding events. After some
research, you realize that you should be using the
POST method rather than the GET method. Which
Active Server Page object and corresponding collec-
tion should you use to retrieve the values of those
form elements passed using the POST method?

A. Request object, QueryString collection

B. Request object, Form collection

C. Response object, Post collection

D. Response object, Form collection

To ensure a proper atomic transaction, in which
order should you call the respective ADO objects
and methods?

A. Begin Transaction, Open Connection,
Execute Command, Commit Transaction

B. Begin Transaction, Open Connection,
Commit Transaction, Execute Command

C. Open Connection, Begin Transaction,
Commit Transaction, Execute Command

D. Open Connection, Begin Transaction,
Execute Command, Commit Transaction

44. You’ve been asked to debug a small DHTML
application. You open the Visual Basic project
and launch the DHTML designer. The DHTML
page contains an input button and an input text
control. The original developer had intended for
the current date and time to appear in the text
box when the input button is clicked. She claims
to have written the appropriate code, yet the cur-
rent date and time do not appear. What is the
most likely cause for this bug?

A. She used an HTML input button instead of a
DHTML input button.

B. She removed or changed the input button’s
Name property.

C. She removed or changed the input button’s ID
property.

D. She forgot to use WithEvents when declaring
the input button object.

45. A colleague has created a simple DHTML
application that allows potential car buyers to
calculate their monthly car loan payments. Users
will enter preliminary information about their
budget, the loan amount, and interest rate.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1058

PRACTICE EXAMS 1059

47. The data entry form that you are designing will
have some very strict field-level validation to
ensure that accounting and other business codes
are correct as you tab from field to field. Which
text box event should you use to enforce this
validation?

A. KeyPress event

B. Change event

C. LostFocus event

D. Validate event

48. You decide to update your Visual Basic 5 applica-
tion to take advantage of the new validation fea-
tures found in Visual Basic 6. Editing your main
data entry form, you place code in all of the appro-
priate validation events. You also change the Cancel
button’s Cancel property to True, but you leave the
CausesValidation property to its default value.

Which behavior is exhibited when you click the
Cancel button while the form is editing data?

A. The Cancel button’s Click event fires only
when the control with focus has invalid data.

B. The Cancel button’s Click event fires only
when the control with focus has valid data.

C. The Cancel button’s Click event always fires.

D. The Cancel button’s Click event never fires.
Only pressing the Esc key will fire the event.

49. In order to enable a form’s context-sensitive help,
which two properties must be set?

A. App.HelpFile

B. Me.HelpFile

C. Me.Help

D. Me.HelpContextID

E. Me.WhatsThisHelp

F. Me.WhatsThisMode

50. You have purchased a middle-tier component to
facilitate communication between client applica-
tions and a digital phone system. The author of
the component has published several hundred
different errors that could be raised by his com-
ponent. These errors can be trapped and handled
by your Visual Basic application using the On
Error statement. What properties of Visual Basic’s
Err object might you want to query in order to
determine the error that was raised?

A. Number, Text, Content

B. ID, Text, Source

C. Number, Description, Source

D. ID, Description, Source

51. Please review the following event procedure:

Private Sub cmdShell_Click()
On Error Resume Next

Shell txtProgram1
If Err.Number <> 0 Then
MsgBox txtProgram1 & “ is an invalid
➥program”, vbCritical, “Program 1 Error”
End If
Shell txtProgram2
If Err.Number <> 0 Then
MsgBox txtProgram2 & “ is an invalid
➥program”, vbCritical, “Program 2 Error”
End If
End Sub

Assuming that txtProgram1 contains an invalid
program name and txtProgram2 contains a valid
program name, what message box(es) will be dis-
played to the user?

A. Only the first message box will be displayed.

B. Only the second message box will be displayed.

C. No message boxes will be displayed.

D. Both message boxes will be displayed.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1059

1060 PRACTICE EXAMS

54. In debating the merits of using one type of ADO
cursor over another, which of the following argu-
ments can be made?

A. Keyset cursors cannot see data values that
other users update.

B. Dynamic cursors cannot see data values that
other users delete.

C. Dynamic cursors incur less overhead than
Keyset cursors.

D. Keyset cursors cannot see data values that
other users insert.

55. During the initial discussions with the client, your
goal is to define the architecture that will be used
to implement its enterprise-wide software.
Everyone at the meeting has decided on a three-
tier, distributed-application architecture. You
would like to know which communication mech-
anism the client applications will use to commu-
nicate with the NT servers. The two choices
available to your team are Remote Automation
(RA) and Distributed Component Object Model
(DCOM). Which of the following questions
would best assist you in determining your answer?

A. Do you plan to use Microsoft Transaction
Server?

B. Do you plan to use Visual Basic to build the
components?

C. What operating system are the clients running?

D. Which network protocols are being used?

56. The users of your distributed application run a
process each afternoon that takes several minutes to
complete. To provide feedback, you added a “per-
cent complete” message to the form’s status bar.
Occasionally, this percentage will climb over
100 and confuse your users. Several different
classes in your component affect the percentage.

52. What does the following Event procedure accom-
plish?

Private Sub cmdList_Click()
Dim frmTest As Form
Dim ctrTest As Control
For Each frmTest In Forms
For Each ctrTest In frmTest.Controls
MsgBox frmTest.Name & “ : “ & ctrTest.Name
Next
Next
End Sub

A. All controls on all forms in the project are
enumerated and displayed.

B. All controls on loaded forms in the project are
enumerated and displayed.

C. Only visible controls on all forms in the
project are enumerated and displayed.

D. Only visible controls on loaded forms in the
project are enumerated and displayed.

53. Your consulting firm has recently purchased the
source code for a middle-tier component. This
component has been deployed and running at
several of your client sites. In analyzing the Visual
Basic source code, you have found that the origi-
nal developers have checked the box marked
Unattended Execution. Based on that setting
alone, which of the following statements are true?

A. This component could be implemented as an
ActiveX DLL.

B. This component could be implemented as an
ActiveX EXE.

C. This component could be apartment-threaded.

D. This component could be multi-threaded.

E. This component could be single-threaded.

F. This component will not contain forms.

G. All of the above.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1060

PRACTICE EXAMS 1061

Which of the following provides the best way to
find the code causing the overflow?

A. Debug.Assert

B. Debug.Print

C. Immediate window

D. Watch window

E. Call stack

57. A client has asked you to build a browser-based
application to be used on its corporate intranet.
The corporate standard browser is Internet
Explorer. There is a chance that your application
will be made available to the public next year.
Which Visual Basic project type should you begin?

A. IIS application

B. DHTML application

C. ActiveX document

D. ActiveX control

58. A corporate timesheet program has been imple-
mented as a hybrid intranet application, meaning
that it combines active content with native
HTML. All components are created using Visual
Basic 6 and all users are running Internet Explorer
4. The main page contains an ActiveX control that
displays the current number of users logged into
the application. To learn more about the control,
you view the source and find this OBJECT tag:

<OBJECT
CLASSID=”clsid:dcf0768D-bc7c-101c-b67a-
➥0000c0c3ed5f”
CODEBASE=”http://201.202.203.204/controls/
➥userscontrol.cab#version=–1,–1,–1,–1”
ID=MyControl>
<PARAM NAME=”Download” VALUE=”Never”>
</OBJECT>

In looking at this script tag, how often will the
component be downloaded to the client’s browser?

A. Only when the client’s computer has an older
version

B. Only when the client’s computer has a newer
version

C. Never

D. Always

59. A colleague has created a stored procedure in SQL
Server. The stored procedure does not return row
data but does expect several parameters, some of
which are used to return information to the client.
You’ve been asked to write the Visual Basic code
to interface with that stored procedure. Which
ActiveX Data Object must you use?

A. Connection

B. Recordset

C. Command

D. Query

60. One of the features of the Component Object
Model is the ability of an object to support mul-
tiple interfaces. Furthermore, object classes can be
polymorphic, meaning that many classes can pro-
vide the same property or method, and a client
doesn’t have to know what class an object belongs
to before calling the property or method. What
two features in Visual Basic are used to support
polymorphism?

A. Implements statement

B. WithEvents statement

C. CreateObject function

D. CreateInstance function

E. Abstract classes

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1061

1062 PRACTICE EXAMS

5. C. A property is a named attribute of an object.
Properties define object characteristics, such as
size and name, or the state of an object, such as
enabled or disabled.

6. C. There are many possible combinations of
Property procedures. All of them are valid, but
some are relatively uncommon, like write-only
properties (only a Property Let, no Property Get).

7. B, C, E. ActiveX executables can be registered by
compiling the component, running the compo-
nent, running the component with a /Regserver
command-line argument, or by creating a setup
program. Regsvr32.exe is a utility to register
DLLs and OCX.

8. A. This will enable licensing for ActiveX control
projects. A Visual Basic license file (*.VBL) will be
created when you build the project. The *.VBL
must be registered on the user’s machine for the
components to be used in the IDE.

9. C. When the client application receives a
PercentDone event, the Percent argument will
contain the percentage of the task that’s complete
and the Cancel argument will allow the client to
set it to True to cancel the task. Because the
Cancel argument was not declared with the ByVal
keyword, Visual Basic uses its default behavior,
which is to pass by reference.

10. B. ActiveX executables are an out-of-process com-
ponent that can double as a standalone desktop
application. A desktop application that provides
objects should test App.StartMode, and show its
main form only if it was started standalone.

11. B, E. An ActiveX document can be built as an
out-of-process component (an .EXE file) or an in-
process component (a .DLL file). In either case,
when you compile the project, in addition to
creating the .EXE or .DLL file, Visual Basic creates
a Visual Basic Document file, which has the
extension vbd.

61. In debugging your manager’s Visual Basic compo-
nent, you have created a watch expression to moni-
tor the value of her ADO RecordCount property.
For much of the program’s execution you see
<Object variable or With block variable not

set> under the value column in the watch window.
When a value does appear, it shows as a -1. What is
the most likely cause of this negative value?

A. The Watch expressions’ procedure context is
wrong.

B. The Watch expressions’ module context is
wrong.

C. It’s a result of the cursor type selected.

D. The Recordset doesn’t contain any records.

Answers to Exam Questions
1. C. The ExecuteComplete event will be issued

when the connection object’s execute method has
completed. FetchComplete is a Recordset event
and will not be issued in this case.

2. D. An object that raises events is called an event
source. To handle the events raised by an event
source, you can declare a variable of the object’s
class using the WithEvents keyword.

3. A. When using the New keyword during declara-
tion, it can’t be used to declare variables of any
intrinsic data type, such as Object.

4. A, B, E. You can create new instances by using the
New keyword in the Set statement or by calling
CreateObject. GetObject has many uses and accepts
two parameters: pathname and class. If pathname is
a zero-length string (“”), GetObject returns a new
object instance of the specified type. If the pathname
argument is omitted, GetObject returns a currently
active object of the specified type. If no object of
the specified type exists, an error occurs.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1062

PRACTICE EXAMS 1063

12. C. To maintain compatibility between two ver-
sions of a component, Visual Basic needs you to
provide the path to a previously compiled version
of the component in the Version Compatibility
box on the Component tab of the Project
Properties dialog box.

13. D. The idea cannot be implemented because
ActiveX DLL classes cannot be instanced as
SingleUse. ActiveX EXE classes, however, can be
either SingleUse or MultiUse.

14. C. You can achieve this behavior by evaluating
the Name property of the Extender object in your
control’s InitProperties event procedure. These
extender properties are provided by the container
on which your control is placed.

15. D. You can’t use the Initialize event to test the
container because when the Initialize event
fires, the document is not yet sited. The appropri-
ate event would be UserDocument_Show().

16. D. The Instancing property of the two private
classes should be changed to
PublicNotCreateable, so that other applications
can use objects of this class. Only the component
can create the objects. Other applications cannot
create objects from these classes.

17. D. By setting a unique DLL Base Address, you can
avoid, or at least limit, the chance that your com-
ponent loads into the same memory location as
another component. If such collisions can be
avoided, the operating system won’t have to rebase,
or relocate the component elsewhere in memory,
and component load time will be decreased.

18. C. Visual Basic allows you to bind a data con-
sumer to a data source at runtime. This can be
done by setting the text box’s DataSource property
to an ADO Recordset object and the DataField
property to a specific in that Recordset.

19. B. With an optimistic locking strategy, concur-
rency and performance are good because locks are
not held on the rows that make up the cursor.
Typically, pessimistic locking strategies allow for
better consistency. Only a batch optimistic cursor
can allow for disconnected updates.

20. C. Using the Between keyword specifies an inclu-
sive range to search.

21. A. By changing the CursorLocation to the client
computer, you won’t be consuming server
resources for every active client. This change,
however, may have other impacts.

22. C. Maintaining application information such as
this would be best handled by a table. Because
this is a database application, one could be easily
built and maintained. The Registry would not be
accessible by all users and a component should
not hold state such as this.

23. A. Because the application is populating only the
combo boxes, it does not require scrolling or
dynamic capabilities. The forward-only cursor is
the best way for retrieving data quickly with the
least amount of overhead.

24. B. Using the With statement allows you to per-
form a series of statements on a specified object,
such as the App object, without re-qualifying the
name of the object. This type of referencing is
faster.

25. B. By default, the first control placed on a form
has a TabIndex of 0, the second has a TabIndex of
1, and so on. When you change a control’s
TabIndex, Visual Basic will automatically renum-
ber the positions of the other controls to accom-
modate insertions and deletions.

26. C. Setting the Recordset’s ActiveConnection prop-
erty to Nothing disconnects it from the active con-
nection. The connection can then be closed and
changes can be made to the client-side Recordset.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1063

1064 PRACTICE EXAMS

33. D. Component-based applications provide
resources and services through COM-based
objects. Data service objects manage and satisfy
requests for data generated by business service
objects, and are often implemented as stored pro-
cedures or COM components. Business service
objects are the logical layer between client and
data services, and a collection of business rules
and functions that generate and operate upon
information. They accomplish this through busi-
ness rules, which can change frequently, and are
thus encapsulated into components that are phys-
ically separate from the application logic itself.

34. B, C, D, E. Distributed applications are compo-
nent based, and because business rules get encap-
sulated into components, they can be reused by
many different applications. When deployed
within an efficient infrastructure, such as the
Windows Distributed interNet Architecture
(DNA), distributed applications become scalable
and can be load balanced. Security is improved
because the middle-tier components can be cen-
trally secured using a common, easily-adminis-
tered infrastructure. Building three-tier solutions
can take more overall time than two-tier solutions,
since you are having to identify your middle-tier
services, design your class modules, and encapsu-
late all business rules. Because component-based
development may be new to some developers,
training and experience will need to be obtained.

35. B, F. To use a component with Microsoft
Transaction Server, it must be a COM DLL, which
is also referred to as an in-process component.
When Visual Basic compiles a DLL, it automatically
includes a type library and makes it self-registering.
For scalability, the component should be apartment-
model threaded rather than single-threaded, and the
developer should manage state carefully.

27. A. A left-outer join will return all rows from the
first-named table, which is the table that appears
leftmost in the join clause. Unmatched rows in
the rightmost table do not appear.

28. B. If you are deploying your application on
floppy disks, you should choose multiple CAB
files, specifying a size no larger than the disks you
plan to use. Don’t forget that you will need to
distribute the Visual Basic runtime library.

29. D. Before creating a package, you should ensure
that your project’s version number has been set on
the Make tab of the Project Properties dialog box,
especially if distributing a new version of an exist-
ing application. Without incrementing the version
number, the end user’s computer may determine
that critical files do not need to be updated.

30. A. The Package and Deployment Wizard will
determine whether your project includes remote
automation or DCOM features and will display
screens that allow you to specify the appropriate
options in these cases.

31. B. It’s a good idea to call IsSecurityEnabled
before calling IsCallerInRole. If security isn’t
enabled, IsCallerInRole will not return an accu-
rate result. IsCallerInRole requires a single para-
meter that contains the name of the role in which
to determine if the caller is acting.

32. D. Microsoft Transaction Server is a component-
based transaction processing server for develop-
ing, deploying and managing remote-server
applications. MTS provides a runtime infrastruc-
ture that will automatically track all instances of
objects, no matter how many clients are using the
objects. And, depending on the threading model
used by the component, MTS will create threads
as necessary to ensure that object code executes
efficiently.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1064

PRACTICE EXAMS 1065

36. A. The most flexible approach to mapping users
to roles is to create an NT group for each role in
the application. After you have assigned the NT
groups to all the roles in your MTS application,
you can use NT’s User Manager to add or remove
users in each group.

37. B. When you install MTS, the system package
does not have any users mapped to the
Administrator role, so security is disabled. With
security disabled, any user can use the MTS
Explorer to modify package configuration on that
computer. If you map users to the system package
administrator role, MTS will check when a user
attempts to modify packages in the MTS Explorer.

38. D. When objects access resources, such as files and
databases, the objects are authenticated before
being allowed access. By default, an object’s iden-
tity is that of the user who is currently logged on
to the computer running Microsoft Transaction
Server. You should assign a specific Windows NT
user account to the package, so that all objects
running in that package share that identity.

39. D. By setting the MTSTransactionMode property of
a class module, you can specify the transactional
behavior of that class. The
RequiresNewTransaction setting indicates that the
object must execute within their own transac-
tions. When a new object is created, MTS auto-
matically creates a new transaction for the object,
regardless of whether its client has a transaction.

40. A. You can ensure that early binding is used by
declaring variables of specific class types. It’s the
component that determines whether DispID or
vtable binding is used. Components you author
with Visual Basic will always support vtable
binding.

41. A. The #If directive allows for conditional com-
pilation. Conditional compilation is typically
used to compile the same program for different
platforms, as with the previous Win32 example.

42. C, F. You use the KeyPress event whenever you
want to process the standard ASCII characters
entered in a text box. If you want to force a char-
acter to be uppercase, you can use this event and
modify the KeyAscii argument.

43. D. With ADO, transactions are handled by the
connection object, so it must be created first. Next,
you begin the new transaction and execute the
command(s). When you are satisfied with the
results, you should commit the transaction, which
ends the current transaction and saves the changes.

44. C. An ID is an attribute of an HTML tag that
provides a unique identifier for each element on a
page. Without an ID, there is no way to distin-
guish one control from another. Some elements
are automatically assigned an ID when you add
them to a page. For those that are not, you must
add the ID yourself by entering a value for the
ID property, because only elements with IDs can
be programmed.

45. C. DHTML allows us to change the style of any
HTML element in a document. You can change
colors, typefaces, spacing, indentation, position,
and even the visibility of text. Style attributes can
be set from the style sub-object for each element.

46. B. The Form collection of the Request object
retrieves the value of form elements passed in an
HTTP request when the request is passed using
the POST method.

47. D. Take advantage of the new validate event in
VB 6. It is superior to the LostFocus event in that
you can designate some controls on the form to not
fire the validate event, such as a Cancel button.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1065

1066 PRACTICE EXAMS

If the project is an ActiveX EXE, you can select a
multithreaded model, where each object created
from such a class can be on a separate thread of
execution.

54. D. Dynamic cursors incur more overhead than
Keyset cursors, but are able to detect all changes
made to the data values (inserts, updates and
deletes). Keyset cursors can see data updates
made by other processes, but cannot see inserted
data values made by other processes.

55. C. Remote Automation is the choice for 16-bit
platforms or for 32-bit platforms that do not
implement DCOM. In general, Remote
Automation is slower and less stabile than
DCOM. Because the remote servers will be NT
servers and NT servers support DCOM, the only
question is about the client computers.

56. D. By adding Watch expressions to the Watch win-
dow, you can direct Visual Basic to put the applica-
tion into break mode whenever an expression’s value
changes or becomes true. The application will stop
and enter break mode on the line that caused the
expression to change or become true.

57. A. Because the chance exists that the public
might be accessing your application in the near
future, you should opt to make your application
browser-independent, which means building an
application that runs on a Web server, such as
Internet Information Server (IIS). The three other
project types will force your users to use a
browser that supports Active content or the
Dynamic HTML object model.

58. D. If the version number specified in the
codebase attribute is –1,–1,–1,–1, then Internet
Explorer will always try to download the latest
version of the desired component. This can be a
costly effort involving many network transactions.

48. B. By default, a command button’s
CausesValidation property is set to True. Valid
data would therefore have to be entered into the
current control before the Cancel button’s Click
event would fire.

49. A, D. After you set the application’s HelpFile
property, when a user presses the F1 key, Visual
Basic calls Help and searches for the topic identi-
fied by the current HelpContextID. If the control
with focus has a HelpContextID of 0 (the default),
Visual Basic will search that control’s container,
and then it’s container, until it reaches the form,
looking for a valid HelpContextID to lookup.

50. C. In determining which error has occurred, you
will want to query the error number (Err.Number)
and maybe the source of the error (Err.Source). If
those two properties don’t adequately describe the
error that occurred, you may want to query the
message text (Err.Description).

51. D. With inline error handling such as this, you
test for an error immediately after each statement
or function call. It then becomes very important
to explicit clear the error object, by calling
Err.Clear, after handling the error, otherwise the
next check of Err.Number will report the same
error, even though no new error has occurred.

52. B. The Forms collection represents each loaded
form in an application. These can include MDI
form, MDI child, and non-MDI forms, but they
must be loaded. The controls collection represents
all loaded controls on a component, such as a form.

53. G. This setting on the General tab of the Project
Properties screen indicates that the component will
have no user interaction, user documents, user con-
trols, or forms. It can be set for either ActiveX DLL
(in-process) or ActiveX EXE (out-of-process) project
types. If the project is an ActiveX DLL, then you
can select apartment or single-threaded models.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1066

PRACTICE EXAMS 1067

59. C. The Command object must be used, because it
has support for parameters. A Connection object
is not required, because a command can be cre-
ated independently of a previously defined con-
nection, by passing a valid connection string.
Because the stored procedure is not returning row
data, a Recordset object is not required.

60. A, E. Abstract classes are used to define an inter-
face. They are not meant for creating objects.

Their purpose is to provide the template for an
interface that you’ll add to other classes via the
Implements statement.

61. C. The RecordCount property will reflect how
many records are contained in the recordset, if
ADO can make that determination. Certain cur-
sor types, such as ForwardOnly, will return a
RecordCount of –1.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1067

1068 PRACTICE EXAMS

C. The code should have been placed in the
form’s MouseDown event.

D. The code should read Form1.MenuPopup
mnuPopup1.

3. Kristen is troubleshooting a Visual Basic program
that dynamically adds and removes customer
menu items at runtime. In looking at the code,
she sees Load and Unload statements. Why are
application errors occurring when the program
tries to unload some of the customer menu items?

A. Menu items must have their visible proper-
ties set to False before they can be unloaded.

B. The menu items were created at design time.

C. The menu items are not part of a control array.

D. The menu items must have had their Checked
property set to True.

4. Which of the following are possible ways in
which to add controls to a form?

A. Double-click on the toolbox icon.

B. Drag the toolbox icon to the form.

C. Click the toolbox icon and then draw it on
the form.

D. Right-click the toolbox icon and select Add to
Form.

E. Use the Project—Components screen.

5. How do you set a label’s caption to read “This &
That”?

A. Label1.UseMnemonic = True

B. Label1.UseMnemonic = False

C. Label1.Caption = “This & That”

D. Label1.Caption = “This /& That”

E. You cannot display an ampersand in a label
caption.

EXAM 2: DEVELOPING
DESKTOP APPLICATIONS
(70-176)

1. You’ve been asked to design the user interface to an
employee information program that will run on a
kiosk computer in your building’s lobby. By
default, only employees’ first and last names, com-
panies, and floor numbers are to be displayed. One
of the interface requirements calls for a menu to
allow the user to select additional employee infor-
mation to be displayed. The three menu items are
to be “Title,” “Telephone Number,” and “Email
Address.” Which Menu Control property should
you use to enable the user to toggle their selections?

A. Selected

B. Checked

C. Enabled

D. Visible

2. The users of your application would like to be
able to right-click on a list box and be presented
with some specific menu options. Using the Menu
Editor, you create a menu named mnuPopup1 and
add these items. Next, you write the following
event procedure code:

Private Sub Form_MouseUp(Button As Integer,
➥Shift As Integer, X As Single, Y As Single)

If Button = vbRightButton Then
Form1.PopupMenu mnuPopup1
End If

End Sub

When you test the program, it does not behave as
expected. Why?

A. Your forgot to set mnuPopup1’s visible property
to False.

B. The code should have been placed in the list
box’s event.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1068

PRACTICE EXAMS 1069

6. Late one evening, you create a new form with a
single grid control. You add code to a few of the
grid’s event procedures and then, realizing that
you’ve forgotten to name the control properly, set
the name property to grdEmployee in the Property
window. You then save and close your Visual
Basic 6 project. The next day, when you review
your form module, where do you find your grid’s
event procedure code?

A. It has been moved to the newly named con-
trol’s Click event.

B. It has been moved to the general declara-
tions section.

C. It has been moved to the standard module
that contains sub main().

D. It has been removed from the project.

7. You are performing a peer review of a section of
code. Your associate’s code should trap the F5 key
being pressed while typing comments into a text
box. Here is your associate’s code:

Private Sub txtComments_KeyPress (KeyAscii
➥as Integer)

If KeyAscii = vbKeyF5 Then
‘ Do Something Here

End If
End Sub

Which of the following statements is true of this
code?

A. This code will run and will satisfy the requisite.

B. This code will run but does not satisfy the
requisite.

C. This code will not run due to a runtime error.

D. This code will not compile due to a compiler
error.

8. Your client’s user interface specifications require
items of information to be listed with an accom-
panying icon. The icons will be provided by the
client. Your client also needs the ability to search
for a particular item. Which Visual Basic 6 con-
trol has this functionality built-in?

A. ImageCombo

B. Treeview

C. Listview

D. ImageList

9. You are building an application that will display the
international “no” symbol (a red circle with a diago-
nal bar inside it) dynamically over various images,
such as those for smoking, parking, and dogs.
Which code below will perform the overlay using
Visual Basic picturebox and imagelist controls?

A. Set picNo.Picture = ilsPics.ListImages
➥(“Smoking”).PictureSet picNo.Overlay =

➥ilsPics.ListImages(“No”) .Picture

B. Set picNo.Picture = ilsPics.Overlay
➥(“Smoking”,”No”)

C. picNo.Overlay(ilsPics.ListImages
➥(“Smoking”) .Picture, ilsPics.ListImages

➥(“No”).Picture)

D. This cannot be done with a single picturebox
control.

10. Your form contains a single toolbar with three
button groups. The first group contains file
options: New, Open, Save, and Close. The next
group contains clipboard options: Cut, Copy, and
Paste. The third group contains two drop-down
style buttons: Undo and Redo. The last two
groups are separated by a placeholder-style but-
ton. How many ButtonClick event procedures
will you have available?

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1069

1070 PRACTICE EXAMS

D. Use the LoadPicture function to load the
icons at runtime

13. A modification request asks you to update the
form used to enter customer narrative The form’s
StatusBar needs to reflect the current state of the
Caps Lock key. The form contains three text boxes
with their MultiLine properties set to True. Where
should you start writing your procedure code?

A. You don’t need to write any code.

B. Trap for the vbKeyCapital key in the form’s
KeyUp event.

C. Trap for the vbKeyCapital key in each control’s
KeyUp event.

D. Make a Windows API call.

14. You are constructing a data-driven questionnaire
that will display from 1–12 check boxes, depending
on the question being asked. You add one check
box to the form at design time and decide to add
any others dynamically at runtime using the Load
statement. When you test it, no error is generated,
yet nothing happens. What is the most likely cause?

A. You forgot to make the original control part
of an array.

B. You forgot to set the original control’s index
to 0.

C. You forgot to set the original control’s index
to 1.

D. You forgot to set the visible property.

15. Jerry’s form was designed with 10 OptionButton
controls, named optAttributes(0) through
optAttributes(9). At runtime, Jerry calls the
Load statement and dynamically adds a new
OptionButton control. Immediately after the new
control is loaded, which of the following state-
ments will always be true? Select all that apply.

A. 1

B. 3

C. 4

D. 9

11. Code maintenance and readability are important
in your shop. During an annual review, a section
of your code was sent around the office via email
for all developers to scrutinize:

Private Sub tlbMain_ButtonClick(ByVal Button
➥As MSComctlLib.Button)

Select Case Button.Index
Case 1

Call NewLedgerFile
Case 2

Call OpenLedgerFile
Case 3

Call CloseLedgerFile
End Select

End Sub

What improvement do you think they suggested?

A. You should not have used the Call statement.

B. You should have used separate Click events
for each of these buttons.

C. You should have examined the Button.Key
property instead.

D. You should have examined the
Button.Caption property instead.

12. Your form’s StatusBar must display graphical
icons in a few of its panels. Which of the follow-
ing methods is not a valid approach to perform
this action?

A. Place the icons in an ImageList control and
assign the images to the panels at runtime.

B. Place the icons in an ImageList control and
bind it to the StatusBar at design time.

C. Load the icons into each panel at design time.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1070

PRACTICE EXAMS 1071

A. optAttributes(10).Value is equal to
optAttributes(0).Value.

B. optAttributes(10).Value is equal to
optAttributes(9).Value.

C. optAttributes(10).TabIndex will always be
equal to optAttributes(9).TabIndex + 1.

D. optAttributes(10).Top will always be equal
to optAttributes(9).Top.

E. optAttributes(10).Visible will always be
False.

16. You want to enumerate all controls on all Visual
Basic forms in your project. Which approach will
you need to take in order to do this?

A. Enumerate the Forms collection.

B. Enumerate the Controls collection.

C. Enumerate both the Forms and Controls
collections.

D. Load each form and enumerate each form’s
Controls collection.

17. During the testing phase of your application,
your manager would like to have a “panic” but-
ton placed on all forms, which will immediately
halt execution of the application, regardless of the
application’s state or what the user is currently
doing. You add a command button and imple-
ment the following routine to all forms:

Private Sub cmdPanic_Click()
Dim frmCurrent as Form
For Each frmCurrent in Forms

Unload frmCurrent
Next frmCurrent

End Sub

Which of the following statements is true of your
solution?

A. This code meets your manager’s needs and is
an ideal solution.

B. This code meets your manager’s needs and is
an adequate solution.

C. This code fails to meet your manager’s needs.

D. This code will cause a runtime error.

18. To disallow users from typing numbers into one
of eight text box controls on your form, you
should do which of the following?

A. Set the form’s KeyPreview property to True.

B. Use the SendKeys statement.

C. Set the value of the KeyAscii argument to 0.

D. Add code to the change event.

19. An insurance form that you are constructing for a
client must contain 10 check box controls and 10
corresponding text box controls. As the user checks
a box, the corresponding textbox will be enabled
for the user to enter text. When the form loads, no
boxes will be checked and all of the text boxes will
be disabled. Here is the code you have written:

Private Sub chkOption_Click(Index As Integer)
txtOption(Index).Enabled =

➥chkOption(Index)
End Sub

Which of the following statements is true of your
solution?

A. This code meets your client’s needs and is an
ideal solution.

B. This solution meets your client’s needs and is
an adequate solution.

C. This code fails to meet your client’s needs.

D. This code will cause a runtime error.

20. You plan to include an HTML document with
your Visual Basic application. The document will
list other products that your company produces.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1071

1072 PRACTICE EXAMS

How can Eric ensure that those summary values
are refreshed when the user returns to the cus-
tomer form after having just checked out some
videos?

A. Place calculations in the customer
Form_Load() event procedure.

B. Place calculations in the customer
Form_Paint() event procedure.

C. Place calculations in the customer
Form_Activate() event procedure.

D. Use a timer control.

23. With which of the following Form events do you
have the ability to prevent a form from unloading?
Select all that apply.

A. LostFocus

B. QueryUnload

C. Deactivate

D. Unload

E. Terminate

24. Which of the following scenarios would cause a
form’s Deactivate event to fire? Select all that
apply.

A. When closing the form and returning focus to
the previous form

B. When moving the focus to another displayed
form

C. When loading and displaying another form

D. When moving the focus to another running
application

E. When bringing up Task Manager

F. When closing the application with Task
Manager

Rather than require your users to launch a browser
to view the document, you’ve added a form to the
application that contains a Browser control. You
want the Browser control to center and size itself
appropriately on the form when the form is first
displayed, as well as whenever the user changes the
form’s height or width. How would you do this?

A. Place resizing code in the form’s Load event.

B. Place resizing code in the form’s Resize event.

C. Place resizing code in the form’s Load and
Resize events.

D. Place resizing code in the form’s Load and
Click events.

21. Deron places a timer control on an application’s
startup form. He then sets its interval property
to 5,000, which equates to roughly five seconds.
Next, he places a command button on the form
and writes the following code:

Option Explicit
Private Sub Timer1_Timer()
Unload Me

End Sub

In addition to the form’s Initialize, Load, and
Unload events, which events will fire when the
application is run? Select all that apply.

A. Form_Paint()

B. Timer1_Initialize()

C. Form_GotFocus()

D. Form_Resize()

E. Form_Terminate()

22. Eric is writing an application for a local grocery
store to check out videos. His SDI application
will display modeless forms. The customer
form displays summary values that are calc-
ulated dynamically as videos are checked out.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1072

PRACTICE EXAMS 1073

25. Dave is reviewing the contents of a Visual Basic
setup CAB file to determine if the help files were
included. Assuming Dave has used a format
native to Visual Basic, what file extensions could
he be looking for? Select all that apply.

A. *.HTM

B. *.HPJ

C. *.CHM

D. *.HLP

26. To get her project back on schedule, Kerri decided
to have two separate consultants assist in building
the application’s help system. Each consultant cre-
ated an HTML help file. Now, Kerri must figure
out how to associate two different help files with
her application. How must Kerri do this?

A. Reference the help files at design time.

B. Reference the help files at runtime.

C. Assign each form’s HelpFile property to the
corresponding help file.

D. It can’t be done. The two help files must be
merged.

27. In building an Windows Explorer style applica-
tion, you want to enable a Launch button when-
ever a user clicks on a file with a recognized
extension. You will maintain a list of these recog-
nized extensions in a dynamic array. Which
Visual Basic function will you use to activate the
file’s associated application?

A. CreateObject

B. GetObject

C. Shell

D. Open

28. Immediately after installing Visual Basic 6, you
start a new Standard EXE project. When you
browse the Project References screen, what prese-
lected references do you find? Select all that apply.

A. Visual Basic Type Library

B. OLE Automation

C. Visual Basic for Applications

D. Microsoft ActiveX Data Objects 2.0 Library

E. Visual Basic objects and procedures

29. While updating a section of code, you find that
you need to declare an object variable that can
refer to an existing Drawing object. Which
expression would you use?

A. Set X as Drawing

B. Set X as New Drawing

C. Dim X as Drawing

D. Dim X as New Drawing

30. Monty has forwarded a snippet of code to you:

Private Sub cmdBrowse_Click()
Dim oBrowser As Object
Set oBrowser = New InternetExplorer
oBrowser.Visable = True

End Sub

You agree that there is a misspelling in the
Property name, but Monty also insists that
the compiler does not seem to be catching this
problem. Why must you agree with him?

A. Because Visual Basic is using late binding

B. Because Visual Basic is using early binding

C. Because the InternetExplorer class doesn’t
have a type library

D. Because Visual Basic is using vtable binding

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1073

1074 PRACTICE EXAMS

In order for Visual Basic to do this automatically,
you declare your CaptionColor property as
OLE_COLOR. In testing your control, you drop an
instance onto a form and name the control
MyControl. What would be displayed when the
following code was executed in the test project?

MsgBox TypeName(MyControl.CaptionColor)

A. OLE_COLOR

B. Long

C. Object

D. Nothing will be displayed because an error
will result.

35. Your ActiveX document project contains two sep-
arate user documents. You would like to pass data
from UserDoc1 to UserDoc2 during navigation.
How would you implement this?

A. By declaring a Public variable in UserDoc1

B. By declaring a Public variable in UserDoc2

C. By declaring a Public variable in a standard
module

D. By using the Property Bag object

36. You are currently viewing UserDocumentA inside
Internet Explorer. Which feature of an ActiveX
Document allows you to display UserDocumentB?

A. Hyperlink.GoForward

B. Hyperlink.NavigateTo

C. OpenURL

D. UserDocument_Show

37. Select two appropriate ways to stop your applica-
tion and enter Break mode, while developing in
the Visual Basic IDE.

A. Debug.Assert True

B. Debug.Assert False

31. Under which circumstances are you not allowed
to use the WithEvents keyword? Select all that
apply.

A. In the general declaration section of a form
module

B. In the general declaration section of a class
module

C. In the general declaration section of a stan-
dard module

D. With the As New keyword

E. With an object that doesn’t support events

32. Which feature would you use to indicate to
an ActiveX control that a property should be
persisted to the PropertyBag object?

A. PropertyChanged method

B. CanPropertyChange method

C. WriteProperties event

D. WriteProperty method

33. Mike is almost finished designing his ActiveX
control and would like to begin testing it. He
adds a standard EXE project to his project group
and opens Form1. Mike finds his control in the
toolbox, but is unable to add it to the form. How
can Mike resolve this problem?

A. Mike needs to register his control.

B. Mike needs to make his standard EXE the
startup project.

C. Mike needs to start a second instance of
Visual Basic to properly test the control.

D. Mike needs to close the Control Designer.

34. Developers using your ActiveX control would like
a pop-up color-picker dialog box to assist them
when they are setting the CaptionColor property.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1074

PRACTICE EXAMS 1075

C. Stop

D. Halt

E. Break

38. Your company is very good about installing the
latest version of ActiveX controls on all of its
developers’ computers. This is performed auto-
matically by Microsoft Systems Management
Server. How can you ensure that your Visual
Basic projects will always make use of the latest
version of these ActiveX controls?

A. Create a new project template that uses these
ActiveX controls.

B. Select Upgrade ActiveX Controls in the
Project Properties dialog box.

C. Select Upgrade ActiveX Controls in the Tools
Options dialog box.

D. Enable binary compatibility on all of your
projects.

39. In examining your apprentice programmer’s
application, you find that he uses many public
variables. What concerns you is how he is declar-
ing them. He has declared some with the Public
keyword and some with the Dim keyword. Which
declaration is not actually visible by the entire
application?

A. A variable declared in a form’s declarations
section as Public

B. A variable declared in a form’s declarations
section as Dim

C. A variable declared in a standard module’s
declarations section as Public

D. A variable declared in a standard module’s
declarations section as Dim

40. Before delivering your compiled ActiveX
Document application to the client, you decide
to view the CAB file to ensure that it contains the
correct files. What two file extensions should you
look for?

A. HTM

B. VBD

C. DOB

D. OCX

E. EXE

41. Your UserDocument contains the following code:

Private Sub UserDocument_Show()
StatusBar1.SimpleText =

➥TypeName(UserDocument.Parent)
End Sub

When you start this component using Internet
Explorer 3.0, what will the preceding code do?

A. Display String in the status bar

B. Display IwebBrowserApp in the status bar

C. Cause an error

D. Nothing

42. You’ve been hired to author an ActiveX control to
be used by your local police department. Your
control will contain a constituent label control
that exposes its caption through property proce-
dures. You would like for the caption of this label
to initially contain the name of the control itself.
Following is the code that will assign the label’s
caption property the name of the control:

lblCaption.Caption = Extender.Name

Where should you place this line of code to
achieve the desired behavior?

A. UserControl_InitProperties event

B. UserControl_Initialize event

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1075

1076 PRACTICE EXAMS

‘ Display the results
MsgBox strTemp

End Sub

Having never heard of the SortString function,
you ask her where she obtained it. She claims that
it is a method of a class that her project is refer-
encing. How is this possible?

A. The object must have been declared with the
New statement.

B. The class must have its instancing property
set to GlobalMultiUse.

C. The SortString method is the default method
of the class.

D. This cannot be true.

46. Because all users in the Accounting division are
running Internet Explorer, you have been con-
tracted by them to write a DHTML application.
Using Visual Basic, you begin designing a cus-
tomer form by placing the following tag atop a
new DHTML page:

H1 ID=CustStatus>Customer Status</H1>

What statement would you use to dynamically
change the text to read Customer is Delinquent,
with Delinquent in boldface?

A. CustStatus.Text = “Customer is
➥Delinquent”

B. CustStatus.innerText = “Customer is
➥Delinquent ”

C. CustStatus.innerHTML = “Customer is
➥Delinquent ”

D. This cannot be done dynamically.

47. The next version of your DHTML application
will include some minor improvements. One
enhancement the users would like is for the cus-
tomer form to show the status in red if the cus-
tomer is delinquent. Here is the current tag:

C. UserControl_ReadProperties event

D. UserControl_WriteProperties event

43. In designing a component to assist in home
financing, you create three class modules. Each
class can be instanced by a client application. One
of the classes contains a method that should not
be able to be called by a client application, but
must be able to be called by any instance of any of
the three classes. How should you implement this?

A. Make the method Public.

B. Make the method Private.

C. Make the method Protected.

D. Make the method Friend.

E. Only properties can behave in this manner.

44. An associate has created an out-of-process com-
ponent to assist you in calculations. The compo-
nent was built in Visual Basic, but no external
type library was provided to you. How can you
ensure vtable binding to the component?

A. Declare your variables as explicit class types.

B. Declare your variables as Object.

C. vtable binding is not possible without an
external type library.

D. You’ll need access to the component’s source
code to achieve this.

45. While reviewing a peer’s code, you see the follow-
ing event procedure:

Private Sub cmdSort_Click()
Dim strTemp As String

‘ Enter several characters
strTemp = InputBox(“Enter several

➥characters”)

‘ Sort the string
strTemp = SortString(strTemp)

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1076

PRACTICE EXAMS 1077

<H1 ID=CustStatus> Customer is
➥Delinquent</H1>

What DHTML statement would cause this to
happen?

A. CustStatus.Color = Red

B. CustStatus.Color = “Red”

C. CustStatus.Style.Color = Red

D. CustStatus.Style.Color = “Red”

48. Having just compiled an ActiveX control on your
computer, you would like to test it from
Microsoft Word. Should you use the
RegSvr32.exe utility to register the OCX file?

A. No; Visual Basic registered the component for
you when you compiled it.

B. No; RegSvr32.exe is for registering DLLs
only.

C. Yes; the component has not yet been registered
on that computer.

D. Yes; the component has been registered only
for Visual Basic’s use.

49. Conditional compilation allows your company to
maintain one set of source code to be used to
generate an engineering application in English,
French, and German. In addition to displaying
text native to each country, each executable per-
forms calculations using logic local to each coun-
try. Here is some pseudocode:

#If conGermanVersion then
‘ Compute using German logic

#ElseIf conFrenchVersion then
‘ Compute using French logic

#Else
‘ Compute using English logic

#End If

One way to set the conditional compilation con-
stant is in code, such as in the following example:

#Const conGermanVersion = 1 ‘ Will
➥evaluate true in #If block.

What are two other ways to set a compilation
constant?

A. Use a conditional compilation control.

B. Set an argument in Tools, Options.

C. Set an argument in Project, Properties.

D. Specify the constant in the Package and
Deployment Wizard.

E. Pass a command-line parameter to Visual
Basic.

F. Pass a command-line parameter to the appli-
cation.

50. The data entry form that you are designing will
have some very strict field-level validation to ensure
that accounting and other business codes are cor-
rect as you tab from field to field. Which text box
event should you use to enforce this validation?

A. KeyPress

B. Change

C. LostFocus

D. Validate

51. Part of your company’s check reconciliation soft-
ware involves reading a large ASCII text file. This
file is provided by your financial institution each
month on CD-ROM. You’ve been asked to
improve the interface by adding a ProgressBar
control to the form, showing the percentage of
the file that has been read. You have set the range
properties in code and drafted the following:

‘ Open ASCII File
Open “D:\CHECKDUMP.TXT” For Input As #1

‘ Loop Until End of File, reading and
➥processing lines from the file

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1077

1078 PRACTICE EXAMS

B. Packaging scripts allow the Package and
Deployment Wizard to run in silent mode;
Deployment scripts are used by Microsoft
System Management Server.

C. Packaging scripts are required for building CAB
files; Deployment scripts allow the Package
and Deployment Wizard to run in silent
mode.

D. Packaging scripts allow the Package and
Deployment Wizard to run in silent mode;
Deployment scripts allow you to deploy the
project again later, using the same settings.

E. Packaging scripts can be used to generate
standard or Internet packages; Deployment
scripts allow the Package and Deployment
Wizard to run in silent mode.

54. What is the importance of the WithEvents key-
word when declaring an object variable in a stan-
dard module?

A. It allows you to respond to events triggered by
that object.

B. It allows you to implement events triggered
by that object.

C. It allows you to raise your own events when
using that object.

D. WithEvents is not valid in a standard module.

55. Recently, your users have been asking you to add
small, pop-up notes that explain the purposes of
the controls on the main data entry form. They
claim that this type of help is found in many of
the popular Microsoft Windows applications and
all they have to do is hover their mouse pointer
over a control and wait for the help to pop up.
How can you implement this behavior in Visual
Basic?

Do While Not EOF(1)
Line Input #1, strLine
Call ProcessLine(strLine)
Loop

‘ Update ProgressBar to show 100% completion

The ProcessLine procedure will increment the
ProgressBar, but to ensure that the bar shows
100% completion after the loop has finished,
which line of code should you add to the bottom
of this routine?

A. Progressbar1.Value = Progressbar1.Max

B. Progressbar1.Value = 100

C. Progressbar1.Max = True

D. Progressbar1.Value = 0

52. Your customer has requested that its application be
delivered on floppy disks, but its computers have
only the 5.25" high density disk drives. The com-
piled executable, however, is small enough to fit on
a single disk. How should you use the Package and
Deployment Wizard to deploy your application?

A. Use the wizard to create a single CAB file.

B. Use the wizard to create multiple CAB files.

C. Use the wizard to copy the .EXE to a floppy
disk.

D. The wizard doesn’t support that disk format.

53. With the new Package and Deployment Wizard,
which of the following are true statements about
Packaging scripts and Deployment scripts? Select
all that apply.

A. Packaging scripts are used by Setup to list the
files to be set up; Deployment scripts are used
by Setup to determine where those files are to
be installed.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1078

PRACTICE EXAMS 1079

A. Set each control’s ToolTip property.

B. Set each control’s ToolTipText property.

C. Implement WhatsThisHelp.

D. Utilize the form’s PopupMenu method.

56. You’ve been asked to build a customer phone list
report. The phone list will be populated from a
table named CUSTLIST, found in the SALES98
database on a SQL server named FARGO. In
order to keep development time to a minimum,
you are asked to use the Data Environment
Designer. This report will be the only purpose of
this application. After selecting a new Data
Project template, what steps should you take to
build this report?

A. Configure the default connection, add a
command to the connection, and drag
the command to the detail section of the
data report.

B. Configure the default command, add a
connection to the command, and drag
the connection to the detail section of the
data report.

C. Add a new command, add a connection to
the command, and drag the connection to the
detail section of the data report.

D. Add a new connection, add a command to
the connection, and drag the command to the
detail section of the data report.

57. How do you dynamically bind a text box control
to an ADO Recordset object?

A. Set the DataSource and DataMember properties.

B. Set the DataSource and DataField properties.

C. Use the Visual Basic data control.

D. Use the Microsoft ADO data control.

E. Use the Data Environment.

58. After evaluating an innovative ActiveX control,
your programming shop has decided to purchase
a license allowing all developers to use the con-
trol. Your manager gives you the path to the
shared folder containing the OCX file and
instructs you to copy it into your Windows sys-
tem folder. After it has been copied to your hard
drive, how would you publish the component to
your local Visual Component Manager database?

A. Run RegSvr32.exe.

B. Run PubSvr32.exe.

C. Drag the OCX into the VCM.

D. Do nothing. VCM automatically publishes all
components in the Windows system folder.

59. How would you go about adding a comment to
the component published in your local Visual
Component Manager database?

A. Create a text file and republish the original
component, including the new file.

B. Create a text file and drag it into the VCM
onto the component.

C. Use the Add Annotation dialog box.

D. Visual Component Manager does not support
this.

60. You’ve designed a class module that contains the
following method:

Public Sub DivideByZero()
On Error GoTo ErrorHandler
MsgBox “The answer is: “ & CStr(3 / 0)
Exit Sub

ErrorHandler:
MsgBox “Division by Zero”

End Sub

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1079

1080 PRACTICE EXAMS

3. B. Only controls created at runtime can be passed
to the Unload statement.

4. A, C. Double-clicking the toolbox icon or click-
ing the toolbox icon and drawing it on the form
are the only two available choices that will place
controls on a form.

5. B. Setting a label’s UseMnemomic property to False
displays the ampersand, whereas setting it to True
defines the access key.

6. B. Orphaned event procedure code is moved to
the general declarations section.

7. B. To trap function keys, you must use the KeyUp
or KeyDown event. The KeyPress event procedure
is ideal for trapping standard ASCII character
keystrokes.

8. C. All of these controls, with the exception of
ImageList, can display information and custom
graphics, but only the Listview has a FindItem
method for searching.

9. B. Use the ImageList’s overlay method.

10. A. Regardless of content, a toolbar has only one
ButtonClick event.

11. C. For readability’s sake, the Button.Index prop-
erty doesn’t tell us much. The Button.Key is a bet-
ter property to use because you can use friendly,
more descriptive names in your code. Using
Button.Caption would be an option, but there is
no guarantee that you will have unique captions
or captions at all on your toolbar buttons.

12. B. Unlike other controls discussed in Chapter 4,
“Creating Data Input Forms and Dialog Boxes,”
the StatusBar control cannot be bound to an
ImageList.

13. A. The StatusBar control can display the current
state of the Caps Lock key without writing any
event procedure code.

What happens when a standard EXE test project
calls this method with its error-trapping behavior
set to Break in Class Modules?

A. Visual Basic enters break mode in the class
module.

B. Visual Basic enters break mode in the test
project.

C. A message box will display Division by Zero.

D. Nothing will happen.

61. The users of your database application have been
complaining that a label control showing a grand
total amount sometimes appears as 12345678.90.
How can you determine what part of your appli-
cation is causing this peculiar amount to be dis-
played?

A. Use a Debug.Assert statement.

B. Monitor the Watch window.

C. Break when the value changes.

D. Break when the value is True.

Answers to Exam Questions
1. B. The Checked property is the correct choice.

When Checked is True, a small checkmark will
show next to the menu item, and vice versa.
Neither Enabled nor Visible will work because
when the user goes to toggle back, the menu
option won’t be able to click the option. Selected
is a bogus answer.

2. B. Because the list box is on top of the form, you
must add code to its MouseUp event rather than
the form’s. The form’s MouseUp event will only fire
when it is clicked on directly.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1080

PRACTICE EXAMS 1081

14. D. Controls added dynamically are invisible at
first. You must set their Visible property to True
for them to appear.

15. A, E. Newly created controls automatically get
the same property values as the first control in the
array, except for Visible, Index, and TabIndex
properties. Visible is always False, Index is one
higher than the last control in the array, and
TabIndex is one higher than the highest TabIndex
property on the form.

16. D. Because the Forms collection contains only
those forms that are loaded, there is no guarantee
that it will contain all forms in your project. You
will need to ensure that all forms are loaded first
and then enumerate each form’s Controls
collection.

17. B. Because you were explicitly asked for an
immediate halt and are able to throw caution to
the wind, the End statement would be the ideal
solution. The given code would be a safer choice,
however, because it would cause all loaded forms
to fire their QueryUnload and Unload events and
any cleanup code placed there.

18. C. To disallow certain keystrokes, such as num-
bers, you can set the KeyAscii argument to 0
inside the KeyPress event procedure.

19. A. Having two parallel control arrays is the sim-
plest approach to enabling/disabling the corre-
sponding text boxes. The Boolean value of a text
box’s enabled property can be directly assigned
from the value property of the corresponding
check box. Value is the default property of a
check box.

20. B. You only have to put the code in the Resize
event. It will fire initially and whenever the user
changes the form’s dimensions.

21. A, D, E. The form’s firing order will be
Initialize, Load, Resize, Paint, and then the
timer will fire, causing the form’s QueryUnload,
Unload, and Terminate events. The timer control
doesn’t have an initialize event and the form can-
not receive focus because the command button
has been placed on the form and will initially
receive the focus.

22. C. The Activate event is appropriate here; it will
fire when the user returns to the customer form
from any other form in the application. The Load
event fires only once—when the form is first
loaded, and the Paint event can fire too sporadi-
cally to be useful.

23. B, D. Both the QueryUnload and Unload events
have the ability to set their Cancel argument to
True to prevent the form from unloading. The
QueryUnload is the preferred event to use in that it
can also determine the reason the form is closing.

24. B, C. DeActivate fires when focus is moved from
one form to another within the same application.
Closing a form does not cause the DeActivate
event to occur.

25. C, D. Visual Basic can read WinHelp or HTML
help files. The file extensions are HLP and CHM,
respectively.

26. B. Only one help file can be referenced at design
time, so you will need to assign the App.Helpfile
property at runtime whenever appropriate. Forms
do not have a HelpFile property.

27. B. GetObject is used to activate the application
associated with a particular file.

28. B, C, E. During your practice you had a chance
to visit this screen; you will find Visual Basic for
Applications, Visual Basic runtime objects and
procedures, Visual Basic objects and procedures,
and OLE Automation.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1081

1082 PRACTICE EXAMS

38. B. When you select this option, the project will
automatically update ActiveX controls that are
newer than those used in the project.

39. B. Variables declared using the Dim statement in a
Form module are private, whereas variables
declared using a Dim statement in a standard
module are public. For this reason, you should
always declare your Public variables with the
Public statement.

40. B, E. An ActiveX document can be built as an
out-of-process component (an .EXE file) or an in-
process component (a .DLL file). In either case,
when you compile the project, in addition to cre-
ating the .EXE or .DLL file, Visual Basic creates a
Visual Basic Document file, which has the exten-
sion VBD.

41. B. Using the TypeName(UserDocument.Parent)
function, you can determine the container of an
ActiveX document. The appropriate event for
determining the container is the Show event.

42. A. You can achieve this behavior by evaluating
the Name property of the Extender object in your
control’s InitProperties event procedure. The
InitProperties event occurs when a new instance
of a control is placed on a container, such as a
form.

43. D. By declaring a member (property or method)
as a Friend, it becomes visible to other objects in
your component. Friend members are not part of
the class’s interface, so they can’t be accessed by
client programs.

44. A. You can ensure that early binding is used by
declaring variables of specific class types. It’s the
component that determines whether DispID or
vtable binding is used. Components you author
with Visual Basic will always support vtable
binding. Visual Basic compiles type library infor-
mation into its components.

29. C. Dim X as Drawing declares a variable that can
later be assigned to an existing drawing object. If
you had used the Dim X as New Drawing, a new
instance would be created. Set is used for assign-
ment, and the syntax is Set Object = [New]
Class.

30. A. Because the variable was declared as Object,
rather than an explicit type, Visual Basic is forced
to use late binding and therefore won’t be able to
identify the error until runtime.

31. C, D. WithEvents cannot be used in a standard
module. You aren’t allowed to use the As New key-
word. WithEvents is allowed in form and class mod-
ules and even for objects that don’t support events.

32. A. The user should call the PropertyChanged
method, so that the UserControl will fire the
WriteProperties event. The property can then
be persisted via the WriteProperty method.

33. D. You will need to close the ActiveX Control
Designer before you can properly test your con-
trol in a test project.

34. B. OLE_COLOR and all color properties and
methods are represented by a long integer.

35. C. This behavior can be controlled by using a
Public variable defined in a standard module.
Because you can’t know the sequence in which
your ActiveX documents are invoked, you’ll need
to use a Public variable to pass the document
object references between them.

36. B. With the NavigateTo method of the Hyperlink
object, you can provide the URL of a Web page
or a local document that the container applica-
tion can open as an Active document.

37. B, C. Debug.Assert suspends execution at the line
on which the method appears, provided that the
assertion expression evaluates to False. Stop state-
ments suspend execution.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1082

PRACTICE EXAMS 1083

45. B. When you set a class’s Instancing property to
GlobalMultiUse and then reference that compo-
nent from another project, you can use the prop-
erties and methods of the class without having to
explicitly create an instance of the class. The
members of the class are added to the global
name space of your project, so they will be recog-
nized just as if they were part of Visual Basic.

46. C. Dynamically changing the HTML document
from within the browser is a very powerful feature
of DHTML. If you were changing only the text of
the CustStatus message, you could have assigned to
the innerText property, but since you were chang-
ing the text to include HTML tags (boldface
on/off), you must assign to the innerHTML property,
so that the HTML gets rendered.

47. D. DHTML allows you to change the style of
any HTML element in a document. You can
change colors, typefaces, spacing, indentation,
position, and even the visibility of text. Style
attributes can be set from the style sub-object for
each element. Internet Explorer recognizes colors
by constant names, such as Red or Dark Green.

48. A. When Visual Basic compiles an ActiveX con-
trol, it automatically registers it on your system so
that any Windows application including VB can
use the control. Other users that intend to use
your control must register the component on
their computers first. Regsvr32.exe will work
great for them.

49. C, E. You can set a conditional compilation con-
stant in code, using the #Const statement or by
listing them in the Conditional Compilation
Arguments field of the Make tab on the Project
Properties. You can set a constant on the com-
mand line:

vb6.exe /make MyProj.vbp /d
➥conGermanVersion=1

50. D. Take advantage of the new validate event in
VB6. It is superior to the LostFocus event in that
you can designate some controls on the form to
not fire the validate event, such as a Cancel but-
ton.

51. A. Typically, the ProgressBar’s minimum property
is 0 and its maximum is 100, but that doesn’t have
to be the case. For example, it might be easier to
increment the ProgressBar from 0 to the number
of records in a file. Because the question didn’t
specify what the ranges were, the safe choice
would be to assign the Value property the value of
the Max property when the loop was complete.

52. B. If you are deploying your application on
floppy disks, you should choose multiple CAB
files, specifying a size no larger than the disks you
plan to use. The current sizes supported are
1.44MB, 2.88MB, 1.2MB, and 720KB. Don’t
forget that you will need to distribute the Visual
Basic runtime library.

53. D, E. Scripts allow you to repackage and/or rede-
ploy your projects at a later time. Either type of
script can be selected the next time you run the
Package and Deployment Wizard. Scripts can also
be passed to the wizard executable (pdcmdln.exe)
to enable the wizard to run in silent mode. Scripts
enjoy the same functionality that an interactive
user would, if he or she were running the wizard
manually.

54. D. WithEvents allows you to respond to events
triggered by an ActiveX object. The WithEvents
keyword is valid only in an Object (Class or
Form) module.

55. B. ToolTips are a great way to relay pertinent
information to the user as they navigate the user
interface. By setting the ToolTipText property of
all desired controls, a small label will be displayed
when the mouse pointer is held over that control
for a set length of time.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1083

1084 PRACTICE EXAMS

58. C. When you drag the OCX file to the Visual
Component Manager, you automatically launch
the Publish Wizard, which walks you through
the process of publishing a component for reuse.
You can also launch the wizard from within the
Visual Component Manager.

59. C. Use the Annotations tab of the Component
Properties dialog box to enter textual annotations
or comments on a component as well as the
author’s name. These annotations can be searched.

60. C. The Break in Class Modules option applies
only to unhandled errors in class modules.
Because this method has an error handler in
place, no error is raised to Visual Basic, so no
break takes place.

61. D. By adding watch expressions to the Watch
window, you can direct Visual Basic to put the
application into Break mode whenever an expres-
sion’s value changes or becomes True. In this sce-
nario, you know what the suspicious value is; you
can set a Watch expression equal to
“12345678.90” and tell Visual Basic to enter
Break mode when the value is True.

56. A. When you start a Data Project, Visual Basic
automatically adds the Data Environment and
Data Report Designers to your project. Your first
step should be to configure the existing connec-
tion in the Data Environment so that it connects
to the SQL Server and database. Next, you
should add a command under the connection
and configure it to open the correct table or
query. And finally, you can drag the finished
command to the Data Report Designer, drop it
in the details section of the report, and then for-
mat the report as you wish.

57. B. Many intrinsic controls, including the text box,
support dynamic binding directly to Recordset
objects at runtime. Data controls and the data
environment are not needed. Set the control’s
DataSource property to the Recordset object and
the DataField property to the specific field or col-
umn to bind the control to. DataMember would
further clarify which set of data to use from the
DataSource, but doesn’t apply when binding to a
Recordset object.

28 002-8 Practice Exam 3/1/99 8:50 AM Page 1084

III
APPENDIXES

A Glossary

B Overview of the Certification Process

C What’s On the CD-ROM

D Using the Top Score Software

E Visual Basic Basics

F Suggested Readings and Resources

P A R T

29 002-8 Part 3 3/1/99 8:50 AM Page 1085

29 002-8 Part 3 3/1/99 8:50 AM Page 1086

ActiveX container An application that can host Active
documents. Microsoft Internet Explorer and Microsoft
Office Binder are ActiveX container applications.

ActiveX control A custom control for VB develop-
ment provided in an OCX file. Custom controls can
come from Microsoft or from third-party developers.
VB6 programmers can create ActiveX controls using VB.

ActiveX Data Objects (ADO) A high-level, COM-
based data access model for Windows programming that
exposes OLE DB functionality in a Windows program-
ming environment. ADO is the preferred data-access
model for VB6. See also the definition for OLE DB..

Administrator role A default role that exists in the
System package. When authorization checking is
enabled for the system package, membership in this
role determines which NT accounts have administra-
tive access from MTS explorer. A user must be mapped
to the Administrator role if he or she has a need to cre-
ate, delete, and modify MTS packages.

ADO See ActiveX Data Objects.

ASP Active Server Pages, a technology that Microsoft
provides as a supplement to its Web server, Microsoft
Internet Information Server (IIS). ASP provides an
enhancement to the HTML language that allows IIS
(or any other Web server that can understand ASP) to
dynamically generate the HTML that it sends to browsers.

AA P P E N D I X

Glossary

A
Access key A key that the user can press (usually in
combination with the Alt key) to move focus to a con-
trol. Typically, it also fires the control’s Click event.
Access keys are accompanied by the visual cue of an
underlined letter in a control’s accompanying caption
and are typically only available when the cue is actually
visible. Almost all controls that have a Caption property
in Visual Basic support access keys, including menus. A
TextBox control can also have an access key, by associat-
ing it with the caption of a label. Compare with
Shortcut key.

Active document An application whose interface
can be displayed directly in ActiveX container applica-
tions. VB programmers can create Active document
applications.

Active form The form where the focus currently
resides in a running application. Focus is typically on
one of the form’s controls and not on the form itself.
The form itself will only have focus if it currently con-
tains no controls that can receive focus.

ActiveX Microsoft’s standard for implementing objects
and communicating between them. ActiveX is based on
the COM specification and replaces the OLE standard.

ActiveX component Application elements developed
using the COM standard. In VB6, you can develop the
following ActiveX components: ActiveX EXE, ActiveX
DLL, ActiveX control, ActiveX Document DLL, and
ActiveX Document EXE.

30 002-8 AppA 3/1/99 8:51 AM Page 1087

1088 Appendix A GLOSSARY

C
CAB file See Cabinet file.

Cabinet file The standard compression format used
in setup packages created by the Package &
Deployment Wizard. You can use the MakeCab utility
to create CAB files manually.

Call stack The hierarchical list of procedure calls that
lead up to the currently executing line of code.

Class The formal definition or template used to cre-
ate an object. The class acts as the template from which
an instance of an object is created at runtime. The class
defines the properties of the object and the methods
used to control the object’s behavior.

Collection An object that contains a group of mem-
ber objects of the same type. Collections are somewhat
similar to arrays, but they have more functionality (such
as Add and Remove methods), and you can access their
members with textual keys as well as numeric indexes.
You can also use the special VB For each...Next con-
struct to loop through a collection’s members.

COM client An ActiveX document or VB program
that uses a COM component.

COM component A program that provides objects
that are implemented based on the COM specification.
Types of COM components available in VB include
ActiveX DLLs and EXEs, and ActiveX controls.

COM The Component Object Model. COM is a
general industrywide specification for implementing
objects in a computing environment. It is the basis for
Microsoft’s ActiveX standard.

Compile error An error that occurs during compile
time because of mistakes in the programmer’s use of the
rules of the programming language.

The end product of ASP is still standard HTML, rec-
ognizable by all browsers. All ASP processing takes
place on the server and so is completely transparent to
browsers, which only see the standard HTML pages
produced by ASP.

Assertion A device either provided by the program-
ming environment or implemented by the programmer
to test the validity of assumptions in a program. In VB,
the Debug.Assert method provides built-in assertion
capability.

Atomicity A quality of transactions that guarantees
that for the transaction to be committed, all actions
performed within the body of the transaction must suc-
ceed. If any aspect of a transaction fails, all activity
associated with the transaction is rolled back.

Automation The part of the COM specification that
specifies the rules for manipulating a component
through its exposed objects by means of scripting.
Formerly known as OLE automation.

Availability Optimum availability of a solution means
that it can be reached from the most locations possible
and during the greatest possible amount of time.

B
BMP The extension for bitmap files, a popular file
graphics format supported in VB.

Branch The act of creating two copies of a Visual
SourceSafe project or file that will henceforth have
independent paths of modification.

Business object A logical and physical entity that
represents a physical or conceptual entity connected
with the business environment at hand. Examples of
Business objects might be Customer, Employee, Sales
Order, or Account. Developers often implemented
Business objects as object classes in a VB environment.

30 002-8 AppA 3/1/99 8:51 AM Page 1088

Appendix A GLOSSARY 1089

Compiler constant In the VB environment, a spe-
cially declared name that can be assigned a value recog-
nized by the compiler as it reads the source code. The
compiler can then react to the value of the compiler
constant when the compiler constant is used in com-
piler directives. Compiler constants are not considered
part of the actual program.

Compiler directive A special logical directive to the
compiler that the VB programmer can embed in source
code. The compiler directive typically uses the value
of a compiler constant to instruct the compiler about
whether to compile a particular section of code.
Compiler directives are syntactically similar to the
If..Then..Else..End If structure of the VB language,
except that each of the keywords must begin with a #
character. Compiler directives are not considered part
of the actual program.

Compiler A utility used in the development of com-
puter programs that reads source code, applies to it the
rules of the programming language, and then produces
object code or executable files.

Composite control An ActiveX control that uses
other controls (known as constituent controls) for all or
part of its functionality.

Conceptual Design The phase of solution develop-
ment that identifies user scenarios for the solution.

Constituent control A “building block” standard or
third-party control used as part of a new ActiveX con-
trol. See Composite control.

Concurrency In software solutions that require more
than one user to access data at the same time, the term
concurrency refers to the problems that come up when
two or more users or processes try to update the same
data at the same time.

Consumer See Data consumer.

Context ID The term used to describe topic IDs in
WinHelp Help File development.

Context object An object automatically created by
the MTS runtime for every running instance of all
MTS objects. It provides the state of its associated MTS
object, including memory resources, transaction infor-
mation, and identity of the objects creator.

Context-sensitive help Help in a Windows program
that responds differently according to which control the
user has currently selected.

Context-sensitive menu See Pop-up menu.

Controls collection A built-in VB collection whose
members include all the controls on the current form.

Cursor See Data cursor.

D
DAO See Data Access Objects.

Data Access Objects (DAO) An object library that
represents the functionality of the Microsoft Jet data-
base engine (Microsoft Access). Programmers can use
DAO to gain access to other types of data through
ODBC as well. DAO was the principal data access
model for version of VB before VB6. However, new
VB6 development should be done with ADO.

Data consumer An object (such as a control) that
refers or binds to the data provided by a data source. In
VB, controls that are data consumers have DataField
and DataSource properties. Also an object or applica-
tion that uses a data provider to obtain a connection to
data and to manipulate that data.

Data cursor A set of resources initiated by a data con-
nection that provides a connection to a specific row in a
set of data. The data cursor can change position to point
to a different row of data. In the ADO environment,

30 002-8 AppA 3/1/99 8:51 AM Page 1089

1090 Appendix A GLOSSARY

and does not require additional implementation code
inside the component.

Delegated member A property, event, or method of
a constituent control that is exposed to programmers
through a corresponding custom member of an ActiveX
control. Developers using the ActiveX component can’t
access the constituentís members directly, so the VB
programmer creating the ActiveX control must create
special wrapper members in the control that refer to
the members of the underlying constituent controls.

DEP file See Dependency file.

Dependency file A text file with the same name as
the file whose dependencies it describes. The contents
of a dependency file look like an INI file: section head-
ers set off by square brackets ([])and individual key
entries of the format Keyname=value.

Deployment The act of placing setup package files
in the location where they will be used to install the
application.

Design time Refers to the time that the VB devel-
oper spends in the VB IDE when an instance of the
application is not running.

Designer A window provided by the VB design-time
IDE for creating and implementing VB’s major con-
tainer objects. VB provides designers for forms, user
documents (ActiveX documents), user controls
(ActiveX controls), and property pages.

DHTML (Dynamic HTML) An enhancement to the
HTML standard that enables programmers to program
HTML pages with methods, events, and properties and
to free the HTML page from too much server-side
processing.

DHTML application A type of VB application (new
with VB6) that enables programmers to use the VB
IDE to create applications that use DHTML. DHTML

data cursors can be implemented either as client-side or
as server-side cursors. In addition, several different types
of cursors provide differing degrees of flexibility, perfor-
mance, and efficiency.

Data provider In an ADO programming environ-
ment, refers to a driver for data access running under
the OLE DB data-access standard.

Data source An object (such as a control) that pro-
vides a data connection for data consumers.

Data Source Name (DSN) In ODBC, the name
assigned by a developer or administrator to a specific
data connection that has been defined in the ODBC
environment. A DSN encapsulates specific information
about a data connection which may include such infor-
mation as the type of data driver, the location of the
data, logon information, and other vendor-specific
parameters. Programmers can use the DSN without
knowing about the specific details of the connection
that it represents.

Database Management System (DBMS) Software
used to create, examine, organize, and modify informa-
tion stored in a database. Examples of DBMSs are
Access, Oracle, BTrieve, SQL Server, and Sybase.

DBMS See Database Management System.

DCOM A standard that extends the interobject com-
munication specifications of COM across multiple
machines over a network.

DDF file A text file read by the MakeCab utility to
determine how to build the CAB files and which source
files to use.

Declarative security An approach to MTS security
in which the built-in features of MTS and Windows
NT are exploited. In this model, MTS checks that
clients are authorized to use a specific component or
interface. It can be configured from the MTS Explorer,

30 002-8 AppA 3/1/99 8:51 AM Page 1090

Appendix A GLOSSARY 1091

applications are deployed on individual user machines
as an ActiveX DLL and some associated runtime files.

Difference The act of comparing the differences
between two Visual SourceSafe versions of the same file.

DOB The extension for a file containing the source
code for a VB UserDocument.

DSN See Data Source Name.

E
Early binding The technique of programming with
an object class so that the compiler is aware of the
object class members and can verify the programmer’s
syntax when manipulating the object.

Enterprise Application Model Microsoft’s latest
framework for discussing application development. The
Enterprise Application Model uses six complementary
models for looking at a development project, known as
the Development, Business, User, Logical, Technology,
and Physical models. The Enterprise Application
Model is not referred to in the certification exam.

Enterprise Development Model A slightly older set
of Microsoft concepts for application development than
the Enterprise Application Model. The Enterprise
Development Model sees three phases of application
design: Conceptual, Logical, and Physical design. The
Enterprise Development Model is the basis for the
design-oriented questions on the VB6 Certification
Exam.

Error handling Code created to specifically deal with
some types of errors at runtime.

Error number A number that indicates which error
occurred. In Visual Basic, you can find the current
error number through the Err object’s Number property
(Err.number).

Event An action performed by hardware, the user, or
some other component of a computer system.

Event procedure A predefined VB procedure that
runs in association with an event. The programmer can
put code in the event procedure. Event procedures may
run apart from their associated events.

Executable file The end product of the program-
ming process that is distributed to users. Programmers
of compiled languages must use compilers as part of
the production process for executable files.

Extensibility 1) In the context of the VB develop-
ment environment, extensibility means the capability
to integrate other applications (such as Visual
SourceSafe, Component Object Manager, Visual Data
Manager, and many others) into the development envi-
ronment. 2) In the context of the VB6 certification
exam objectives, extensibility is best understood as the
capability to use a core set of application services for
new purposes in the future, purposes which the origi-
nal developers may not have foreseen.

F–G
Fatal error A type of runtime error that generates an
error message, stops execution, and closes the program.

Forms collection A built-in VB collection whose
members include all the forms currently loaded by the
application.

H
HTML (Hypertext Markup Language) The standard
language recognized by all Internet Web browsers (such
as Internet Explorer or Netscape). HTML files reside on

30 002-8 AppA 3/1/99 8:51 AM Page 1091

1092 Appendix A GLOSSARY

INF file A text file included in Internet download
packages that contains dependency information needed
by the end user’s browser. Based on the information in
the INF file, the browser will download and install
other files that your application needs to run.

Input validation A general term describing the
means by which an application examines user input to
determine whether it is acceptable to the application
and then takes steps to correct problematic input.

Instance Refers to an object created from a specified
class. For example, the xl object might be an instance
of the Excel.Application class.

Instantiate To create an instance of a class at runtime
(that is, to create an object).

Interpreter A utility used to interpret source-code
programs line by line and then run each line in the plat-
form’s native language. In the computing world, inter-
preters are the main alternative to compiled programs.

Intrinsic control A standard control always found in
the VB environment.

J–L
Jet The database engine underlying Microsoft Access
and DAO.

Late binding The technique of programming with
an object class so that the compiler is unaware of the
underlying object model and therefore does not verify
the syntax that the programmer uses to manipulate the
object. Instead, syntax errors in the use of the object
model will cause runtime errors.

Library package Packages activated as library pack-
ages run in-process with their clients. Clients that call
components in a library package must be running on
the same machine as the MTS installation.

a server. A browser requests the HTML file from a server
when the user navigates to a particular Web page repre-
senting the HTML file. The server sends the file to the
browser, and the browser interprets the HTML script
inside the file to display the Web page to the user.

HTML Help Microsoft’s current format for Help
files. HTML Help replaces the older format.

I
ICO The extension for icon files.

IDE Stands for Integrated Development Environment,
that is, the programming interface for VB.

Identity Defines how the components in the package
will be identified on the network. It will either be a
Windows NT user, or default to the user who is interac-
tively logged on to the NT system that is running MTS.

IIS (Internet Information Server) Microsoft’s Web
server.

IIS application A type of VB application (new with
VB6) that enables a VB programmer to use the VB
IDE to enhance HTML templates with ASP code
before submitting them to the Internet Information
Server in response to client requests. IIS applications
run on Web servers. They require no change on client
machines because their final output is pure HTML.

Immediate window A debugging window in the VB
IDE that enables the programmer to query and set
variables, and run single-line statements on-the-fly at
runtime.

Implicit loading The action of loading an object
(usually a form) into memory without an explicit com-
mand to load it. Implicit loading can happen when the
program refers to any of the object’s members (proper-
ties or methods) in code.

30 002-8 AppA 3/1/99 8:51 AM Page 1092

Appendix A GLOSSARY 1093

Load balancing The process by which workload is
spread among two or more physical servers to prevent
bottlenecks on a single machine.

Locals window A debugging window in VB that dis-
plays all variables available in the current context.

Locking In the context of database programming,
record- or data-locking refers to the act by a process of
blocking other processes or users from gaining access to
the data in, for example, a record, a table, or an entire
database.

Logical design The phase in solution development
that uses the user scenarios of the Conceptual Design
to identify business objects for the solution.

M
Macro In the context of Package & Deployment
Wizard, a distinctive token that represents a standard
path on a machine that has Windows installed. The
macro (such as $(WinSysPathSysFile)) is embedded in
the SETUP.LST file and when the setup routine runs,
it is resolved into the actual path on the user’s machine.

Maintainability The ease with which a software sys-
tem can be changed without disrupting service and with
the least and simplest efforts by software developers.

Merge The act of combining together in Visual
SourceSafe two different versions of a file.

Modal Describes a process or object that causes the
current thread to halt until the modal process ends or
the modal object unloads. The MsgBox, for example, is
modal. You can also cause a form to run modally by
calling its Show method and passing vbModal as its argu-
ment. Note that MDI child forms cannot be shown
modally.

Modeless Describes a process or object (such as a
form) that allows the current thread to continue exe-
cuting even as the modeless process runs or while the
modeless object stays loaded. By default, forms operate
modelessly when activated with the Show method—no
parameter is necessary. For clarity, however, you may
add the parameter vbModeless. When a Timer control’s
Timer event procedure runs, it is modeless with respect
to the rest of the code and objects in your application.

MTS client package A setup program used to con-
figure a client to use existing components in an MTS
package. It registers the remote components, and copies
support files necessary to call the components from a
client machine.

MTS Explorer A Microsoft Message Console snap-in
that provides a GUI to administer and view information
about servers running Microsoft Transaction Server.

N–O
Native code Machine-readable instructions that have
been translated by a compiler to the low-level language
of the hardware or operating system platform on which
they are intended to run. This is one of the two possi-
ble formats for a compiled VB executable file (the other
is pseudocode). Native code is the default format for
VB applications and has the same format as a compiled
Visual C++ executable.

Object Browser A Visual Basic design-time dialog
box that provides a list of available object libraries and
information about the objects for a specified library.

Object code The end product of a compiler. In many
programming environments (but not VB), object code
must then be linked with other elements to produce the
final program that can be distributed to users.

30 002-8 AppA 3/1/99 8:51 AM Page 1093

1094 Appendix A GLOSSARY

P
Package Package has various meanings in different con-
texts. In MTS, a package is a logical grouping of compo-
nents. Components in an MTS package utilize the same
roles for security purposes, run in the same server process,
and are grouped together for client deployment.
Generally components in the same MTS package share
responsibility in an application. A package in VB can also
mean a deployment package. This is just a setup program
or an Internet download that includes the distribution
files for a VB program or ActiveX component.

Package & Deployment Wizard This VB wizard
automates the steps necessary to create a setup package.
The setup package contains the compiled version of a
project, such as an EXE, OCX, or DLL, and all the
necessary support files.

Package file (PAK) A file that is the result of export-
ing an MTS package. It can be imported into an MTS
system to duplicate a package and its contents.

Performance The capability of a software system to
perform critical operations rapidly and with the least-
possible use of system resources.

Persist To cause a control’s property to “remember” its
value between design time and runtime. ActiveX com-
ponent properties are said to persist when they retain
their programmer-assigned values appropriately during
the development/runtime cycle. The concept of persis-
tence is used with custom properties in VB ActiveX
document and ActiveX control applications. When an
instance of a custom control is instantiated in a running
copy of a component, the VB developer who created the
component needs to ensure that the control’s custom
properties will retain the values that developers assign to
them at design time. In addition, property values that a
user assigns when running an ActiveX document in its
container application need to persist so that they can be
retrieved when the user re-enters the document later.

Object Model The complete list of a COM compo-
nent’s classes, their members (events, methods, and
properties), their hierarchical relation to each other,
and their behaviors.

OCX The extension for files that implement 32-bit
ActiveX controls.

ODBC See Open Database Connectivity.

ODBC Resource Dispenser An MTS resource dis-
penser that allows objects to share ODBC connections.
This reduces the overhead associated with obtaining
database connections, and provides for greater scalability.

OLE (object linking and embedding) A standard
that gives rules for defining interfaces between applica-
tions and objects. The ActiveX standard has superseded
the OLE standard.

OLE DB Microsoft’s newest standard for Windows
data access, and the standard underlying ADO.
Microsoft intends for OLE DB to eventually replace
the ODBC standard. OLE DB is COM based and pro-
vides generally more efficient and more universal data
access than ODBC. OLE DB is in turn based on
Microsoft’s Universal Data-Access Model.

Open Database Connectivity (ODBC) A standard
for data-access drivers that Windows programmers can
use to transparently access most major DBMSs, such as
Oracle, BTrieve, or SQL Server. The vendors of each
DBMS create ODBC-compliant drivers, and Windows
programmers can then use another layer of software
known as the ODBC driver manager to talk to the
DBMS-specific drivers and so gain access to the data.
ODBC will eventually give way to OLE DB.

Option pack Free add-on to Windows NT. It includes
key development items such as MTS, IIS, and ASP.

30 002-8 AppA 3/1/99 8:51 AM Page 1094

Appendix A GLOSSARY 1095

Physical design The phase in solution development
that identifies the specific implementations of the logi-
cal design, including the specific hardware and software
solutions.

Pin The act of locking in a particular version of a file
in a SourceSafe project. That file may not be changed
within the project where it’s pinned. If the file is
pinned before sharing, then the projects using the file
cannot make changes to it.

Pixel A unit of measure in many graphics environ-
ments. A pixel’s size depends on the system’s graphics
device settings because it corresponds to the size of a
single video dot on the screen.

Pop-up menu A menu with subitems that can appear
apart from a form’s menu toolbar, usually after clicking
the alternate mouse button. The pop-up menu may or
may not be visible on the form’s menu toolbar as well.

ProgID A unique identifying string that refers to an
object type registered on a particular computer work-
station’s Windows operating system. You must use the
ProgID of a control type when you want to add an
instance of that control type to the Controls collection
of a form.

Programmatic security An approach to MTS security
where the component developer implements the secu-
rity logic directly in the code of an MTS component.

Project group A technique used in VB to associate
projects together in one instance of VB for testing,
debugging, and project management.

Property Page A tabbed dialog box that enables a
developer to specify properties in an organized format.
VB developers can create property pages for their
ActiveX controls.

Provider See Data provider.

Pseudocode 1) One of the two possible formats for a
compiled VB executable file (the other is native code).
A VB6 executable compiled as pseudocode contains a
tokenized version of the original source code. The VB6
runtime libraries can interpret this code when the
application runs. This first meaning is the usual one
intended in a VB environment. 2) A format for writing
design specifications for program logic, also known as
“structured English.” The writer of the specifications
typically uses the control structures (such as looping
and branching) of the programming language, but uses
more natural language to specify actions and decisions.

R
Reader role A default role that exists in the System
package in MTS. Users mapped to the Reader role can
browse components in the MTS Explorer. However,
they cannot create new packages or modify or delete
existing ones.

Reference counting A technique used by COM’s
Object Management services that helps to control when
object references and their objects are released from
memory.

Remote support file A file with extension .VBR cre-
ated when you compile a client or server project using
DCOM.

Resource Dispenser A service of MTS that provides
shared access to common resources for multiple
instances of MTS objects. An example is the ODBC
Resource Dispenser, which allows MTS objects to share
ODBC connections.

Right mouse menu See Pop-up menu.

Role A grouping of users that can be used to apply
security to components, and component interfaces

30 002-8 AppA 3/1/99 8:51 AM Page 1095

that all the work for an object’s transaction is complete,
and can be committed. Also, calling this method will
release any resources used by the object without actu-
ally destroying the object.

Share The act of making one or more of a project’s
files available to other projects. The master files are
stored in the Visual SourceSafe database and appear in
other projects because of pointers to the masters. There
is only one copy of each shared file, so any changes to
it are seen in all projects that use this file.

Shared Property Manager An MTS resource dis-
penser that allows objects with different creators to
share property values.

Shortcut key A key that the user can press (usually in
combination with the Ctrl key) to perform an action.
Shortcut keys are typically associated with items in a
standard Windows menu and have a visual cue associ-
ated with the menu item on the menu line. Shortcut
keys are available even when their corresponding menu
item is not available. Compare with Access key.

Siting The action performed by an ActiveX
Container application to instantiate and display an
Active document.

Source code Human-readable instructions, typically
in the form of text files and/or visual representations
(such as VB designers) that follow the rules of a partic-
ular programming language, such as VB. For a com-
puter to be able to run the programs specified in source
code, the source code must either be translated by a
compiler to native code or pseudocode, or else it must
be interpreted on-the-fly by an interpreter.

SQL Server Microsoft’s Enterprise-scale DBMS.

Standard control A control that is always included in
the toolbox and contained within a VB EXE file. Some
standard controls in VB include the CommandButton,
TextBox, and the Label.

running in an MTS package. A role can be assigned to
a component or component interface, which in turn
defines who can use it.

Rowset The set of data behind a data cursor.

Runtime Refers to the time that a VB application is
actually executing, either as a compiled application or
from the VB IDE.

S
Scalability An attribute of a software system that
refers to the capability of the system to run in a more
demanding environment than the environment in
which it was originally implemented. Examples of a
more demanding environment might include more
users, a higher-end DBMS (Oracle or SQL Server as
opposed to MS Access), or more traffic.

Scope The area of a program over which a variable is
known. In debugging, this applies to the area in which
a Watch expression is considered to be valid.

Security In the context of software solution design,
the capability of a business solution to deny unautho-
rized access to each of its components.

Server package Packages activated as server packages
run in separate processes in the MTS runtime environ-
ment. Calls to components in server packages are mar-
shaled across process boundaries.

SetAbort A method of the Context object. When this
method is called, the MTS runtime environment is
notified that the work associated with the MTS object’s
transactions did not complete successfully, and should
not be committed. Resources used by the object are
released when this method is called.

SetComplete A method of the Context object. When
this is called, the MTS runtime environment is notified

30 002-8 AppA 3/1/99 8:51 AM Page 1096

Appendix A GLOSSARY 1097

Startup object The object, such as a form or Sub Main
procedure, that is the entry point for program execution
when an application starts running. In VB6, you specify
the startup object in the Project, Properties dialog box.

Submenu A menu item that is under a higher-level
item in a Windows menu hierarchy. A submenu may in
turn have other submenus items underneath it.

Syntax error An error in the use of a programming
language’s rules. Some syntax errors are caught by the
VB editor as the programmer types; other syntax errors
are detected as compile errors.

Syntax The defined order and punctuation of com-
ponents that comprise a programming-language state-
ment.

System package A package containing components
used internally by MTS. The components in this pack-
age are used by MTS to provide administrative func-
tionality and security features.

T
Toolbox A special window in the VB IDE that dis-
plays the VB controls currently available to the pro-
grammer in the design environment.

ToolTip A small message that appears when the user
pauses the mouse over a control.

Top menu A menu item that is at the highest level in
a Windows menu hierarchy. A top menu item appears
on the form’s menu toolbar.

Topic ID Unique numbers assigned to topics within a
Help file. A VB programmer must know these numbers
to enable a VB application to invoke their correspond-
ing topics by assigning them as the values of various
object’s HelpContextID and WhatsThisHelp properties.

Transaction A combination of work performed that
is grouped into a single unit. Transactions can be com-
mitted or rolled back.

Trappable error An error that can be trapped and
handled by an error-handling procedure while an appli-
cation is running.

Twip The default unit of measure in VB graphics pro-
gramming. A twip is 1/20 of a point. Because a point is
1/72 of an inch, a twip is therefore 1/1440 of an inch.

U
UDA See Universal Data-Access Model.

Universal Data-Access Model (UDA) Microsoft’s
general specification for data access. UDA is supposed
to encompass all types of possible data access, from tra-
ditional DBMSs to more “exotic” data formats such as
bitmap files, text files, and spreadsheets.

User scenario A deliverable component of the con-
ceptual design phase of solution development. A user
scenario describes a user activity as well as the relevant
traits of the user supporting the activity.

V
VBD The extension for a Visual Basic Document file.
This is the file that an ActiveX container application
uses to implement the PropertyBag object of an Active
document that was programmed and compiled in VB.

VBR file See Remote support file.

Version control The part of computer software
development that manages changes to source-code files
made by developers. Version control tools, such as

30 002-8 AppA 3/1/99 8:51 AM Page 1097

1098 Appendix A GLOSSARY

Visual SourceSafe, enable developers and managers to
identify and manage versions of a product in the source
code. Such tools also help developers to avoid conflicts
and confusion when multiple developers work on files
in the same project at the same time.

Visual SourceSafe Microsoft’s version control tool.
Distributed with Visual Studio and Visual Basic’s
Enterprise Edition.

W
Watch A mechanism for monitoring variables when
running programs from the VB IDE.

WebClass A container object in an IIS application that
corresponds to an HTML template.

WebItem A named object belonging to an IIS WebClass
that can have its own URL and custom-defined events.

WinHelp Microsoft’s older format for Help files.

Working folder A physical folder where Visual
SourceSafe will place the files for a project when
requested by a Visual SourceSafe user. Each user must
define a Working folder for a project that he or she
wants to work with.

30 002-8 AppA 3/1/99 8:51 AM Page 1098

TYPES OF CERTIFICATION

á Microsoft Certified Professional (MCP).
Qualified to provide installation, configuration,
and support for users of at least one Microsoft
desktop operating system, such as Windows NT
Workstation. Candidates can take elective exams
to develop areas of specialization. MCP is the
base level of expertise.

á Microsoft Certified Professional+Internet
(MCP+Internet). Qualified to plan security, install
and configure server products, manage server
resources, extend service to run CGI scripts or
ISAPI scripts, monitor and analyze performance,
and troubleshoot problems. Expertise is similar to
that of an MCP but with a focus on the Internet.

á Microsoft Certified Professional+Site Building
(MCP+Site Building). Qualified to plan, build,
maintain, and manage Web sites using Microsoft
technologies and products. The credential is
appropriate for people who manage sophisticated,
interactive Web sites that include database con-
nectivity, multimedia, and searchable content.

á Microsoft Certified Systems Engineer (MCSE).
Qualified to effectively plan, implement, main-
tain, and support information systems with
Microsoft Windows NT and other Microsoft
advanced systems and workgroup products, such
as Microsoft Office and Microsoft BackOffice.
MCSE is a second level of expertise.

BA P P E N D I X

You must pass rigorous certification exams to become a
Microsoft Certified Professional. These closed-book
exams provide a valid and reliable measure of your tech-
nical proficiency and expertise. Developed in consulta-
tion with computer industry professionals who have
experience with Microsoft products in the workplace,
the exams are conducted by two independent organiza-
tions. Sylvan Prometric offers the exams at more than
1,400 Authorized Prometric Testing Centers around the
world. Virtual University Enterprises (VUE) testing cen-
ters offer exams at over 250 locations.

To schedule an exam, call Sylvan Prometric Testing
Centers at 800-755-EXAM (3926) or VUE at 888-
837-8616 (or register online with VUE at
http://www.vue.com/student-services/). Currently
Microsoft offers seven types of certification, based on
specific areas of expertise.

Overview of the
Certification Process

31 002-8 AppB 3/1/99 8:52 AM Page 1099

1100 Appendix B OVERVIEW OF THE CERTIFICATION PROCESS

CERTIFICATION
REQUIREMENTS

An asterisk following an exam in any of the lists below
means that it is slated for retirement.

How to Become a Microsoft
Certified Professional
Passing any Microsoft exam (with the exception of
Networking Essentials) is all you need to do to become
certified as a MCP.

How to Become a Microsoft
Certified Professional+Internet
You must pass the following exams to become a MCP
specializing in Internet technology:

á Internetworking Microsoft TCP/IP on Microsoft
Windows NT 4.0, #70-059

á Implementing and Supporting Microsoft
Windows NT Server 4.0, #70-067

á Implementing and Supporting Microsoft Internet
Information Server 3.0 and Microsoft Index
Server 1.1, #70-077

OR Implementing and Supporting Microsoft
Internet Information Server 4.0, #70-087

á Microsoft Certified Systems Engineer+Internet
(MCSE+Internet). Qualified in the core MCSE
areas, and also qualified to enhance, deploy, and
manage sophisticated intranet and Internet solu-
tions that include a browser, proxy server, host
servers, database, and messaging and commerce
components. A MCSE+Internet-certified profes-
sional is able to manage and analyze Web sites.

á Microsoft Certified Solution Developer
(MCSD). Qualified to design and develop cus-
tom business solutions by using Microsoft devel-
opment tools, technologies, and platforms,
including Microsoft Office and Microsoft
BackOffice. MCSD is a second level of expertise
with a focus on software development.

á Microsoft Certified Trainer (MCT).
Instructionally and technically qualified by
Microsoft to deliver Microsoft Education Courses
at Microsoft-authorized sites. An MCT must be
employed by a Microsoft Solution Provider
Authorized Technical Education Center or a
Microsoft Authorized Academic Training site.

N
O

T
E For up-to-date information about each

type of certification, visit the Microsoft
Training and Certification World Wide
Web site at http://www.microsoft.com
/train_cert. You must have an
Internet account and a WWW browser
to access this information. You also
can contact the following sources:

• Microsoft Certified Professional
Program: 800-636-7544

• mcp@msource.com

• Microsoft Online Institute (MOLI):
800-449-9333

31 002-8 AppB 3/1/99 8:52 AM Page 1100

Appendix B OVERVIEW OF THE CERTIFICATION PROCESS 1101

How to Become a Microsoft
Certified Professional+Site
Building
You need to pass two of the following exams in order to
be certified as an MCP+Site Building

á Designing and Implementing Web Sites with
Microsoft FrontPage 98, #70-055

á Designing and Implementing Commerce
Solutions with Microsoft Site Server 3.0,
Commerce Edition, #70-057

á Designing and Implementing Web Solutions with
Microsoft Visual InterDev 6.0, #70-152

How to Become a Microsoft
Certified Systems Engineer
You must pass four operating system exams and two
elective exams to become a MCSE. The MCSE certifi-
cation path is divided into two tracks: Windows NT
3.51 and Windows NT 4.0.

The following lists show the core requirements (four
operating system exams) for both the Windows NT
3.51 and 4.0 tracks and the electives (two exams) you
can take for either track.

Windows NT 3.51 Track
The Windows NT 3.51 Track will probably be retired
with the release of Windows NT 5.0. The Windows
NT 3.51 core exams are scheduled for retirement at
that time.

Core Exams
The four Windows NT 3.51 Track Core Requirements
for MCSE certification are as follows:

á Implementing and Supporting Microsoft
Windows NT Server 3.51, #70-043*

á Implementing and Supporting Microsoft
Windows NT Workstation 3.51, #70-042*

á Microsoft Windows 3.1, #70-030*

OR Microsoft Windows for Workgroups 3.11,
#70-048*

OR Implementing and Supporting Microsoft
Windows 95, #70-064

OR Implementing and Supporting Microsoft
Windows 98, #70-098

á Networking Essentials, #70-058

Windows NT 4.0 Track
The Windows NT 4.0 track is also organized around
core and elective exams.

Core Exams
The four Windows NT 4.0 Track Core Requirements
for MCSE certification are as follows:

á Implementing and Supporting Microsoft
Windows NT Server 4.0, #70-067

á Implementing and Supporting Microsoft Windows
NT Server 4.0 in the Enterprise, #70-068

á Microsoft Windows 3.1, #70-030*

OR Microsoft Windows for Workgroups 3.11,
#70-048*

31 002-8 AppB 3/1/99 8:52 AM Page 1101

1102 Appendix B OVERVIEW OF THE CERTIFICATION PROCESS

á Microsoft SQL Server 4.2 Database
Administration for Microsoft Windows NT,
#70-022

OR System Administration for Microsoft SQL
Server 6.5 (or 6.0), #70-026

OR System Administration for Microsoft SQL
Server 7.0, #70-028

á Microsoft Mail for PC Networks 3.2-Enterprise,
#70-037

á Internetworking with Microsoft TCP/IP on
Microsoft Windows NT (3.5-3.51), #70-053

OR Internetworking with Microsoft TCP/IP on
Microsoft Windows NT 4.0, #70-059

á Implementing and Supporting Microsoft
Exchange Server 4.0, #70-075*

OR Implementing and Supporting Microsoft
Exchange Server 5.0, #70-076

OR Implementing and Supporting Microsoft
Exchange Server 5.5, #70-081

á Implementing and Supporting Microsoft Internet
Information Server 3.0 and Microsoft Index
Server 1.1, #70-077

OR Implementing and Supporting Microsoft
Internet Information Server 4.0, #70-087

á Implementing and Supporting Microsoft Proxy
Server 1.0, #70-078

OR Implementing and Supporting Microsoft
Proxy Server 2.0, #70-088

á Implementing and Supporting Microsoft Internet
Explorer 4.0 by Using the Internet Explorer
Resource Kit, #70-079

OR Implementing and Supporting Microsoft
Windows 95, #70-064

OR Implementing and Supporting Microsoft
Windows NT Workstation 4.0, #70-073

OR Implementing and Supporting Microsoft
Windows 98, #70-098

á Networking Essentials, #70-058

Elective Exams
For both the Windows NT 3.51 and the 4.0 track, you
must pass two of the following elective exams for
MCSE certification:

á Implementing and Supporting Microsoft SNA
Server 3.0, #70-013

OR Implementing and Supporting Microsoft
SNA Server 4.0, #70-085

á Implementing and Supporting Microsoft Systems
Management Server 1.0, #70-014*

OR Implementing and Supporting Microsoft
Systems Management Server 1.2, #70-018

OR Implementing and Supporting Microsoft
Systems Management Server 2.0, #70-086

á Microsoft SQL Server 4.2 Database
Implementation, #70-021

OR Implementing a Database Design on
Microsoft SQL Server 6.5, #70-027

OR Implementing a Database Design on
Microsoft SQL Server 7.0, #70-029

31 002-8 AppB 3/1/99 8:52 AM Page 1102

Appendix B OVERVIEW OF THE CERTIFICATION PROCESS 1103

How to Become a Microsoft
Certified Systems
Engineer+Internet
You must pass seven operating system exams and two
elective exams to become a MCSE specializing in
Internet technology.

Core Exams
The seven MCSE+Internet core exams required for cer-
tification are as follows:

á Networking Essentials, #70-058

á Internetworking with Microsoft TCP/IP on
Microsoft Windows NT 4.0, #70-059

á Implementing and Supporting Microsoft
Windows 95, #70-064

OR Implementing and Supporting Microsoft
Windows NT Workstation 4.0, #70-073

OR Implementing and Supporting Microsoft
Windows 98, #70-098

á Implementing and Supporting Microsoft
Windows NT Server 4.0, #70-067

á Implementing and Supporting Microsoft
Windows NT Server 4.0 in the Enterprise,
#70-068

á Implementing and Supporting Microsoft Internet
Information Server 3.0 and Microsoft Index
Server 1.1, #70-077

OR Implementing and Supporting Microsoft
Internet Information Server 4.0, #70-087

á Implementing and Supporting Microsoft Internet
Explorer 4.0 by Using the Internet Explorer
Resource Kit, #70-079

Elective Exams
You must also pass two of the following elective exams
for MCSE+Internet certification:

á System Administration for Microsoft SQL Server
6.5, #70-026

á Implementing a Database Design on Microsoft
SQL Server 6.5, #70-027

á Implementing and Supporting Web Sites Using
Microsoft Site Server 3.0, # 70-056

á Implementing and Supporting Microsoft
Exchange Server 5.0, #70-076

OR Implementing and Supporting Microsoft
Exchange Server 5.5, #70-081

á Implementing and Supporting Microsoft Proxy
Server 1.0, #70-078

OR Implementing and Supporting Microsoft
Proxy Server 2.0, #70-088

á Implementing and Supporting Microsoft SNA
Server 4.0, #70-085

How to Become a Microsoft
Certified Solution Developer
The MCSD certification is undergoing substantial revi-
sion. Listed below are the requirements for the new
track (available fourth quarter 1998) as well as the old.

New Track
For the new track, you must pass three core exams and
one elective exam. The three core exam areas are listed
below as well as the elective exams from which you can
choose.

31 002-8 AppB 3/1/99 8:52 AM Page 1103

1104 Appendix B OVERVIEW OF THE CERTIFICATION PROCESS

á Developing Applications with C++ Using the
Microsoft Foundation Class Library, #70-024

á Implementing OLE in Microsoft Foundation
Class Applications, #70-025

á Designing and Implementing Web Sites with
Microsoft FrontPage 98, #70-055

á Designing and Implementing Commerce
Solutions with Microsoft Site Server 3.0,
Commerce Edition, #70-057

á Programming with Microsoft Visual Basic 4.0,
#70-065

OR Developing Applications with Microsoft
Visual Basic 5.0, #70-165

OR Designing and Implementing Distributed
Applications with Microsoft Visual Basic 6.0,
#70-175

OR Designing and Implementing Desktop
Applications with Microsoft Visual Basic 6.0,
#70-176

á Microsoft Access for Windows 95 and the
Microsoft Access Development Toolkit, #70-069

á Designing and Implementing Solutions with
Microsoft Office (Code-named Office 9) and
Microsoft Visual Basic for Applications, #70-091

á Designing and Implementing Web Solutions with
Microsoft Visual InterDev 6.0, #70-152

Old Track
For the old track, you must pass two core technology
exams and two elective exams for MCSD certification.
The following lists show the required technology exams
and elective exams needed to become an MCSD.

The core exams include the following:

Desktop Applications Development
(one required)

á Designing and Implementing Desktop Applications
with Microsoft Visual C++ 6.0, #70-016

OR Designing and Implementing Desktop
Applications with Microsoft Visual Basic 6.0,
#70-176

Distributed Applications Development
(one required)

á Designing and Implementing Distributed
Applications with Microsoft Visual C++ 6.0,
#70-015

OR Designing and Implementing Distributed
Applications with Microsoft Visual Basic 6.0,
#70-175

Solution Architecture (required)
á Analyzing Requirements and Defining Solution

Architectures, #70-100

You must pass one of the following elective exams:

á Designing and Implementing Distributed
Applications with Microsoft Visual C++ 6.0,
#70-015

OR Designing and Implementing Desktop
Applications with Microsoft Visual C++ 6.0,
#70-016

OR Microsoft SQL Server 4.2 Database
Implementation, #70-021*

á Implementing a Database Design on Microsoft
SQL Server 6.5, #70-027

OR Implementing a Database Design on
Microsoft SQL Server 7.0, #70-029

31 002-8 AppB 3/1/99 8:52 AM Page 1104

Appendix B OVERVIEW OF THE CERTIFICATION PROCESS 1105

Core Technology Exams
You must pass the following two core technology exams
to qualify for MCSD certification:

á Microsoft Windows Architecture I, #70-160*

á Microsoft Windows Architecture II, #70-161*

Elective Exams
You must also pass two of the following elective exams
to become an MSCD:

á Designing and Implementing Distributed
Applications with Microsoft Visual C++ 6.0,
#70-015

á Designing and Implementing Desktop
Applications with Microsoft Visual C++ 6.0,
#70-016

á Microsoft SQL Server 4.2 Database
Implementation, #70-021*

OR Implementing a Database Design on
Microsoft SQL Server 6.5, #70-027

OR Implementing a Database Design on
Microsoft SQL Server 7.0, #70-029

á Developing Applications with C++ Using the
Microsoft Foundation Class Library, #70-024

á Implementing OLE in Microsoft Foundation
Class Applications, #70-025

á Programming with Microsoft Visual Basic 4.0,
#70-065

OR Developing Applications with Microsoft
Visual Basic 5.0, #70-165

OR Designing and Implementing Distributed
Applications with Microsoft Visual Basic 6.0,
#70-175

OR Designing and Implementing Desktop
Applications with Microsoft Visual Basic 6.0,
#70-176

á Microsoft Access 2.0 for Windows-Application
Development, #70-051

OR Microsoft Access for Windows 95 and the
Microsoft Access Development Toolkit, #70-069

á Developing Applications with Microsoft Excel
5.0 Using Visual Basic for Applications, #70-052

á Programming in Microsoft Visual FoxPro 3.0 for
Windows, #70-054

á Designing and Implementing Web Sites with
Microsoft FrontPage 98, #70-055

á Designing and Implementing Commerce
Solutions with Microsoft Site Server 3.0,
Commerce Edition, #70-057

á Designing and Implementing Solutions with
Microsoft Office (Code-named Office 9) and
Microsoft Visual Basic for Applications, #70-091

á Designing and Implementing Web Solutions with
Microsoft Visual InterDev 6.0, #70-152

Becoming a Microsoft Certified
Trainer
To understand the requirements and process for
becoming a MCT, you need to obtain the Microsoft
Certified Trainer Guide document from the following
WWW site:

http://www.microsoft.com/train_cert/mct/

31 002-8 AppB 3/1/99 8:52 AM Page 1105

1106 Appendix B OVERVIEW OF THE CERTIFICATION PROCESS

You should consider the preceding
steps a general overview of the
MCT certification process. The pre-
cise steps that you need to take
are described in detail on the WWW
site mentioned earlier. Do not mis-
interpret the preceding steps as the
exact process you need to undergo.

W
A

R
N

IN
G

At this site you can read the document as Web pages or
display and download it as a Word file. The MCT
Guide explains the four-step process of becoming a
MCT. The general steps for the MCT certification are
as follows:

1. Complete and mail a Microsoft Certified Trainer
application to Microsoft. You must include proof
of your skills for presenting instructional material.
The options for doing so are described in the
MCT Guide.

2. Obtain and study the Microsoft Trainer Kit for
the Microsoft Official Curricula (MOC) courses
for which you want to be certified. Microsoft
Trainer Kits can be ordered by calling 800-688-
0496 in North America. Those of you in other
regions should review the MCT Guide for infor-
mation on how to order a Trainer Kit.

3. Take the Microsoft certification exam for the prod-
uct about which you want to be certified to teach.

4. Attend the MOC course for the course for which
you want to be certified. This is done so you can
understand how the course is structured, how
labs are completed, and how the course flows.

If you are interested in becoming a MCT, you can
obtain more information by visiting the Microsoft
Certified Training WWW site at http://
www.microsoft.com/train_cert/mct/ or by calling
800-688-0496.

31 002-8 AppB 3/1/99 8:52 AM Page 1106

Before running the Top Score software, be sure that
AutoRun is enabled. If you prefer not to use AutoRun,
then you can run the application from the CD by dou-
ble-clicking the START.EXE file from Explorer.

EXCLUSIVE ELECTRONIC
VERSION OF TEXT

As referred to above, the CD-ROM also contains the
electronic version of this book in Portable Document
Format (PDF). In addition to the links to the book
that are built into Top Score, you can use this version
to help search for terms you need to study or other
book elements. The electronic version comes complete
with all figures as they appear in the book.

COPYRIGHT INFORMATION AND
DISCLAIMER

Macmillan Computer Publishing’s Top Score test
engine: Copyright 1998 New Riders Publishing. All
rights reserved. Made in U.S.A.

CA P P E N D I X

What’s On the
CD-ROM

This appendix is a brief rundown of what you’ll find on
the CD-ROM that comes with this book. For a more
detailed description of the newly developed Top Score
test engine, exclusive to Macmillan Computer
Publishing, please see Appendix D, “Using the Top
Score Software.”

TOP SCORE

Top Score is a test engine developed exclusively for
Macmillan Computer Publishing. It is, we believe, the
best test engine available because it closely emulates the
format of the standard Microsoft exams. In addition to
providing a means of evaluating your knowledge of the
exam material, Top Score features several innovations
that help you to improve your mastery of the subject
matter.

For example, the practice tests allow you to check your
score by exam area or category to determine which top-
ics you need to study further. Other modes allow you
to obtain immediate feedback on your responses, expla-
nations of correct answers, and even hyperlinks to the
chapter in an electronic version of the book where the
topic is covered. Again, for a complete description of
the benefits of Top Score, see Appendix D.

32 002-8 AppC 3/1/99 8:52 AM Page 1107

32 002-8 AppC 3/1/99 8:52 AM Page 1108

INSTRUCTIONS ON USING THE
TOP SCORE SOFTWARE

Top Score software consists of the following four appli-
cations: Study Cards, Flash Cards, Practice Exams, and
Simulator.

Study Cards serve as a study aid organized around the
specific exam objectives, arranged in multiple-choice
format. Flash Cards, another study aid, require responses
to open-ended questions, testing knowledge of the mate-
rial at a deeper level than simply recognition memory.
Practice Exams simulate the Microsoft certification
exams. Simulator emulates elements of the Windows NT
interface in order to provide you with hands-on experi-
ence and practice with simulation questions like those
now appearing in new and revised certification exams.

To start the Study Cards, Flash Cards, or Practice
Exams applications, click the application you would
like to use, then on the next screen click the button
that appears centered near the bottom of the screen.
The initial screen of the application will appear, and
you will be ready to go.

To start Simulator, click the button, then follow the
instructions to install it. Once Simulator is installed,
it will appear in your Programs menu.

Further details on using the four specific applications
follow.

DA P P E N D I X

Using the Top Score
Software

GETTING STARTED

The installation procedure for the Top Score software is
very simple. Put the CD into the CD-ROM drive. The
AutoRun function starts and after a moment, you will
see the opening screen. Click Exit to quit or Continue
to proceed. If you clicked Continue, then you will see a
window offering you the choice of launching any of the
four Top Score applications.

At this point you are ready to use the Top Score
software.

N
O

T
E Getting Started Without AutoRun

If you have disabled the AutoRun
function, you may start the Top Score
Software suite by viewing the contents
of the CD-ROM in Explorer and double-
clicking START.EXE.

33 002-8 AppD 3/1/99 8:53 AM Page 1109

1110 Appendix D USING THE TOP SCORE SOFTWARE

The items are selected from a larger set of 150 to 900
questions. The random selection of questions from the
database takes some time to retrieve. Don’t reboot; your
machine is not hung!

Using Top Score Practice
Exams
The Practice Exams interface is simple and straightfor-
ward. Its design simulates the look and feel of the
Microsoft certification exams. If you followed the two
steps above, you should see an opening screen similar
to the one shown in Figure D.1.

Click Next to see a disclaimer and copyright screen,
read the information, and click Top Score’s Start but-
ton. A notice appears indicating that the program is
randomly selecting questions for the practice exam
from the exam database (see Figure D.2). Practice
exams include the same number of items as the
Microsoft exam.

After the questions have been selected, the first test
item appears. See Figure D.3 for an example of a test
item screen.

N
O

T
E The number of questions will be the

same for traditional exams. However,
this will not be the case for exams
that incorporate the new “adaptive
testing” format. In that format, there
is no set number of questions. See
“Study and Exam Preparation Tips”
for more details on this new format.

F IGU R E D.1▲
Top Score Practice Exams opening screen.

F IGURE D.2▲
Top Score’s Please Wait notice.

F IGURE D.3▲
A Top Score test item requiring a single response.

33 002-8 AppD 3/1/99 8:53 AM Page 1110

Appendix D USING THE TOP SCORE SOFTWARE 1111

Notice several important features of this window. The
question number, out of the total number of retrieved
questions, is located at the top-left corner of the win-
dow in the control bar. Immediately below this is a
check box labeled Mark, which enables you to mark
any exam item as one you would like to return to later.
Across the screen from the check box, you will see the
total time remaining for the exam.

The test question is located in a colored section (gray
in the figure). Directly below the test question, in the
white area, are response choices. Be sure to note that
immediately below the responses are instructions about
how to respond, including the number of responses
required. You will notice that questions requiring a sin-
gle response, such as that shown in Figure 3, have radio
buttons next to the choices. Items requiring multiple
responses have check boxes (see Figure D.4).

Some items require you to examine additional informa-
tion called Exhibits. These screens typically include
graphs, diagrams, or other types of visual information
needed to respond to the test question. Exhibits can be
accessed by clicking the Exhibit button also located at
the bottom of the window.

After you complete the practice test by moving through
all the test questions for your exam, you will arrive at a
summary screen titled Item Review (see Figure D.5).

Some questions and responses do not appear on the
screen in their entirety. In these cases a scrollbar appears
to the right of the question or response. Use the scroll-
bar to reveal the rest of the question or response item.

The buttons at the bottom of a window enable you to
return to a previous test item, proceed to the next test
item, or exit Top Score Practice Exams.

F IGURE D. 4▲
A Top Score test item requiring multiple responses.

F IGURE D.5▲
The Top Score Item Review window.

This window enables you to see all of the question
numbers, your responses to each item, any questions
you have marked, and any left incomplete. The buttons
at the bottom of the screen enable you to review all the
marked items and incomplete items in numeric order.

If you want to review a specific marked or incomplete
item, simply type the desired item number in the box
at the lower right corner of the window and click the
Review Item button. After you review the item, you
can respond to the question. Notice that the item win-
dow also offers the Next and Previous options. You can
also select the Item Review button to return to the
Item Review window.

33 002-8 AppD 3/1/99 8:53 AM Page 1111

1112 Appendix D USING THE TOP SCORE SOFTWARE

Using Top Score Study Cards
To start the software, begin from the main screen. Click
on the Study Cards button, then on the smaller button
displayed in the next screen. After a moment, an initial
screen similar to that of the Practice Exams appears.

Click Next to see the first Study Cards screen (see
Figure D.7).

After you complete your review of the practice test
questions, click the Grade Now button to find out how
you did. An Examination Score Report will be gener-
ated for your practice test (see Figure D.6). This report
provides you with the required score for this particular
certification exam, your score on the practice test, and a
grade. The report also breaks down your performance
on the practice test by the specific objectives for the
exam. Click the Print button to print out the results of
your performance.

N
O

T
E If you exceed the time allotted for the

test, you will not have the opportunity
to review any marked or incomplete
items. The program will move to the
next screen.

F IGU R E D.6▲
The Top Score Examination Score Report window.

You also have the option of reviewing those items that
you answered incorrectly. Click the Show Me What I
Missed button to receive a summary of those items.
Print out this information if you need further practice
or review; the printouts can be used to guide your use
of Study Cards and Flash Cards.

F IGURE D.7▲
The first Study Cards screen.

The interface for Study Cards is similar to that of
Practice Exams. However, you have several important
options that enable you to prepare for an exam. The
Study Cards material is organized using the specific
objectives for each exam. You can choose to receive
questions on all of the objectives or use the check
boxes to select coverage of a limited set of objectives.
For example, if you have already completed a Practice
Exam and your score report indicates that you need
work on Planning, you can choose to cover only the
Planning objectives for your Study Cards session.

You can also determine the number of questions to be
presented by typing it in the option box at the right of
the screen. You can also control the amount of time
allowed for a review by typing the number of minutes
into the Time Limit option box on the right side.

33 002-8 AppD 3/1/99 8:53 AM Page 1112

Appendix D USING THE TOP SCORE SOFTWARE 1113

When you click the Start Test button, Study Cards ran-
domly selects the indicated number of questions from
the question database. A dialog box appears, informing
you that this process could take some time. After the
questions are selected, you will see a first item that
looks similar to the one in Figure D.8.

Study Cards also includes Item Review, Score Report,
and Show Me What I Missed features that are essen-
tially the same as those in Practice Exams.

Using Top Score Flash Cards
Flash Cards are a third way to use the exam question
database. The Flash Cards items do not offer you
multiple-choice answers; instead they require you to
respond in a short answer or essay format. Flash Cards
help you learn the material well enough to respond
with the correct answers in your own words. If you
have the depth of knowledge to answer questions with-
out prompting, you will certainly be prepared to pass a
multiple-choice exam.

Flash Cards are started in the same fashion as Practice
Exams and Study Cards. Click the icon next to Flash
Cards, then click Start the Program. Click the button for
the exam you want and the opening screen will appear.
It will look similar to the example in Figure D.10.

F IGURE D. 8▲
A Study Cards item.

F IGURE D.9▲
Highlighting of the correct answer.

Respond to the questions in the same manner as you
did to Practice Exam questions. Radio buttons signal
that a single answer is required, whereas check boxes
indicate that multiple answers are expected.

Notice the menu options at the top of the window. File
pulls down to allow you an exit from the program. Edit
allows you to use the copy function and even copy ques-
tions to the Windows clipboard. The Options pull-
down menu allows you to take notes on a particular
question. When you pull it down, choose Open Notes.
After Notepad opens, type and save your notes. Options
also allows you to start over with another exam.

This application provides you with immediate feedback
as to whether you answered the question correctly. Click
the Show Answers button to see the correct answer(s)
highlighted on the screen as shown in Figure D.9.

33 002-8 AppD 3/1/99 8:53 AM Page 1113

1114 Appendix D USING THE TOP SCORE SOFTWARE

Notice, however, that although a question is presented,
no answer choices appear. You must type your answer in
the white space below the question (see Figure D.12).

You can choose Flash Cards by the various objectives
just as in Study Cards. Select the objectives you want
to cover, the number of questions you want, and the
amount of time you want to spend. Click the Start
Test button to start the Flash Cards session; you will
see a dialog box notifying you that questions are being
selected.

The Flash Cards items appear in an interface similar
to that of Practice Exams and Study Cards (see Figure
D.11).

F IGU R E D.10▲
The Flash Cards opening screen.

F IGU R E D.11▲
A Flash Card item.

F IGURE D.1 3▲
The correct answer is shown.

F IGURE D.1 2▲
A typed answer in Flash Cards.

Compare your answer to the correct answer by clicking
the Show Answers button (see Figure D.13).

You can also use the Show References button in the
same manner as described earlier in the Study Cards
sections.

33 002-8 AppD 3/1/99 8:53 AM Page 1114

Appendix D USING THE TOP SCORE SOFTWARE 1115

The pull-down menus provide nearly the same func-
tionality as they do in Study Cards, with the exception
of Paste on the Edit menu rather than Copy Question.

Flash Cards provide simple feedback. They do not
include an Item Review or Score Report. They are
intended to provide an alternative way to assess your
level of knowledge that will encourage you to learn the
information more thoroughly than with other methods.

Using Top Score Simulator
Top Score Simulator is simple to use. Just choose Start,
Program and click on the Simulator program name. After
the application opens, go to Options, Question Set, and
choose one of the three sets of questions. You will be pre-
sented with a task or question in the Task window and
asked to type in an answer or choose the appropriate tool
button to complete the task (see Figure D.14).

F IGUR E D.14▲
An example of a Simulator task.

F IGURE D.1 5▲
Completing the task.

F IGURE D.1 6▲
You got it correct!

To find out if you chose correctly, click the Grade but-
ton. You will receive immediate feedback about your
choice in the Result window (see Figure D.16). To
move on to the next question, simply click Next. You
can use the Previous button to go back over questions
you may have missed or wish to review. The Exit but-
ton allows you to quit the program.

After choosing the tool, you will have to complete the
task by choosing the correct tabs and settings or enter-
ing the correct information required by the task (see
Figure D.15).

33 002-8 AppD 3/1/99 8:53 AM Page 1115

SUMMARY

The Top Score software suite of applications provides
you with several approaches toward exam preparation.
Use Practice Exams not only to assess your learning but
also to prepare yourself for the test-taking situation. The
same can be said of the Simulator application. Use Study
Cards and Flash Cards as tools for more focused assess-
ment and review and to reinforce the knowledge you are
gaining. You will find that these four applications are the
perfect way to complete your exam preparation.

33 002-8 AppD 3/1/99 8:53 AM Page 1116

EA P P E N D I X

For the operating system to allocate the memory
required for a variable, the programmer must decide
what type of data the variable will hold. Data comes in
a wide variety of forms and sizes. Small numbers can
take very little memory; however, decimal precision can
require a lot of memory. Each type of data has a differ-
ent physical memory requirement. Each programming
language has a set of data types that describe the type
of information and how much memory space will be
used to hold it. A good programmer will always
attempt to use the most effective data type and reduce
the memory used by the application.

Visual Basic Basics

Declaring and Defining the
Scope of a Variable
When the programmer requires a variable, Visual Basic
allows two different ways of declaring them. The first
method is called implicit variable declaration. This
method enables a programmer to use a variable any
time he or she requires one. The programmer just has
to type a new variable name into the source code and
the variable is automatically created by VB. The follow-
ing line of code uses implicit variable declaration:

x = “Hello”

N
O

T
E Data Types Discussed at More

Length in Later Sections For a fuller
discussion of data types, see the sub-
sections under “Understanding Visual
Basic’s Standard Simple Data Types”
later in this appendix.

The exam objectives are written assuming that you
already have a basic working knowledge of the VB lan-
guage. The objectives therefore do not explicitly men-
tion fundamental VB programming skills.

If you are somewhat new to VB, you may find the dis-
cussion of VB fundamentals in this appendix useful as
you prepare for the examination.

This appendix covers the following fundamental topics
of VB programming:

á Programming with variables

á Programming with Sub and Function procedures

á Using control structures in VB

PROGAMMING WITH
VARIABLES IN VB
Variables are storage locations in memory that are used
for a wide variety of data. The variable receives a vari-
able name from the programmer, which allows access to
the memory location. The programmer does not have
to know the physical memory address of information to
retrieve and manipulate it. The variable name is used as
a reference to the physical address and reduces the work
of the programmer.

After information has been stored, the programmer, appli-
cation, or user can affect the value held within a variable.
Various calculations can be performed on the stored value,
or the value can be used in other calculations.

34 002-8 AppE 3/1/99 8:53 AM Page 1117

1118 APPENDIX E VISUAL BASIC BASICS

In this code sample, the x contains the String value
“Hello”. Visual Basic automatically created x and
selected a default data type for the variable.

The second method of using variables is called explicit
variable declaration. To use this method, the program-
mer must first name the variable and describe what
type of information will be contained within the vari-
able. The following line of code is an example of
explicit variable declaration:

Dim x As String

In this code sample, before the programmer can use x
and assign a value to it, the x is declared. The Dim state-
ment is used to dimension a variable called x. The vari-
able will hold String information.

Explicit declarations have the following three parts. The
first word is a keyword that determines the scope or life-
time of the variable. The second part is the variable
name that will be used in the source code. The third part
is the data type of the variable that tells the computer
how much memory is required to hold the information.

Both methods of variable declaration can be used with
Visual Basic. When working with large projects, or to
help reduce source code problems, many programmers
use explicit variable declaration. It may require a few
extra lines of code, but can save many hours of frustra-
tion and debugging code. When a typo is made on a
variable name, the compiler generates an error before
running the code. This is due to a special statement
that tells the compiler that all variables must be previ-
ously declared before they can be used.

The statement Option Explicit requires that the
programmer inform the compiler of a variable’s scope,
name, and data type before the variable is used. This
statement must appear at the beginning of any type
of code module in the General Declarations section.

To assist the programmer with explicit declaration, VB
has an option that will automatically insert the Option
Explicit statement into any new code module that is
created. Existing code modules will have to have the
statement put in manually. To force variable declara-
tion, ensure that the Tools, Options, Editor Tab check
box Require Variable Declaration is checked.

Of the three key components to an explicit declaration,
the third part—data type—describes the type of infor-
mation stored within memory. Visual Basic contains
13 data types. Each data type has a specific name that
is used to refer to the information it can hold, as well
as to the amount of memory used by that data type.

N
O

T
E VB Data Types Again, for further dis-

cussion of data types, see subsequent
sections in this appendix under the
section titled “Understanding Visual
Basic’s Standard Simple Data Types.”

Each data type has been designed to hold a particular
piece of information. This allows for optimized mem-
ory use. It also enables the programmer to better con-
trol the memory requirements and performance of the
application.

Visual Basic has many different data types that allow for
storage of simple numbers, complex numbers, Strings,
dates and times, as well as objects. One of the more
complex data types in VB is the Variant. This is the
default data type of Visual Basic. Variants can be used
to store information from any of the other data types.
This makes the Variant a very flexible variable, but sig-
nificantly increases the storage requirements. Listing E.1
gives example declarations of various data types.

34 002-8 AppE 3/1/99 8:53 AM Page 1118

APPENDIX E VISUAL BASIC BASICS 1119

LISTING E.1

VARIABLE DECLARATIONS

Dim iLoop As Integer
Dim lCounter As Long
Dim strFirstName As String
Dim dblRate As Double

The first example declares the variable name of iLoop
to store Integer data. The second declares lCounter to
store Long numbers. The third variable holds String
data and the fourth allocates storage for a Double num-
ber. These samples all use a standard naming conven-
tion that describes the type of data they contain by
using a special letter prefix followed by the name of the
variable. This assists anyone who will be reading the
source code; the readers will know the type of data
being stored without having to read the declarations.
All these code samples have also explicitly declared the
type of data to be stored.

When variables are implicitly declared, they do not
inform the compiler of which data type will be used.
With Visual Basic, the compiler automatically assigns
implicit variables with the default data type of Variant.
This increases the amount of memory that the applica-
tion will use. To reduce the storage of information in
memory, programmers use explicit declarations. This
enables the programmer to inform the compiler of the
name and data type of the variable to be used. The
compiler then verifies that the correct information is
passed to variables.

When incorrect information is assigned to a previously
declared variable, a runtime error occurs. The type mis-
match is an error that new programmers get quickly
accustomed to. To avoid these errors, the programmer
must closely monitor how the program assigns informa-
tion to the variables. When information is manipulated,
the programmer must explicitly convert the information
before assigning it to a different data type variable.

This type of data control requires more attention, but
ensures that the application is always doing exactly what
it was designed to do.

Scope of Variables
Thus far, you have seen that a variable declaration con-
tains the name of the variable as well as the data type.
Another important aspect of a variable declaration is
the scope. The scope of a variable determines where in
the application that variable can be referenced. This
allows only certain parts of the program to have access
to information and provides security for the data.

The four different types of variable scopes are as follows:

á Local

á Static

á Private

á Public

In addition, a fifth variable scope, Global, is considered
obsolete, having been replaced by Public. You may still
encounter it, however, in code that was created in
versions of VB before VB 4.

Defining the scope of a variable requires two things.
The first is where in the project the variable is declared.
The second is the keyword used in front of the variable
name. Listing E.2 gives some code examples of different
scopes in variable declarations.

LISTING E.2

VARIABLE DECLARATIONS OF DIFFERENT

SCOPES

Dim iLoop As Integer
Static iLoop As Integer
Private iLoop As Integer
Public iLoop As Integer

34 002-8 AppE 3/1/99 8:53 AM Page 1119

1120 APPENDIX E VISUAL BASIC BASICS

The code samples all declare the same variable name
and the same variable type. Notice, however, that the
keyword to declare the variable is different for each one.

These four keywords allow the variable being declared
to be restricted to certain areas of the application. This
gives the programmer tighter control over what infor-
mation is being assigned to variables. The scope also
prevents other procedures from unexpectedly changing
the value of the variables.

The keywords Public, Private, Static, and Dim are all
used to set the scope. Each has a specific location where
it can be used to declare the variable.

Declaring Local Variables
Local variables are declared within a Sub, Function, or
Property procedure. The keyword Dim is used in front
of the variable name and data type:

Dim strFirstName As String

Local variables are also referred to as procedure-level
variables. These variables are created and exist only as
long as the procedure is executing. When the procedure
has completed, the variable is no longer available and
will be reset upon the next execution of the procedure,
as illustrated in Listing E.3. If the Sub procedure of the
listing were to be called multiple times, the value of X
displayed in the MsgBox would always be 1, because X
would always be re-initialized to a default value of 0
and then would get 1 added on to its value.

LISTING E.3

A LOCAL VARIABLE

Sub SetX()
Dim X As Integer
X = X + 1
MsgBox “The value of X is “ & X

End Sub

Local variables are only accessible to the code within
the procedure. Program code outside the procedure
cannot use or set a locally scoped variable. This protects
the information stored within that variable. The vari-
able name can be used by other variables and proper-
ties, or passed as an argument to other procedures.

The Dim keyword is primarily used within a procedure.
VB will allow the use of the Dim keyword in the
General Declarations section of a code module. When
used outside a procedure, the Dim statement creates a
variable with Private scope. The use of the keyword
Private is preferred over Dim in the General
Declarations section and has only been allowed for
compatibility with previous versions of Visual Basic.
The keywords Private and Public cannot be used
within a procedure.

Declaring Static Variables
Static variables are created within a Sub, Function, or
Property procedure. The keyword Static is used before
the variable name and the data type:

Static X As Integer

Static variables are used within the procedure level.
The main difference between local variables and Static
variables is the life span. Static variables retain their
values even after the procedure has finished executing,
as illustrated in Listing E.4. If the procedure of the list-
ing were called multiple times during the same session
of the application, the value of the variable I would be
greater by one on each call.

LISTING E.4

USING A Static VARIABLE TO “REMEMBER”
A VALUE BETWEEN CALLS TO A PROCEDURE

Sub SetX()
Static X As Integer
X = X + 1
MsgBox “The value of X is “ & X

End Sub

34 002-8 AppE 3/1/99 8:53 AM Page 1120

APPENDIX E VISUAL BASIC BASICS 1121

By contrast, local variables are reset every time the pro-
cedure executes, as explained in the preceding section,
“Declaring Local Variables.” Similar to local variables,
a static variable is only accessible to the code within
the procedure where the variable has been declared.
Program code outside the procedure cannot “see” the
variable. This restricts outside code from both using
and setting the statically scoped variable. The variable
can be used by other variables and properties, or
passed as an argument to other procedures.

Declaring Private Variables
Private variables can be declared in the General
Declarations section of any type of code module. The
keyword Private is used in front of the variable name
and data type:

Private iPage As Integer

A privately scoped variable is only accessible to proce-
dures contained within the same code module. If a vari-
able were declared in the General Declarations section
of a form code module, only procedures from that form
would have access to the variable. Procedures from
other form code modules or standard modules would
not be able to access the privately scoped variable.

The code sample in Listing E.5 assumes the previous
declaration sample has been made in the General
Declarations section of the same form code module.

LISTING E.5

USING A PRIVATELY SCOPED VARIABLE IN

AN EVENT PROCEDURE

Sub Command1_Click()
iPage = iPage + 1
MsgBox “There are “ & iPage & “ pages

currently.”, vbInformation
End Sub

The value of the variable is used and set within the
Command1 Click procedure. The variable retains its
value until the form is unloaded.

When using standard or class modules, variables can also
be privately scoped by using a declaration for the variable
in the General Declarations section. The privately scoped
variable will only be accessible to procedures from the
same standard or class module.

Declaring Public Variables
Public variables are created in the General Declarations
section of any type of code module. The keyword Public
is used in front of the variable name and data type:

Public iPage As Integer

Public variables are available to all components within
the application. The variable is retained for the lifetime
of the application.

Publicly scoped variables can be used and set by any
code component whether it’s a form, standard, or class
module.

To reference a publicly scoped variable declared on a
form code module, the name of the form must be ref-
erenced first, followed by the variable name.

When using standard modules, the name does not have
to be referenced unless there are multiple modules with
the same publicly scoped variable name. Then the
module name must be referenced first, followed by the
variable name.

Classes must be instantiated before publicly scoped
variables of the class can be accessed.

Using the Appropriate
Declaration Statement
To protect data that has been assigned to a variable, the
programmer can use the scope of a variable to determine
where in the application the variable can be accessed.
This allows only required parts of the program to be
able to change a variable.

34 002-8 AppE 3/1/99 8:53 AM Page 1121

1122 APPENDIX E VISUAL BASIC BASICS

One of the most important reasons for using the correct
variable scope is to prevent logical errors in the applica-
tion. A logical error occurs when the program is func-
tioning, but not with the desired results. Logical errors
can often be attributed to the programmer expecting a
variable to have a certain value when it does not. This
“unexpected” value could be caused from a certain pro-
cedure, within the application, changing the variable.
Limiting which parts of the application can have access
to certain variables can control these logical errors.

This appendix has already discussed the requirements for
declaring a variable with certain scope. The following
section expands on that information by showing specific
uses of Local, Static, Private, and Public variables.

Using Local Variables
The keyword Dim is used within a procedure to declare
a locally scoped variable.

LISTING E.6

A LOCAL VARIABLE USED AS A LOOP

COUNTER

Sub Command1_Click()
Dim iLoop As Integer
For iLoop = 1 To 100

Print iLoop
Next iLoop

End Sub

When the code in Listing E.6 executes, the iLoop vari-
able is used to increment the For loop and then print
the value to the default Form object. The variable can-
not be altered from outside the Command1 Click proce-
dure due to the local scope.

The code sample in Listing E.7 demonstrates assigning
the value from a property to a locally scoped variable.
Then the variable is used to manipulate the information.

LISTING E.7

USING LOCAL VARIABLES

Function CountFullName()As Integer
Dim strFirstName As String, strLastName As ÂString

Dim iLenFirstName As Integer, iLenLastName As
➥Integer

strFirstName = frmMain.txtFirstName.Text
strLastName = frmMain.txtLastName.Text
iLenFirstName = Len(strFirstName)
iLenLastName = Len(strLastName)
frmMain.txtFullName.Text = strFirstName & “ “

➥& strLastName
CountFullName = iLenFirstName + iLenLastName

➥End Function

This reduces the time needed to search for the object
reference. The length of the first and last name are
measured, then added together, and then used as the
return value of the function.

N
O

T
E A Limitation on Implicit Variable

Declaration When an implicit vari-
able declaration is made, the variable
will be a Variant data type and have
local scope. This is another limitation
of implicit variable declaration.

Local variables should be used when the value they
contain will no longer be required after the procedure
has completed execution. The Local variable will be
reset when the procedure is executed again, and will
thus lose its value.

Some examples of local variable use would be for loop-
ing counters, status flags, calculations, and property val-
ues, as illustrated in Listing E.6.

34 002-8 AppE 3/1/99 8:53 AM Page 1122

APPENDIX E VISUAL BASIC BASICS 1123

Using Static Variables
The keyword Static is used within a procedure to
declare a statically scoped variable.

Static variables should be used when the value they
contain is required to remain after the procedure has
executed, but the value is not to be altered outside the
procedure.

The code in Listing E.8 compares the behavior of
Static and Local variables.

LISTING E.8

COMPARISON OF LOCAL AND STATIC VARIABLE

BEHAVIOR

Sub Command1_Click()
Dim iLoop1 As Integer
Static iLoop2 As Integer
iLoop1 = iLoop1 + 1
iLoop2 = iLoop2 + 1
MsgBox “The first value is “ & iLoop1 & vbCrLf

➥& “The second value is “ & iLoop2, vbInformation
➥End Sub

This code declares two variables with different scope.
The first variable has local scope and the second has
static. When the Command1 button is clicked, a message
box will appear with two lines of text. The first line of
text is the Local variable, and the second line of text is
the Static variable. Which one will continue to
increase? The Static variable will, because it will retain
the value after the procedure has completed execution
and is called again.

Static variables can be used to set persistent status
information within a procedure, but is not needed out-
side the procedure. This can allow the procedure to
indicate how many times it has been executed, if
processing is in progress, or other status information.

Using Private Variables
To declare a Private variable requires the keyword
Private, and the declaration must be located in the
General Declarations section of the code module.

N
O

T
E Dim Can Also Be Used in General

Declarations The keyword Dim can
also be used in the General
Declarations section of the code mod-
ule. This will also create a privately
scoped variable. The preferred
method is to use the keyword
Private, but Dim has been included
for backward compatibility with code
originally written in earlier versions of
VB. Private cannot be used to
declare variables in VB procedures,
although it can be used in a General
Declarations section

Private variables should be used when you need to be
able to access a variable’s value throughout the entire
code component. Private variables can be used in form
code modules, standard code modules, and classes,
including specialized classes such as UserControls
(ActiveX controls) or UserDocuments (Active docu-
ments). All procedures of the code module will have
access to the Private variable.

Private variables require more attention from the pro-
grammer to ensure that the value can be changed at
any time without a specific value being required by a
procedure.

Listing E.9 uses a form-level Private variable declared
in the General Declarations section.

34 002-8 AppE 3/1/99 8:53 AM Page 1123

1124 APPENDIX E VISUAL BASIC BASICS

LISTING E.9

USING Private VARIABLES IN EVENT

PROCEDURES

Private iPage As Integer
Sub Command1_Click()

iPage = iPage + 1
MsgBox “The current page count is “ & iPage,

➥vbInformation
End Sub
Sub Command2_Click()

iPage = iPage ñ 1
MsgBox “The current page count is “ & iPage,

➥vbInformation
End Sub

Two command buttons are placed on the form and
coded as shown:

Command1 Click increases the value of the variable by
one, and then displays a message box indicating the
current page count.

Command2 Click decreases the value of the variable by
one, and also displays a message box with the current
count.

Both procedures can manipulate the privately scoped
variable. If other procedures required the information
contained within the variable, they could also use it.

Using Public Variables
To declare a Public variable requires the keyword
Public, and the declaration must be located in the
General Declarations section of the code module.

Public variables should be used when a value is required
in all parts of the application for the entire lifetime of
the application. Public variables require a good deal of
consideration by the programmer because any procedure
in the application has access to that variable.

When a publicly scoped variable is declared on a form
code module, other forms can reference the variable by
indicating the form name followed by the variable
name. The Public variable then looks very much like
a custom property of the Form object.

The code in Listing E.10 uses two different Form
objects. Form1 contains a single command button called
cmdForm1. Form2 contains a single command button
called cmdForm2. Both command buttons have access to
the publicly scoped variable of Form1.

LISTING E.10

ACCESSING A PUBLIC VARIABLE FROM TWO

DIFFERENT FORMS

Public strAppTitle As String
Sub Form_Load()

strAppTitle = “Big Sample App”
Form2.Show

End Sub
Sub cmdForm1_Click()

MsgBox “This application is called “ &
➥strAppTitle
End Sub
Sub cmdForm2_Click()

MsgBox “This application is called “ &
➥Form1.strAppTitle
End Sub

Notice how Form2’s command button must use the
name of the form first, and then the variable name.
Form1 does not require the same qualification, but it is
commonly used anyway.

If Form2 does not qualify the variable name with the
form name in front, a compiler error will occur
(Variable not defined).

When publicly scoped variables are used with standard
code modules, the module name does not have to be
included to reference the variable. The exception to this
rule is if more than one code module is using the same
publicly scoped variable name. In this case, the refer-
ence must indicate which module is to be referenced.

34 002-8 AppE 3/1/99 8:53 AM Page 1124

APPENDIX E VISUAL BASIC BASICS 1125

Too many publicly scoped variables can cause logical
errors to occur in the application. Most applications
will use very few Public variables if possible. Another
method of passing information from one procedure to
another is to use arguments. This is another alternative
to using too many Public variables and offers better
protection of the information.

Understanding Visual Basic’s
Standard Simple Data Types
A simple data type stores just one basic type of infor-
mation at one place in your computer’s memory. Other
data types, which are discussed later, aren’t so easy to
characterize. They usually represent more complex data
divided into a number of areas with special functions.

To be able to select a data type properly, you should
know the following:

á What kind of information each data type can hold

á How much memory each data type takes up

á What range of data a data type can hold

Numeric Data Types
Programmers who haven’t used languages supporting
multiple numeric types may wonder why they need
more than one type to store numeric values. The
answer is efficiency in storage and access.

Two kinds of data type (Integer and Long) hold whole-
number information, and two more types (Single and
Double) hold floating-point numbers—that is, num-
bers that store a movable decimal point. There are two
of each type to accommodate different storage needs.
You would use the larger of each pair (Long for whole
numbers, and Double for floating point) when you had
to and the smaller of each pair (Integer and Single)
whenever possible. The following sections on each data
type give specific information about when to use the
various numeric data types.

N
O

T
E Numbers as Numeric or Text Data

Don’t store Social Security numbers,
phone numbers, or customer ID num-
bers as numeric data. These are
really textual information masquerad-
ing as numbers. A good general rule
is this: If you don’t plan to do math
with it, it isn’t really a number.

Integer
Integer data have the following characteristics:

Type of information Whole number

Amount of memory required 2 bytes

Range of data –32,768 to 32,767 (64K total)

Integer is a good choice for most incrementing coun-
ters (unless you plan to increment beyond the 32K
limit) and for a lot of “every day” kinds of information.
Examples would include things such as the following:

á Age to the nearest year (for human beings, at least)

á Number of the day or month

á Number of tax-deductible dependents (let’s hope
it is not more than 32K)

Long
Long data have the following characteristics:

Type of information Whole number

Amount of memory required 4 bytes

Range of data –2,147,483,648 to 2,147,483,647

Longs are appropriate for whole-number information
that is too big to fit in an Integer (outside the 32K
range, in other words). Examples of good Long data
type candidates include the following:

34 002-8 AppE 3/1/99 8:53 AM Page 1125

1126 APPENDIX E VISUAL BASIC BASICS

á Salary in whole dollars

á Population of a city

Single
Single data have the following characteristics:

Type of information Floating-point (fractional) number

Amount of memory required 4 bytes

Range of data –3.402823E38 to –1.401298E-45
and 1.401298E-45 to 3.402823E38

Just about any non-whole number can fit in a Single.
After all, 10–45 is a pretty small number and 1038 is
pretty big. No business application will probably ever
require anything bigger than a Single.

Double
Double data have the following characteristics:

Type of information floating-point number

Amount of memory required 8 bytes

Range of data –1.79769313486231E308 to
–4.94065645841247E-324 and
4.94065645841247E-324 to
1.79769313486232E308

When to use: when you need to store astronomically
large or small values. Scientific and engineering applica-
tions might require you to use Double. Examples of
values requiring Double include the following:

á Number of elementary particles in the Universe

á Number of seconds (estimated) since the
Universe began

á Size of a quark (a subatomic particle), in millimeters

The most critical difference between Single and Double
is really in the number of significant digits (7 versus
15), which can be critical in almost any type of applica-
tion, including financial calculations.

Currency
Currency data have the following characteristics:

Type of information Number with four fixed decimal
places

Amount of memory required 8 bytes

Range of data –922337203685477.5808 to
922337203685477.5807

Passing Currency Data Type
Outside of VB Most applications
outside of Visual Basic (such as C
routines in DLL calls) don’t recog-
nize Currency, and so you must con-
vert a Currency-type variable to
Single or Double before you pass it.

W
A

R
N

IN
G

When to use: Currency is best used with applications in
which you need to keep track of money. Unlike the
Single data type, Currency eliminates small rounding
errors that can, in some situations, creep into calcula-
tions with Single and Double. Accountants will thank
you for using Currency.

String Data Type
String data have the following characteristics:

Type of information Textual information

Amount of memory required 10 bytes plus 1 byte for each char-
acter if the String is a variable-
length String. 1 byte for each
character if the String is fixed
length

Range of data 0 to approximately 2 billion charac-
ters for Win95 and NT, and 0 to
approximately 65,400 for earlier
versions of Windows

34 002-8 AppE 3/1/99 8:53 AM Page 1126

APPENDIX E VISUAL BASIC BASICS 1127

A String can have fixed or variable length. You declare
a variable-length String as you would any other
variable type:

Dim MyString As String

You declare a fixed-length String by specifying the
number of characters the String will hold:

Dim MyString As String * 20

If a String has variable length, you can add or delete
characters, or re-initialize it at runtime as shown in the
three examples of Listing E.11.

LISTING E.11

MANIPULAT ING A VARIABLE -LENGTH STRING

MyString = MyString & “.”
MyString = Left(MyString,3)
MyString = “”

In each of the cases in the listing, the String’s size
changes to reflect the new number of characters in the
String.

If a String is of fixed length, you can’t change its size.
Any statement that appears to change the size of the
String still leaves the String with the same number of
bytes. In Listing E.12, the Debug.Print statement will
always display a value of 11 for the String’s length,
because the String has fixed length.

LISTING E.12

MANIPULAT ING A FIXED-LENGTH STRING

Dim str1 As String * 11
str1 = “Hello World”
Debug.Print Len(str1)
str1 = Left(str1, 3)
Debug.Print Len(str1)

Fixed-Length Strings as Public
Variables You can’t declare a fixed-
length String as a Public variable
in a form module. If you try to do
so, you will get a compiler error.W

A
R

N
IN

G

You should, of course, store any type of data that con-
tains variable textual information in a String. It is
important to notice that it was termed “variable textual
information.” If a certain piece of information can
always be represented by three values (“Married,”
“Single,” “Divorced”) for instance, perhaps that infor-
mation should be stored as an Integer with values from
0 through 2 or 1 through 3 (1=Married, 2=Single,
3=Divorced). If the information is always one of two
values (“Male,” “Female”), consider implementing such
dual-valued information as a Boolean data type (call the
variable blnIsFemale, give it a True value if dealing with
a female and a False value if dealing with a male). See
“Boolean Data Type” in this appendix. Much informa-
tion that appears to be numeric is actually better off as
a String. This is because Strings are the most pliable
type of data and can be manipulated in numerous
ways. In the example

MyString = “312-555-3245”
NewString = Mid(MyString,5,3)

NewString would end up holding the value “555”. The
example shows that it is trivial to extract a certain range
of characters from a String, but try doing that with a
numeric data type sometime.

N
O

T
E Numbers Stored as Strings In gen-

eral, if you don’t plan to perform math-
ematical calculations with a number,
store the number as a String.

34 002-8 AppE 3/1/99 8:53 AM Page 1127

1128 APPENDIX E VISUAL BASIC BASICS

Date Data Type
Date data have the following characteristics:

Type of information Date and time information—stored
as floating point, where the frac-
tional part represents time, and the
whole number part represents date

Amount of memory required 8 bytes

Range of data January 1, 100 to December 31,
9999, including fractional days
(time of day)

Use it when you need to store or manipulate a date or
time.

N
O

T
E Date Data and Arithmetic Operations

You can do arithmetic operations,
such as addition and subtraction, with
variables stored as Dates. The
DateDiff() function returns the
amount of time elapsed between two
Date-type variables.

It is easy to determine when to use a Date type. Now
let’s discuss how to use a Date-type variable.

Using the Now Keyword to Get Current
System Date and Time
You can store the current date and time in a Date-type
variable using the Now system function:

datToday = Now

You can use the value of datToday with the Format()
function to extract readable String information about
the date, day of the week, or time.

In addition, the Date function will return the current
date only (no time component).

N
O

T
E System Date and Time You can set

the computer’s system date and time
from a Visual Basic program with the
Date and Time statements.

Using Special Date/Time Functions to
Extract Information from a Date Variable
If you need to extract components of a date (year, month,
day of the month, hour, minute, or second), use a sepa-
rate function for each of these pieces of information.

For more information on using these functions, see
the VB Language Reference and the Programmers
Reference Guide for the following functions: Year(),
Month(), Day(), Hour(), Minute(), and Second(). Note
also the Timer() function, which returns the number of
seconds elapsed since midnight.

Using Special Date/Time Functions to
Store Information in a Date Variable
What if you need to store information in a Date-type
variable other than the current date-time stamp of your
system?

The DateSerial() function is one way to directly store
date information in a Date-type variable. It takes three
arguments: a year, a month, and a day. (All three values
must work together to produce a valid date. 95,2,29
would not be valid, for instance, because there was no
February 29, 1995.)

You can directly store time information in a Date-type
variable with the TimeSerial() function. You can add
the results of the DateSerial() and TimeSerial() func-
tions together to store date/time information in a single
variable.

34 002-8 AppE 3/1/99 8:53 AM Page 1128

APPENDIX E VISUAL BASIC BASICS 1129

LISTING E.13

DATE AND TIME MANIPULAT ION

Dim MyDate As Date
Dim intYear As Integer
Dim intMonth As Integer
Dim intDay As Integer
Dim intHour As Integer
Dim intMinute As Integer
intYear = CInt(txtYear.Text)
intMonth = CInt(txtMonth.Text)
intDay = CInt(txtDay.Text)
intHour = CInt(txtHour.Text)
intMinute = CInt(txtMinute.Text)
MyDate = DateSerial(intYear, intMonth, intDay) + _
TimeSerial(intHour, intMinute, 0)
Debug.Print MyDate

This example in Listing E.13 assumes that the user has
typed desired values for year, month, day, hour, and
minute into text boxes. The program converts these val-
ues to integers using the CInt function and stores them
in Integer variables. Then, these Integer variables are
used as arguments to DateSerial() and TimeSerial().
The program sums the return values of these two func-
tions and stores the sum as a Date-type variable. Of
course, a more robust application would validate the
contents of the text boxes before trying to use them.

Byte Data Type
Byte data have the following characteristics:

Type of information A single byte of data

Amount of memory required 1 byte

Range of data 0 to 255 (positive values only)

Byte is most useful when you are exchanging informa-
tion that is in some binary format between Visual
Basic and another environment, such as when your
program calls a DLL routine or when it directly
accesses a file containing binary information.

N
O

T
E Dealing with C Routines in DLL Files

When a C routine in a DLL file needs
C’s char type in an argument, pass a
variable of type Byte.

Boolean Data Type
Boolean data has the following characteristics:

Type of information One of two values—True or False

Amount of memory required 2 bytes

Range of data True or False

Whenever a piece of information will always take on two,
and only two, values, and these two values are logically
opposed to each other, use the Boolean data type. You
might use Boolean to show the following, for example:

á Whether an employee is a 401K participant

á Whether data has changed

It is not a good idea to use a Boolean to represent the
following:

á Employee type, when there are more than two
types

á Marital status, if you need more than two possi-
ble choices (such as Married, Single, Divorced,
and Widowed)

Byte Data Limitations When you
convert a variable to type Byte,
make sure that the variable you are
converting represents a number
between 0 and 255 (positive values
only). Any other value will cause an
Overflow runtime error.

W
A

R
N

IN
G

34 002-8 AppE 3/1/99 8:53 AM Page 1129

1130 APPENDIX E VISUAL BASIC BASICS

In such cases, you would want to use either an Integer
to represent the different possibilities, or perhaps a
String containing a description of the particular option.

Use this data type as little as possible. A Variant has
a negative effect on memory resources and speed/
performance issues; Visual Basic must perform internal
conversions every time your program accesses a Variant
variable.

You will need to use Variant when

• You are writing code for a routine that can take a
parameter of ambiguous type (usually declared as
Variant).

• You are using a For Each...Next loop to process
elements of an array. The placeholder variable in
such loops must be a Variant. (This is only true
for arrays: When processing a collection with For
Each...Next, you can use a placeholder whose
type is compatible with the type of object in the
collection.)

• You want to implement a ParamArray, which is an
array of Variant. See “Array Arguments and the
ParamArray Keyword” later in this appendix.

The Variant data type has a subtype known as Decimal.
It is called a subtype because only a Variant can actu-
ally store Decimal-type data—you can’t directly declare
a variable as Decimal. Decimal is useful because it
reduces rounding errors that can creep into numeric
results, especially after division. If you run the code in
Listing E.14, you will see that the result of a division of
two numbers such as one and three correctly displays
when displayed as Variant Decimal, but that the deci-
mal places begin to wander when you use Single.

LISTING E.14

DIFFERENCES IN ACCURACY BETWEEN THE

VARIANT’S DECIMAL SUBTYPE AND THE SINGLE

TYPE

Private Sub Command1_Click()
Dim varMe As Variant
Dim sngSource As Single
Dim Above As Long

N
O

T
E Boolean Conversion When convert-

ing from a numeric type to a Boolean,
all nonzero values of the number will
convert to Boolean True, and 0 will
convert to False.

When converting from a Boolean to a
numeric type, True will convert to –1,
and False will convert to 0.

String to Boolean Conversion To
successfully convert a String to a
Boolean, the String can only con-
tain “True” or “False”. Note that
the conversion is not case sensi-
tive, so “TRUE”, “true”, and any
other capitalization would work. Any
other value in the String will cause
a runtime error.

W
A

R
N

IN
G

Variant Data Type and the Decimal
Subtype
Variant data has the following characteristics:

Type of information Any type of data

Amount of memory required The amount of memory required to
implement whatever type of data
has been stored in the Variant,
plus another 22 bytes of overhead

Range of data Depends on the data type of its
contents

34 002-8 AppE 3/1/99 8:53 AM Page 1130

APPENDIX E VISUAL BASIC BASICS 1131

Dim Below As Long
If IsNumeric(txtAbove.Text) And IsNumeric

➥(txtBelow.Text) Then
Above = txtAbove.Text
Below = txtBelow.Text
sngSource = Above / Below
varMe = CDec(Above / Below)
MsgBox Above & “/” & Below & “ =” _

& Chr$(10) _
& Chr$(10) & “Single:” _
& Chr$(10) & Format(sngSource,

➥“##.################”) _
& Chr$(10) _
& Chr$(10) & “Variant Decimal:” _
& Chr$(10) _
& Format(varMe, “##.################”)

Else
Beep
MsgBox “Please enter numbers in both text

➥fields
End If

End Sub

IsNumeric(), IsArray(), and
IsDate() Functions
The IsArray() function takes the name of a variable as its
single parameter and returns a Boolean. It will return True
if the variable is an array. For example, in the two lines

Dim MyNames() as String
If IsArray(MyNames) Then...

IsArray will evaluate to a True value.

IsNumeric() and IsDate() can actually do more than
tell us whether a particular variable is one of the
numeric types or whether the variable is of type Date.
These two functions will also accept a String and
determine whether Visual Basic can interpret the con-
tents of the String as a number or a date. For example,
in the code fragment

strIsIt = “897.90”
If IsNumeric(strIsIt) Then...

IsNumeric would evaluate to a True. You could then per-
haps use the CDbl function (mentioned in the following
section on the “C” functions) to convert the contents of
the strIsIt variable in numeric computations. If you
called CDbl without first making sure that strIsIt could be
converted to a number, you could generate a runtime error.

TypeOf Statement and TypeName()
Function
TypeName() provides a general way to determine the data
type of a nonobject variable. TypeName() returns a String
giving the data type’s name. In the example of Listing
E.15, you will see the word Integer in the Msgbox.

LISTING E.15

USING TYPENAME TO DETERMINE A

VARIABLE’S DATA TYPE

Dim MyVar ‘no explicit data type defined
‘- so this is a Variant

MyVar = 1
MsgBox TypeName(MyVar)

N
O

T
E The CDec Conversion Function The

CDec conversion function is discussed
in the section “CDec” in this appendix.

Checking the Data Type of a
Variable
Although good programming practice encourages you
to keep track of variable types, at times it is legitimately
possible to be ignorant of a variable’s type. This can
happen in the following situations:

á You are writing code for a routine that can take a
parameter of ambiguous type (usually declared as
Variant).

á You are looking at object variables. You may
know a variable is an object, but you need to
know what kind of object it is. This could hap-
pen, for instance, when you are looking at a
form’s Controls collection (see the section in this
appendix on collections).

34 002-8 AppE 3/1/99 8:53 AM Page 1131

1132 APPENDIX E VISUAL BASIC BASICS

TypeOf will tell you the specific type of an object. It has
the following special syntax:

If TypeOf MyControl Is TextBox then...

Because of its syntactic format, you can only use TypeOf
in logical expressions.

Converting Between Data
Types
Very often, you need to use different data types
together in the same expression.

Visual Basic can often perform data-type conversion
automatically, and you, as the programmer, need not
concern yourself with what goes on behind the scenes
in these cases.

At other times, however, you will need to convert a
variable to another data type before you use it. This is
necessary when you want to pass a variable as an argu-
ment to a function or procedure, and the procedure is
expecting a parameter of a different data type.

Automatic Conversion Between Numeric
Values
When you are dealing with different numeric data
types, there is often no problem because Visual Basic
automatically does the necessary conversion between
types, including any rounding.

In Listing E.16, the actual result of the calculation is
87.8, but Visual Basic gracefully assigns a value of 88
to the Integer variable.

LISTING E.16

VB AUTOMATICALLY ROUNDS THE RESULT OF

THIS CALCULAT ION TO AN INTEGER

Dim intFahrenheit as Integer
Dim dblCelsius As Double
dblCelsius = 31
intFahrenheit = (dblCelsius * 9 / 5) + 32

N
O

T
E Argument-List Compatibility When

you call a Function or Sub procedure
with arguments, the data types of the
arguments must match the data types
in the parameter list.

N
O

T
E Beware of Incompatible Variable

Sizes You must also be wary of try-
ing to stuff a value into a container
(that is, a variable type) that isn’t big
enough to hold it. Always check the
value you are trying to convert to
make sure it fits the range allowed in
the target data type.

Automatic Type Conversion
Visual Basic is very versatile in converting between data
types, especially between String and other types. In
many cases, you can just let Visual Basic do an internal
conversion for you in numeric and String expressions
without having to use any special conversion functions
or other precautions.

Although you can assign a larger data type, such as
Double, to a smaller data type, such as Integer, you
must make sure the Double variable doesn’t contain a
number outside of the range –32K to 32K, which are
an Integer’s limits. Otherwise, you are asking for a
runtime Overflow error.

In general, you should always check the value of the
larger of two types when converting between two
numeric types (including Date and Byte).

34 002-8 AppE 3/1/99 8:53 AM Page 1132

APPENDIX E VISUAL BASIC BASICS 1133

Automatic Conversion of String
Expressions to Numeric Values
If a String variable or control property of type String
holds a String that can be evaluated as a number, it
can be used as an element in a numeric expression, as
in Listing E.17.

LISTING E.17

USING A STRING IN A NUMERIC EXPRESSION

Dim strRate as String
strRate = “11.50”
If IsNumeric(txtHours.Text) then

intEarnings = strRate * txtHours.text
Else

MsgBox “Enter a valid number in the Hours
➥field”
End If

Notice that in this example you need to check to see if
the TextBox control’s Text property holds a valid num-
ber. If you had performed the calculation without
checking and txtHours.Text didn’t hold a valid
numeric expression, Visual Basic could have generated
a runtime error.

As with numeric-to-numeric type conversions, you
must be careful that a numeric String doesn’t represent
a value larger than the capacity of the type you want to
convert to.

Automatic Conversion of Numeric
Expressions to Strings
Visual Basic will also automatically convert any other
data type into a String whenever non-String variables
are used in a String assignment or other expression
requiring a String, as in Listing E.18.

LISTING E.18

USING ANOTHER DATA TYPE IN A STRING
EXPRESSION

Dim dblEarnings as double
txtEarnings.Text = dblEarnings
MsgBox dblEarnings

The Text property of a TextBox holds String-type data,
and the MsgBox normally takes a String argument. In
the example, VB converts a Double to a String both
when assigning a Double to a TextBox control’s Text
property and when passing a Double to the MsgBox
statement as its Prompt argument.

Conversion of Non-string Arguments in
String Concatenation
In most programming languages, including Visual
Basic, the + operator can add two numbers together
and it can also concatenate two String expressions, as
in Listing E.19.

LISTING E.19

THE + OPERATOR ONLY WORKS WHEN

CONCATENAT ING TRUE STRINGS

strMine = “Mine”
strYours = “Yours”
strOurs = strMine + “ and “ + strYours

Visual Basic also uses the & symbol for String concate-
nation.

N
O

T
E Ampersand and String Concatenation

The & operator automatically converts
its operands into Strings before
using them.

Microsoft recommends that you use
the & operator rather than the + for
String concatenation; & is more
versatile.

34 002-8 AppE 3/1/99 8:53 AM Page 1133

1134 APPENDIX E VISUAL BASIC BASICS

The expression

strOurs = StrMine + “ and “ + 0

is illegal, because the + operator can take only Strings
as its arguments.

However, the expression

strOurs = StrMine & “ and “ & 0

is legal, because the & operator is more intelligent and
converts its non String arguments to Strings. In this
example, strOurs would end up holding the String
“Mine and 0”.

Asc
The Asc() function takes a String argument and
returns an Integer-type value representing the ASCII
code of the String’s first character. No matter how long
the String argument is, Asc() only pays attention to
the first character in the String.

In the following example, the MessageBox will display a
65, which is the ASCII value of a capital A, the first
letter in the String:

Dim strName As String
strName = “Alice”
MsgBox Asc(strName)

The Asc function ignores the other letters in the name.

AscB
The AscB() behaves just like Asc(), except that its
return value is of the Byte type. AscB() would be use-
ful, for instance, when an external routine such as a
DLL call needs a single-byte parameter referring to a
character. Usually, such routines will have been written
in C and will require a variable of the char data type,
which is specific to C.

The Chr and ChrB Functions
Chr() and ChrB() take an Integer data type as their
argument and return a one-character String corre-
sponding to the ASCII code of the argument.

Range Restrictions with Chr() and
ChrB() You must remember to
pass only Byte values or Integers
in the range 0–255 as the argu-
ment to Chr() and ChrB(). If you
pass a number outside this range,
Visual Basic will generate an
Overflow error.

W
A

R
N

IN
G

The “C” (C for Convert) Functions
Use these functions when you want to be sure that
Visual Basic will convert some variable or other expres-
sion to a specific data type. Each of the “C” functions
work in the following format:

NewValue = CFunction(any expression)

where NewValue has the data type to which CFunction
converts.

CBool
CBool will convert any non-zero numeric expression to
True and will convert any expression containing zero to
False, as in Listing E.20.

LISTING E.20

CONVERTING NUMERIC VALUES TO BOOLEAN

Dim blnHasProblem As Boolean
Dim intProblemCount As Integer
intProblemCount = 30
blnHasProblem = CBool(intProblemCount)

34 002-8 AppE 3/1/99 8:54 AM Page 1134

APPENDIX E VISUAL BASIC BASICS 1135

CBool will also convert Strings to Booleans, as long as
the Strings hold “True” or “False” or any alternative
capitalization of those words. Otherwise, it will gener-
ate a runtime error.

CByte
CByte will convert any valid numeric String expression
or any numeric type to a byte, as long as the range of
the number or numeric expression is 0–255. If you
supply a number outside of this range, you will get an
Overflow runtime error from Visual Basic. If you supply
a String that is not numeric, you will get a Data Type
Mismatch error.

LISTING E.21

EXAMPLES OF CORRECT AND INCORRECT

USAGE OF CBYTE

Dim bytWing As Byte
bytWing = CByte(200) ‘OK: argument is number
➥1–255
bytWing = CByte(“100”) ‘OK: string is numeric
➥1–255
bytWing = CByte(256) ‘ERROR: number is > 255
bytWing = CByte(–200) ‘ERROR: number is < 0
bytWing = CByte(“ASD”) ‘ERROR: string doesn’t
➥evaluate

‘to a number

Listing E.21 gives examples of successful and unsuc-
cessful attempts to use CByte.

CCur, CDbl, CInt, CLng, and CSng
Each of these functions will take any other numeric
type (including Date and Byte) or any numeric String
expression and convert it to Currency, Double, Integer,
Long, or Single, respectively.

CStr
CStr() will convert any argument to a String. You
don’t have to worry about something “not fitting” into
the return value, because a String can be very long.

Converting from “Larger” Data
Types to “Smaller” Ones You
must be careful when doing a
numeric conversion from a larger
data type (one that has a larger
size in memory) to a smaller one. If
you are using CInt or CSng, be
especially careful to check that the
value you are passing to the func-
tion doesn’t exceed the bounds for
an Integer or Single variable.

W
A

R
N

IN
G

CVar
Like CStr(), CVar() will take any argument and convert
it to a Variant.

CDec
CDec returns a Variant of subtype Decimal, so you use
CDec to assign a value to a Variant data type. You can
find an example of the use of CDec in the section of this
appendix titled “Variant Data Type and the Decimal
Subtype.”

CVErr
CVErr() takes a number representing any valid VB error
number as its argument. CVErr() returns a Variant, as
in these two lines:

Dim MyVar As Variant
MyVar = CVErr(200)

The Format Function
The Format function is very useful for putting the fin-
ishing cosmetic touches on an application, because it
takes any expression and converts it to a formatted
String. The Format function’s second argument is a
String representing a formatting template, which
instructs the function how to display the String.
Listing E.22 provides a few examples.

34 002-8 AppE 3/1/99 8:54 AM Page 1135

1136 APPENDIX E VISUAL BASIC BASICS

LISTING E.22

SOME EXAMPLES OF THE FORMAT FUNCTION

datToday = Now
dblMucho = 1000000.003
Msgbox Format(datToday,”hh:mm:ss”)
MsgBox Format(dblMucho,”###,###,###.####”)
MsgBox Format(dblMucho,”000,000,000.0000”)

The first MessageBox in the listing would display a time
such as 17:27:53.

The second MessageBox would display 1,000,000.003.

The third MessageBox would display
001,000,000.0030.

There are numerous ways to specify formatting Strings
to the Format function, including many Visual Basic
constants for built-in types of formatting. Check Visual
Basic’s online help or the Visual Basic 6 Language
Reference for more details.

Common String-Manipulation
Functions
As previously mentioned, the String is one of the pro-
grammer’s favorite data types because it is so easy to
chop, slice, dice, and splice Strings.

The following sections discuss some of the workhorse
functions used to manipulate String expressions.

Left
The Left function takes two parameters—a String
expression to parse, and a number representing how
many of the leftmost characters you want returned
from the String.

strMyName = “Bill M. Smith”
strFirst = Left(strMyName,4)

After this code runs, the value of strFirst is “Bill”.

Right
The Right function works like the Left function, but
instead of giving the leftmost characters, it returns the
rightmost characters:

strMyName = “Bill M. Smith”
strLast = Right(strMyName,5)

After this code runs, the value of strLast is “Smith”.

Mid
Use the Mid function in those ticklish situations where
you need to pick out something from neither the right
nor the left side of a String, but from the middle. Mid
takes three arguments:

• The String to examine

• The position of the starting character from the
left (1-based)

• The number of characters to parse (starting with
the character position specified in the second
argument)

Suppose you know that the ProductID field in a database
table represents specific information about the product.
In the following example, the product color is stored in
strProductID. The characters at positions 5–7 represent
the product color. You can parse out the color code by
passing three arguments to the MID function. The variable
strProductColor in the example contains the String
“BLU” in positions 5–7. The second argument, 5, repre-
sents the first character position of the expression you
want to parse. The third argument represents the number
of characters you want to parse from the starting position.

strProductID = “423-BLU-099”
strProductColor= Mid(strProductID, 5, 3)

The Mid function is even more versatile than that, how-
ever. It not only dices—it slices! And you can accom-
plish this amazing feat with the Mid function just by
leaving off the third parameter. If you don’t tell Mid how
many characters you want after the designated position,
it returns all characters through the end of the String.

34 002-8 AppE 3/1/99 8:54 AM Page 1136

APPENDIX E VISUAL BASIC BASICS 1137

The following example will return everything in the
String from the ninth position through the end of the
String:

strMyName=”John J. Thomas”
strLast = Mid(strMyName,9)

strLast will return “Thomas”, because the T in Thomas
is the ninth character in the String and therefore Mid
will return everything from the ninth character on.

Instr
The Instr function doesn’t return a String as do the
other String-manipulation functions. Instead, it
returns an Integer pointing to a position in a String
where a character pattern was found. You can therefore
use Instr to find things out about Strings and then
manipulate them with this information.

Instr takes two required parameters, both Strings:

• The String to examine

• The String expression for which to search

Listing E.23 checks for a space in the String variable
strName. If Instr returns a nonzero value representing
the starting character position of the String expression
for which you are searching, you parse all characters to
the left of the space as a first name.

LISTING E.23

USING INSTR TO HELP PARSE A STRING

strName=”John Thomas”
intSpacePos = Instr(strName ,” “) ‘look for a
➥space
If intSpacePos <> 0 Then ‘There’s a
space
➥ ‘and everything to its left is the first name

strFirst = Left(strName, intSpacePos-1)
End If

Instr takes an optional first argument, which is an
Integer representing the position from which you want
Instr to start scanning the target String in its quest for
a match. Therefore,

Instr(9,MyString,” “)

will only tell you about spaces it finds from the ninth
character on in MyString. The positional number it
returns, however, will be with respect to the entire orig-
inal String. For example, the lines

strMyString = “ABCDE”
intPos = Instr(3,strMyString,”D”)

will return the value 4 to intPos.

Len
The Len function (see Listing E.24) tells you how many
characters a String contains.

LISTING E.24

USING THE LEN FUNCTION

If Len(Trim(txtResponse.Text)) = 0 Then
MsgBox “You must enter a response”
txtResponse.SetFocus

End If

N
O

T
E Len Function and Data Types You

can use the Len function with vari-
ables of any data type, not just
Strings. When used with these other
types of variables, Len will return the
amount of memory the variable uses.

A Parsing Example Using String-
Manipulation Functions
Let’s see how you could use String-manipulation
functions to parse a String out into individual ele-
ments, placing those elements in an array for later use.

34 002-8 AppE 3/1/99 8:54 AM Page 1137

1138 APPENDIX E VISUAL BASIC BASICS

Listing E.25 shows a function called ParseOut and
Listing E.26 shows a call to that function from else-
where in code.

ParseOut takes three arguments: the String to be parsed
(strSource), the character to use as a parsing character
(strParseChar), and the array to hold the parsed results
(strTarget), one parsed element per array element.

ParseOut returns an Integer giving the number of
elements parsed.

The basic strategy of the function is to traverse the
original String looking for the parsing character. Every
time you find the parsing character, take everything to
its left and put it into a new array element. Then chop
the String down to just what remains after the parsing
character and repeat the operation on what remains.

When nothing is left, you know you are done. See the
comment on each line of code in Listing E.25 for more
detail about how this works.

LISTING E.25

THIS FUNCTION PARSES A STRING INTO

WORDS, PUTT ING EACH WORD INTO A

SEPARATE ARRAY ELEMENT

Public Function ParseOut(ByVal strSource As
➥String, _

strParseChar As String, _
strTarget() As String) As Integer
‘Counter for number of elements parsed:
Dim intElements As Integer
‘Holder for the currently parsed-out element:
Dim strCurElement as String
‘Where we found the parsing character
ëin the string:
Dim intParsePos As Integer
‘Make sure the array is zeroed out
Redim strTarget(0)
‘Loop until we’ve run out of material to parse:
Do

‘Find position of parsing character in
➥string:

intParsePos = Instr(strSource,
➥strParseChar)

‘If we found the parsing character then
If intParsePos > 0 Then

‘current element’s everything to left of
➥‘where we found parsing character:
strCurElement = _
Left(strSource,intParsePos - 1)
‘now chop element we just used off of

➥the
‘source string:
strSource = _
Mid(strSource,intParsePos + 1)

Else ‘this is the last element
‘so next parsed element is
ëeverything that remains:
strCurElement = strSource
‘and so nothing else remains to parse:
strSource = “”

EndIf
‘So count one more element:
intElements = intElements + 1
‘Make another array element to hold it:
ReDim Preserve strTarget(intElements)
‘and assign it to the new array element:
strTarget(intElements) = strCurElement

Loop Until strSource = “”
‘When done, the number of elements is the
‘return value of this function:
ParseOut = intElements

End Function

You could call the ParseOut function as you do in
Listing E.26, passing it the String you wanted to parse
and an empty String array.

LISTING E.26

CALL ING THE PARSING FUNCTION

Dim strWords() As String
Dim iWords As Integer
Dim iCount As Integer
iWords = ParseOut(strSentence,” “,strWords)
For iCount = 1 To iWords

‘. . . Do something to each word
Next iCount

You could then use the return value of ParseOut to tra-
verse the resulting array.

34 002-8 AppE 3/1/99 8:54 AM Page 1138

APPENDIX E VISUAL BASIC BASICS 1139

Using Arrays
An array is a dimensioned version of a basic data type.
That is, instead of an array variable name referring to a
single Integer, it can refer to many Integers. You can
distinguish between the array’s elements with a sub-
script or index argument to the array.

Therefore,

MyCounter = 7

refers to a single-dimensioned or nonarray variable. On
the other hand,

MyCounter(17) = 7

refers to one of the elements of the MyCounter array.

An array has bounds; that is, it has a highest and a
lowest position among its elements. As you might
imagine, these are called the upper bound and lower
bound, respectively.

By default, Visual Basic starts the lower bound (lowest-
numbered element) of its array elements at 0. In the
preceding example, therefore, MyNames has 11 elements
because its lower bound is 0 (the default) and its upper
bound is 10.

N
O

T
E Existence of Array Elements Visual

Basic will generate an error if you try
to refer to an array element that does
not exist.

N
O

T
E Array’s Default Lower Bound If there

are no further specifications in your
code, Visual Basic starts an array’s
default lower bound at 0. This means
an array dimension declared with a
single number will have one more ele-
ment than the upper bound.

N
O

T
E Declaring an Array You can’t declare

an array variable by using the Public
keyword in a form module. You will get
a compiler error.

Declaring Static and Dynamic
Arrays
An array can take the same data types as other variables,
but when you declare it, you must specify that it is
going to be an array. To do so, you must put two paren-
theses after the array’s name. You also can specify the
upper bound (highest-numbered index) of the array
within the parentheses when you declare the array, as in
this declaration:

Dim MyNames(10) As String

The 10 tells Visual Basic the array’s upper bound, or
highest-numbered element in the array.

When you specify an array’s upper bound, you are
committed to the specified number of elements for the
duration of the program. However, you can change the
number of elements of a dynamic array at runtime. You
declare a dynamic array by omitting the specification of
the bounds in the parentheses of the declaration. For
example,

Dim MyNames() As String

will declare an undimensioned array with no initial ele-
ments. You can dynamically resize the array in your
code. Later in this appendix, the section titled
“Dynamically Resizing an Array with Redim” explains
how to add and remove elements in a dynamic array.

34 002-8 AppE 3/1/99 8:54 AM Page 1139

1140 APPENDIX E VISUAL BASIC BASICS

Specifying the Bounds and
Dimensions of Arrays
You can actually specify the lower bound of an array as
well as the upper bound. For example,

Dim MyNames(5 to 10) As String

would tell Visual Basic to start the lower bound at 5
and put the upper bound at 10. This would yield six
elements in the array (the array would have elements
5 through 10, inclusive).

You also may start the lower bound at a negative num-
ber. For example,

dim MyNames(–5 to 10) As String

would tell VB to start the lower bound at –5 and put
the upper bound at 10. This would yield 16 elements in
the array (0 would be included in the range of indices).

Therefore, the declaration

Dim MyNames(10) As String

would yield an array with 10 elements if the Option
Base 1 statement were at the top of the General
Declarations section in its module; and it would yield
11 elements if there were no Option Base statement or
if the statement were Option Base 0.

N
O

T
E Array Bounds Array bounds are inclu-

sive and you must take them into
account when you reckon the number
of elements an array has. See the
section titled “Calculating Total
Elements in an Array” in this appendix.

N
O

T
E Option Bases Only Option Base 1

and Option Base 0 are possible.
Option Base 0 is the default, but
many developers include it in their
modules anyway to make their inten-
tions clear.

When to Change the Option Base
It is not a good idea to change the
Option Base on a module after you
have declared array variables,
because this may change the lower
bound of each array and cause
unforeseen problems.

W
A

R
N

IN
G

Multidimensional Arrays
An array might also have more than one dimension.
That is, each element may actually point to another
“mini array” of elements. If each element of an array
has one other set of elements associated with it, the
array is “two-dimensional.” You usually think of such
an array as being made up of rows and columns, where
the first dimension represents the rows and the second
dimension represents the columns. Although it is a
common way to visualize two-dimensional arrays, the
row-column approach is a purely arbitrary way of look-
ing at a two-dimensional array.

Determining the Default Lower
Bound of an Array and the Option
Base Statement
As mentioned in previous sections, the default lower
bound of an array is 0. This means that the first ele-
ment in the array will have an index of 0.

You can change the default base for an array’s lower
bound to be 1 on a file-by-file basis by inserting this
statement

Option Base 1

at the top of the General Declarations section of the
module.

34 002-8 AppE 3/1/99 8:54 AM Page 1140

APPENDIX E VISUAL BASIC BASICS 1141

You might declare a two-dimensional array as in the
following example:

Private Values(1 To 10, 1 To 3) As Integer

The array Values would then contain 10 “rows” in the
first dimension and each “row” would hold three
“columns” (the second dimension).

If each element of an array’s second dimension has
another “mini array” associated with it, the array is
“three-dimensional.” For instance, the declaration

Private Values(1 To 10, 1 To 3, 1 To 2)

creates an array with 10 “rows,” three “columns” per
row, and two values per “column.”

In theory, this process of creating dimensions within
dimensions can go on for many dimensions in Visual
Basic, so that you can have “n-dimensional” arrays.
Although the human mind has a little trouble visualiz-
ing arrays beyond three dimensions, many applications
do use such arrays. In practice, an array with a huge
number of dimensions would exhaust the available
memory of even the most memory-rich systems.

To refer to an element of a two-dimensional array, a
line of code might read

MsgBox Squares(1,7)

to tell Visual basic that you wanted the first element of
the first dimension, and then within that first element
you wanted to access the seventh element.

Each dimension of an array has upper and lower
bounds, just like a single-dimensional array.

If you want more than one dimension in an array, you
can specify each dimension after the first with a
comma-delimited list.

Dim MyNames(5,6,7)

tells Visual Basic to allocate memory for a three-dimensional
array of Variant (remember, Variant is the default) with
upper bounds of 5, 6, and 7, respectively. Recall that the
lower bound of each dimension will be 1 if the Option Base
1 statement has been issued. Otherwise, it will be 0.

You can specify lower and upper bounds separately for
each dimension of a multidimensional array. For example,

Dim MyNames(5 to 10, 21 to 40, 21 to 40)

specifies three dimensions, and none of them start at the
default of 0 (or possibly 1, if you have set Option Base 1).

You don’t need to use the same specification style for all
the dimensions in an array.

Dim MyNames(5 to 10, 40, 21 to 40)

specifies both the lower bound and upper bound for
the first and third dimensions, but only the upper
bound for the second dimension. The lower bound of
the second dimension would be either 0 or 1 (depend-
ing on the specification in the Option Base statement).

Resizing a Dynamic Array
You can resize an array if it is declared as a dynamic array.
Visual Basic recognizes a dynamic array if you specify no
bounds or dimensions in its Declare statement.

Dim MyFriends() As String

declares a dynamic array that you can later resize. Fixed
arrays cannot be resized. For example,

Dim MyNames(10) As String

declares a fixed array which you cannot later resize.

You may resize your dynamic array later in a line of
code with the Redim statement.

Redim MyFriends(17)

would give 18 elements to the MyFriends array you
declared a few lines previously (assuming the default
array base has been left at 0).

There is no limit to the number of times you can resize
an array with Redim. A few lines later in your array, you
could make the statement

Redim MyFriends(19)

to resize the array again.

34 002-8 AppE 3/1/99 8:54 AM Page 1141

1142 APPENDIX E VISUAL BASIC BASICS

There is one little drawback—each time you use Redim,
you re-initialize the data held in the array, and thereby
destroy anything you had stored there earlier.

Not to worry—you save the contents of an array when
you resize it by inserting the Preserve keyword after
the word Redim.

Redim Preserve MyFriends(22)

would have kept data in the first 22 elements intact.

specifies 66 elements (6×11) and not 50, because you
must include element 0 in each of the dimensions.

Also,

Dim MyNames(5 to 20, 3 to 4) As String

specifies 32 elements (16×2), because you must include
the lower bound when reckoning the size of a dimension.

Working with Collections
A collection is a special set of items in Visual Basic.
Visual Basic itself implements some collections as a part
of any program’s running environment. All collections
have a group of contained items and a Count property.
In addition, most collections enable you to remove an
item from them without regard to the item’s position in
the collection. Most collections also have a Key property
that enables you to refer to collection elements either
by numeric position or by a unique String identifier.

Some of Visual Basic’s important collections are the
Controls collection, which refers to all the controls on
the current form, and the Forms collection, referring to
all the forms currently loaded in memory in the
running application.

You can refer to an item in a collection by its array index.

MsgBox Controls(0).Text

would, for instance, display the Text property of ele-
ment 0 of the Controls collection.

The array of items of a collection is zero-based.

In Visual Basic 5 and 6, you can also loop through the
items of a collection with the For Each loop. See the
section on the “For Each_Next Loop” later in this
appendix.

You will be getting a little preview of how to use the
For Each_Next loop in the following sections, because
that is the preferred way to traverse a collection in
Visual Basic 6.

N
O

T
E What Redim Preserve Actually

Preserves Redim Preserve pre-
serves the existing values in array ele-
ments only when you resize the last
dimension of an array. Resizing other
dimensions or changing the number
of dimensions with Redim Preserve
will destroy the contents of existing
array elements.

Determining the Number of
Elements and Bounds of an Array
To compute the total number of elements in an array,
just multiply the number of elements in all the array’s
dimensions.

That wasn’t hard, was it?

But wait—how many elements are there in a given
array dimension?

Remember to take into account the fact that array
dimensions begin by default at element 0 (unless
respecified with Option Base 1).

Also, remember that if the array’s lower bound is speci-
fied, you must include the lower-bound element when
counting number of elements in a dimension.

Remember that without Option Base 1 specified,

Dim MyNames(5,10) As String

34 002-8 AppE 3/1/99 8:54 AM Page 1142

APPENDIX E VISUAL BASIC BASICS 1143

You can call a Sub procedure from somewhere else in
your code (providing the procedure is in scope) just as
you would call a built-in VB statement. To call the Sub
procedure ProcName, just type the Sub procedure name
at the appropriate point in your code:

ProcName list of arguments

or type:

Call ProcName (list of arguments)

Sub procedures are classified into two distinct types—
Event procedures and General procedures.

Event Procedures
An Event procedure is different from other procedures
in a couple of respects:

á Event procedures are triggered by an event associ-
ated with a control or form.

á All Event procedures are provided by VB and are
associated with a particular control or form. VB
uses the following syntax when naming the Event
procedure:

Sub ControlName_EventName

á Event procedures are stored only in form modules.

An Event procedure for the Click event of a command
button named cmdQuit might look like this:

Private Sub cmdQuit_Click()
UnLoad Me

End Sub

The programmer has put code (Unload Me) inside the
procedure stub provided by VB.

N
O

T
E Custom Collections In Visual Basic

5 and 6, the programmer can also
implement custom collections.

PROGRAMMING WITH SUB AND
FUNCTION PROCEDURES

Programs in most modern structured programming lan-
guages are implemented by the programmer as collec-
tions of subroutines that interact with each other and,
if you are a Windows programmer, with the Windows
operating environment.

Procedure is VB’s term for a program’s subroutine, and
VB uses two different types of subroutines, the Sub pro-
cedure and the Function procedure, as discussed in the
following sections.

Sub Procedures
A Sub procedure is a named section or block of code
within the project that can be called by another part of
the project to perform its instructions on demand. The
Sub procedure may accept parameters, and it may even
act on them, but it does not have any defined return
value, which is the main difference between a Sub and
Function procedure.

All Sub procedures use the keyword Sub on their first line
(or declaration) and terminate with the line End Sub:

Private Sub ProcedureName(list of parameters)
‘code goes here.

End Sub

The name of the Sub procedure is followed by paren-
theses, even if there are no parameters. N

O
T

E Event Procedures Event procedures
are always Sub procedures, never
functions.

34 002-8 AppE 3/1/99 8:54 AM Page 1143

1144 APPENDIX E VISUAL BASIC BASICS

General Procedures
A General procedure is designed to run only when you
explicitly call it from somewhere in code. In addition,
you must create a General procedure from scratch
(unlike an Event procedure).

If you create a Sub procedure called CleanUp in a form,
standard, or class module, it might look like Listing E.27.

LISTING E.27

A GENERAL PROCEDURE

Private Sub CleanUp(blnUnload As Boolean)
Dim frmCurForm As Form
If blnUnLoad Then

For Each frmCurForm in Forms
Unload frmCurForm

Next frmCurForm
End If
End

End Sub

To call the CleanUp Sub procedure, just type the proce-
dure name followed by any parameters:

CleanUp True

or use the alternative syntax:

Call CleanUp(True)

Notice that the syntax of the first example resembles a
call to a built-in VB statement.

Initializing Procedure Code from the
Insert Menu
General procedures are always stored in the General
section of the form, standard, or class module in which
they are created.

You can create a General procedure stub in one of two
ways—through a menu-accessible dialog box or just by
typing the procedure stub.

You can find an Event procedure’s code by following
these steps:

1. While in Design mode, double-click a control or
form.

2. The code window opens and displays one of the
Event procedures belonging to the selected
control or form.

3. To view all of the Event procedures belonging to
the control or form, click the drop-down arrow
to the right of the Proc combo box located at the
top right of the code window.

If you double-click on a control or form and no code
exists in any of the Event procedures, VB first displays
the Event procedure it considers the object type’s most
commonly used procedure (for example, Click for a
CommandButton and many other controls, Change for a
TextBox, Load for a Form). If code exists in some of the
control’s Event procedures, VB displays the first Event
procedure in alphabetic order that contains code.

By default, VB lists only one procedure at a time within
the code window. If you prefer to look at all procedures in
the code window as a single scrollable listing, select Tools,
Options, and then the Editor tab. Check the Default to
Full Module View box in the Window Setting frame.

When in the code window, you can also toggle full
module view on and off with the two small text icons
in the extreme lower-left corner of the window.

Typically, Event procedures run when their respective
events are triggered by the user (Click, KeyDown,
MouseMove). Some Event procedures, however, run when
their events are triggered by the system (Load, Unload,
Timer).

In addition, you can force an Event procedure to run
by explicitly calling it as you would a General proce-
dure. To run the Click Event procedure for cmdQuit,
for example, use the following:

cmdQuit_Click n

34 002-8 AppE 3/1/99 8:54 AM Page 1144

APPENDIX E VISUAL BASIC BASICS 1145

To create a General procedure using the menu, follow
these steps:

1. Open the code window for the desired form,
standard or class module. (Opening the code
window is required. It is not important what the
code window displays when it is opened.)

2. From the VB menu, choose Tools, Add Procedure
to access the Add Procedure dialog box.

3. Type the desired name in the Name text box.

4. Choose the procedure’s type from the Type
group—Sub, Function, or Property.

5. Choose the procedure’s scope from the Scope
group.

6. Click OK.

7. VB places the general procedure stub in the
General Declaration section. (It was not impor-
tant what the code window displayed when it
was opened because all General procedures will
be stored in the General Declaration section.)

Many programmers prefer to avoid yet another dialog
box, and instead use the technique discussed in the
following section to initialize a new procedure.

Initializing Procedure Code by
Typing in the Code Window
You also can initialize a new Sub procedure or Function
by typing it within the code window:

1. Open the code window of the desired form,
general, or class module.

2. Move to the General Declaration section (or
position the cursor after the End Sub or End
Function of an existing procedure).

3. Type the first line of the procedure declaration. You
need not include the parentheses for the parameter
list because VB includes them automatically.

4. Press the Enter key and VB completes the proce-
dure stub with End Sub or End Function.

Although less “correct,” this technique is faster and
more widely used than the technique discussed in the
preceding section.

Functions
A Function is a General procedure that returns a value.
Unlike a General procedure of the Sub type, a Function
procedure includes some extra components in its proce-
dure stub:

á A Function must include a data type for its return
value. You declare the return value’s data type
with an As DataType clause at the end of the
Function’s declaration.

á You must specify the Function’s return value
within the Function’s code block. In VB, you do
this by treating the Function’s name as if it were a
variable and assigning a value to it.

In this example, the function Tomorrow() has a return
type of Date, and the return value is assigned within the
Function’s code block:

Private Function Tomorrow() As Date
Tomorrow = Now + 1

End Function

To call the Function named Tomorrow somewhere
within code, type this:

datDeadline= Tomorrow()

In this example, the variable datDeadline stores the
return value of the Function named Tomorrow.

34 002-8 AppE 3/1/99 8:54 AM Page 1145

1146 APPENDIX E VISUAL BASIC BASICS

Declaring the Data Type of a
Function’s Return Value
Because a Function has a return value, it needs a data
type just like a normal variable. To specify the data
type, append the following:

As DataType

at the end of the Function’s declaration line, where
DataType is a standard VB data type. For example,

Private Function Tomorrow() As Date

would be a valid Function declaration, specifying Date
as the data type of Tomorrow’s return value.

You may, when necessary, declare the return type to be
Variant:

Private Function Tomorrow() As Variant

Because Variant is VB’s default data type, the
declaration

Private Function Tomorrow()

is legal and is equivalent to an explicit Variant
declaration.

Setting the Return Value
As previously stated, you set a Function’s return value
by assigning a value to a variable with the same name
as the Function. Because most Functions require more
than a single line to complete their task, you might
consider declaring a Local variable inside the Function
to hold the return value, finally assigning that variable’s
value to the Function name at the end, as in the exam-
ple of Listing E.28.

This example uses datRetVal as an internal placeholder
for computing the return value of the Function
Tomorrow. The example then assigns datRetVal as the
return value of the Function in the very last line.

LISTING E.28

USING A Local VARIABLE TO HOLD A

Function’S RETURN VALUE

Private Function Tomorrow() As Date
Dim datRetVal As Date
‘involved procedure to assign a value to

➥datRetVal
‘.
‘.
Tomorrow = datRetVal

End Function

Passing Arguments to General
Procedures
Arguments enable dynamic information to be passed to
a procedure. A procedure declaration specifies the num-
ber and type of arguments required by the procedure
within the parentheses that follow the procedure name.
Typically, the complete list of arguments from the pro-
cedure’s point of view is called the parameter list. The
general format for specifying a parameter list for a Sub
or Function procedure is this:

Private Sub ProcedureName(list of parameters)
Private Function FunctionName(list of
parameters) as DataType

When you specify a parameter, you assign it a name by
which it will be known inside the procedure, and a data
type:

datToday As Date

This name is known only inside the body of the proce-
dure. In the following example, the Function procedure
called NextDay expects a single Date-type parameter
which will be known as datToday inside the procedure:

Function NextDay(datToday As Date) As Date
NextDay = datToday + 1

End Function

34 002-8 AppE 3/1/99 8:54 AM Page 1146

APPENDIX E VISUAL BASIC BASICS 1147

When you want to call this function procedure from
elsewhere in your code, you must pass a Date-type
value as an argument, as illustrated in Listing E.29.

LISTING E.29

PASSING A DATE -TYPE ARGUMENT TO A

FUNCTION

Dim datTomorrow As Date
Dim datStartDate As Date
datStartDate = Now
datTomorrow = NextDay(datStartDate)

Notice that the argument, datStartDate, has a name
different from datToday, the parameter for which the
value of datStartDate is passed. This is because an
argument is passed to its corresponding parameter by
position and data type, not by name.

Procedure Calls and the VB Stack
Many programming languages, including VB, set aside a
special area of memory, known as the stack, for holding
temporary values. Among the temporary values stored on
the stack are all Local variables and the parameters of pro-
cedures, as well as the return values of Function procedures.

Whenever VB calls a procedure, it initializes space on
the stack for the following:

á The memory address of the caller to this procedure

á The memory addresses of any parameters

á Any Local variables in the procedure

á Return value of the routine, if it is a Function
procedure

After VB encounters the End Sub or End Function in the
procedure, it returns to the address of the caller, uses any
return value or modified parameter as needed, and then
frees that part of the stack for other uses. This is the rea-
son Local variables have their limited lifetimes: Their ref-
erences on the stack are destroyed after the routine is over.

You will find it useful to learn about the stack when
answering some of the questions on the certification
exam and for better understanding the reasons for the
way VB passes arguments to routines.

By Reference and By Value
Arguments
Because VB passes memory addresses on the stack from
caller to subroutine, you can see that it doesn’t matter
that the argument names used by the caller don’t match
the parameter names in the procedure.

The Scope of a Parameter is Local
Remember, the parameter’s scope as
a variable is Local to its procedure.

Don’t be misled, therefore, by many
examples that use the same name
for a variable passed as an argument
and for its corresponding parameter.

Also, don’t be misled by an applica-
tion- or file-wide variable or a Local
variable in a calling routine that has
the same name as a parameter: As
stated, the parameter is a Local
variable to the procedure, and
therefore, only the value of the
parameter changes. This change
does not affect the values of any
other variables, even if those vari-
ables’ names are the same as the
name of the parameter whose
value was changed.

W
A

R
N

IN
G

In this example, when the NextDay function procedure
is called, the value of datStartDate is passed to
datToday, a Date-type parameter referenced within the
NextDay function.

34 002-8 AppE 3/1/99 8:54 AM Page 1147

1148 APPENDIX E VISUAL BASIC BASICS

Both caller and subroutine are looking at the same
memory address when the caller passes an argument
that the subroutine sees as a parameter.

In Listing E.30, the function NextWorkingDay takes as its
parameter a Date-type variable, which it calls datToday.
Notice that in the course of executing the code block,
NextWorkingDay modifies the value of datToday, incre-
menting it by a value of either two or three.

LISTING E.30

THIS FUNCTION TAKES A SINGLE PARAMETER,
WHICH IT MODIF IES

Private Function NextWorkingDay(datToday As Date)
➥As Date

‘In this function, we use the datToday
➥parameter

‘passed to the function as a working
‘variable for computations inside the function
Dim intDayOfWeek As Integer

‘the Weekday function returns an integer
‘for day of week
intDayOfWeek = WeekDay(datToday)

‘and we can compare its results with VB
‘constants for the weekdays
If intDayOfWeek = vbFriday Then

datToday = datToday + 3
ElseIf intDayOfWeek = vbSaturday Then

datToday = datToday + 2
Else

datToday = datToday + 1
End If

‘Finally, we assign the return value of the
➥function

‘to be the new computed value of datToday
NextWorkingDay = datToday

End Function

In Listing E.31, you call the NextWorkingDay Function,
passing a Date-type variable, datStartDate, to the func-
tion. When you display the value of datStartDate after
the Function has run, you see that it has changed.

When the Function changed the value of its parameter,
it changed the contents of the memory location of
datStartDate.

LISTING E.31

ANOTHER PART OF THE CODE MAKES A

CALL TO THE FUNCTION

Dim datTomorrow As Date
Dim datStartDate As Date
datStartDate = Now
datTomorrow = NextWorkingDay(datStartDate)
? datStartDate ‘value was changed in the
➥function

When VB passes the original address of an argument to
a procedure as a parameter, it is said that VB has passed
the argument by reference. Passing by reference is the
default method for argument passing in VB. Changes
made to the parameter by the procedure will appear in
the variable passed as an argument from the calling
routine. This is because both the argument and the
parameter point to the same memory location.

Sometimes, however, you would rather not allow
changes to be made to the variables you pass as argu-
ments to your function or procedure. In such cases, you
can force VB to make a copy of the argument at another
memory location and pass the copy instead of the origi-
nal. Therefore, the subroutine gets the same value as the
original argument, but doesn’t get its hands on the
underlying variable. This style of argument-passing is
known as passing by value.

You can specify that a parameter always be passed by
value by putting the keyword ByVal before its name in
the subroutine’s declaration:

Function NextWorkingDay(ByVal datToday As Date)
➥As Date

34 002-8 AppE 3/1/99 8:54 AM Page 1148

APPENDIX E VISUAL BASIC BASICS 1149

In the preceding example, VB always uses a copy of
any variable that a caller passes to datToday, instead of
using the original memory address.

‘variable for computations inside the function
Dim intDayOfWeek As Integer

‘the Weekday function returns an integer
‘for day of week
intDayOfWeek = WeekDay(datToday)

‘and we can compare its results with VB
‘constants for the weekdays

‘If we want just working days , then
‘check for Friday or Saturday
If blnWorkingDay Then

If intDayOfWeek = vbFriday Then
datToday = datToday + 3

ElseIf intDayOfWeek = vbSaturday Then
datToday = datToday + 2

Else
datToday = datToday + 1

End If
Else
‘otherwise, we always want the next day

datToday = datToday + 1
End If
‘Finally, we assign the return value of the

➥function
‘to be the new computed value of datToday
NextWorkingDay = datToday

End Function

N
O

T
E Specifying by Value Notice that the

ByVal keyword is placed in front of
the specified parameter within the
procedure declaration. An alternative
way to specify by value passing is to
use parentheses () around the vari-
able name in the call instead of
putting the keyword ByVal in the pro-
cedure declaration.

See “Putting Extra Parentheses Around Each
Argument.”

Multiple Arguments
So far, the examples of procedures with parameters have
shown only a single parameter in the subroutine decla-
ration. If you want to pass more than one value at a
time to a subroutine, you need only specify several
parameters separated by commas in the parameter list.

In Listing E.32, the more generalized function NextDay
takes a second parameter telling the function whether
to return the next working day rather than just the next
calendar date (sorry, holidays are included).

LISTING E.32

THE FUNCTION NOW TAKES A SECOND

PARAMETER

Private Function NextWorkingDay(datToday As Date,
➥blnWorkingDay) As Date

‘In this function, we use the datToday
➥parameter

‘passed to the function as a working

N
O

T
E The Weekday Function and Weekday

Constants The Weekday function
seen in the example is a built-in VB
function, which returns an Integer indi-
cating the day of the week (1 =
Sunday, 7 = Saturday). VB uses con-
stants such as vbSunday, vbMonday,
and so forth to test these values.

When calling the NextDay function, provide two argu-
ments as in Listing E.33 (note that the second argu-
ment in the example is a literal value rather than a
variable).

34 002-8 AppE 3/1/99 8:54 AM Page 1149

1150 APPENDIX E VISUAL BASIC BASICS

LISTING E.33

ARGUMENTS TO THE NextDay FUNCTION

Dim datTomorrow As Date
Dim datStartDate As Date
datStartDate = Now
datTomorrow = NextDay(datStartDate, False)

Here, we pass the Date variable datStartDate, and the
literal Boolean constant False.

Using Named Arguments
There are two ways to specify arguments—positional
and named. Up to this point, you have exclusively used
positional arguments.

Positional arguments are identified by their particular
order in the argument list. Take, for example, the
NextDay function seen in the previous sections. Assume
that NextDay requires two values—datToday and
blnWorkingDay, as illustrated in Listing E.34

LISTING E.34

FUNCTION WITH TWO REQUIRED PARAMETERS

Function NextDay(datToday As Date, _
blnWorkingDay As Boolean) As Date

‘some code
End Function

When you call the NextDay function, you are obligated
to pass the Date variable first and the Boolean value as
the second argument because this order has been
defined for you in the NextDay function procedure:

datTomorrow = NextDay(datStartDate, False)

Visual Basic’s own functions, procedures, statements, and
methods support positional arguments. For example:

strResponse=MsgBox(prompt[, buttons][, title][,
helpfile, context])

If you call the Msgbox function, you must pass the argu-
ments in the order specified by the Msgbox function.
This requires that you maintain a placeholder for the
third argument, title, if you do not pass an explicit
value for the title.

iSave=Msgbox(“Save current record?”,vbYesNo,
,”DEMO.HLP”,1000)

Named arguments eliminate the need to pass argu-
ments in a predefined order. The VBA language engine
included in VB6 enables you to pass arguments with-
out concern for the order in which they are passed.
Your call to MsgBox could look like Listing E.35.

LISTING E.35

NAMED ARGUMENTS FOR MSGBOX

iSave=MsgBox _
Title:=”SAVE”, _
Prompt:=”Save current record?”, _
Buttons:=vbYesNo

This feature, however, requires some additional work to
pass named arguments.

In the example at the beginning of this section, you
defined the parameter names within the NextDay func-
tion as blnWorkingDay and datToday. When calling the
NextDay function, you can use these parameter names
to pass the arguments in any desired order. For exam-
ple, calls to the NextDay function can now take more
than one form, either

datTomorrow = NextDay(datToday := datStartDate, _
blnWorkingDay := False)

or

datTomorrow = NextDay(blnWorkingDay := False , _
datToday := datStartDate)

Remember, named arguments do not eliminate the
need to pass required arguments. They just alleviate the
need to pass the arguments in a particular order.

34 002-8 AppE 3/1/99 8:54 AM Page 1150

APPENDIX E VISUAL BASIC BASICS 1151

The following list summarizes the advantages of
named arguments:

• Your code is easier to read and maintain.

• You don’t have to provide blank placeholders in
your argument list for unused optional arguments.

• You don’t have to pass arguments in the default
order.

When they don’t cause too much clutter in your code,
named arguments will in general make it more readable.

Using Optional Arguments and the
IsMissing() Function
Visual Basic provides a way to specify optional argu-
ments. To define an optional argument, place the
Optional keyword in front of the corresponding
parameter. In addition, you need to define the
parameter as a variant if you want to use the
IsMissing() function as described later.

Of course, you will have to write extra logic in your
procedure to determine whether the argument was
passed by the caller. If the argument passed is a of type
Variant, the procedure should use the IsMissing()
function to determine whether the caller has passed the

parameter. If the argument is any other data type, you
should check for an appropriate blank value for that
data type (0 for Numeric data types, “” for Strings).

The fragment in Listing E.36 has modified the example
from the previous sections to indicate that the second
argument is optional. The IsMissing() function tells
whether the caller passed the Optional parameter. If
not, the procedure assigns a default value for the
Optional parameter.

LISTING E.36

AN OPTIONAL ARGUMENT

Function NextDay(datToday As Date, _
Optional blnWorkingDay As Variant) _
As Date

If IsMissing(blnWorkingDay) Then
blnWorkingDay = False

End If
...

In this example, if the caller doesn’t pass an argument
for the blnWorkingDay parameter, blnWorkingDay’s
value defaults to False.

You can call the NextDay function by passing a value to
the second parameter or by ignoring the second para-
meter entirely:

datTomorrow = NextDay(datStartDate, True)
datTomorrow = NextDay(datStartDate, False)
datTomorrow = NextDay(datStartDate)

N
O

T
E Support for Named Arguments The

use of named arguments also applies
to some of VB’s procedures, func-
tions, and statements. However,
named arguments aren’t supported
universally in Visual Basic. If you are
not sure about the particular function
or statement you are interested in,
consult Help or the Object Browser on
the specific topic.

N
O

T
E The Data Type of an Optional

Parameter In versions of VB before
5, the data type of an Optional para-
meter had to be Variant. In VB 5 and
VB 6, Optional parameters can take
on any data type.

34 002-8 AppE 3/1/99 8:54 AM Page 1151

1152 APPENDIX E VISUAL BASIC BASICS

You can also specify a default value for an Optional
parameter in the procedure header, as shown in Listing
E.37. This often eliminates any need for the use of the
AsMissing function, as the default value takes effect
when the caller does not specify the Optional parameter.

LISTING E.37

AN OPTIONAL ARGUMENT

Function NextDay(datToday As Date, _
Optional blnWorkingDay As Boolean = False) _
As Date
...

Array Arguments and the
ParamArray Keyword
What if you need to pass an undetermined number of
Optional parameters?

VB enables you to pass a variable number of parameters
with a ParamArray argument. The ParamArray argument
must appear last in your parameter list in the procedure’s
declaration.

You must observe the following rules to implement a
variable number of parameters in a procedure declaration:

á Specify the final parameter as an array by append-
ing a set of parentheses to its name.

á Place the keyword ParamArray before the para-
meter name.

á Specify as Variant type (doesn’t need to be
explicit, because Variant is the default).

You can then put code within the procedure to process
the array’s elements.

In this example, you will write a procedure that can
accept an indeterminate number of TextBox parameters
and convert the contents of each TextBox control’s Text
property to all uppercase or all lowercase.

In Listing E.38, an initial parameter indicates whether
to convert to upper- or lowercase, and then you specify
a ParamArray that holds the TextBox controls whose
Text properties you want to convert:

LISTING E.38

THIS FUNCTION TAKES A PARAMARRAY
ARGUMENT

Private Sub ConvertText(blnUpper As Boolean, _
ParamArray boxes() As Variant)

Dim varCurrBox As Variant ‘For loop
➥placeholder

For Each varCurrBox In boxes()
If blnUpper Then

IsMissing Limitation The
IsMissing() function only works
properly with Variant Optional
parameters.

If you use IsMissing() to check on
non-Variant Optional parameters,
your code will still run, but
IsMissing will always return False,
even when you don’t pass the
parameter.

W
A

R
N

IN
G

Parameters and Optional Keyword
All parameters listed after the first
Optional keyword must be optional
as well.

You must use the Optional keyword
before each optional parameter.

Breaking either of these rules will
cause a compiler error.

W
A

R
N

IN
G

34 002-8 AppE 3/1/99 8:54 AM Page 1152

APPENDIX E VISUAL BASIC BASICS 1153

varCurrBox.Text _
= UCase(varCurrBox.Text)

Else
varCurrBox.Text _
= LCase(varCurrBox.Text)

End If
Next varCurrBox

End Sub

As seen in Listing E.39, you can call the routine with
the names of as many TextBoxes as you want:

LISTING E.39

CALL ING A FUNCTION THAT CAN TAKE A

VARIABLE NUMBER OF ARGUMENTS

[Click event procedure of a command button]
Private Sub cmdConvert_Click()

ConvertText True, Text1, Text2, Text3, Text4
ConvertText False, Text2, Text3

End Sub

tion will execute, the stack area allocated for this rou-
tine will be cleared, and control will return to the call-
ing code.

Sticklers for well-structured programming techniques
try to avoid using Exit Sub/Function as much as possi-
ble. Therefore, if you had a routine that needed to
check some condition before running, you could put
an If construct around all the code in the routine so
that the routine would only do its business if some
condition were true, as illustrated in Listing E.40.

LISTING E.40

AN IF CONSTRUCT SURROUNDS ALL THE

CODE IN THIS ROUTINE

Sub MySub()
If IsGoodIdea Then

‘. . . do the routine's work
End If

End Sub

A slightly less awkward way to accomplish this is to use
the Exit Sub statement if you encountered a bad condi-
tion, as shown in Listing E.41.

LISTING E.41

USING EXIT SUB

Sub MySub()
If Not IsGoodIdea Then Exit Sub
‘. . . do the routine's work

End Sub

Using Exit Sub as in the preceding example is perhaps
an aesthetic choice. Structured programming purists
will argue that you shouldn’t use it because it makes
your code less maintainable; others will argue that hav-
ing the entire procedure’s code wrapped in some initial
evaluation is logically cumbersome.

ParamArray and Optional
Arguments ParamArray argu-
ments and Optional arguments
can’t appear together in the same
procedure’s parameter list.

The ParamArray argument must be
the final argument in the parameter
list.

Breaking either of these rules will
cause a compiler error.

W
A

R
N

IN
G

Using Exit Sub or Exit
Function to Abruptly Terminate
a Procedure
You can use Exit Sub or Exit Function to immediately
cause Visual Basic to terminate the current procedure
or function. No more code in this procedure or func-

34 002-8 AppE 3/1/99 8:54 AM Page 1153

1154 APPENDIX E VISUAL BASIC BASICS

The following example, however, would be tedious to
implement without Exit Sub/Function. In this exam-
ple, something happens nested way down inside some
internal logic that causes you to want to drop every-
thing you are doing in the routine immediately.
Although it is possible to set up a bunch of flags and
checks to avoid using an Exit, the extra effort makes
the code harder to follow and easy to break. Exit
Sub/Function, on the other hand, provides a quick
escape hatch to leave the whole mess behind and forget
about it, as shown in Listing E.42.

LISTING E.42

EXIT SUB AS A QUICK WAY OUT OF A

COMPLEX SITUAT ION

Sub MySub()
‘. . . do everything the routine is supposed

➥to do
‘. . . and then, maybe somewhere way down

➥nested
‘. . . a couple of levels into some loops or

➥If
‘. . . constructs, we just need to GET OUT

➥NOW:
Do While something

If somethingelse Then
‘Try doing this without Exit Sub ó
Exit Sub ‘we’re outta here!

EndIf
Loop’. . . etc. etc.

End Sub

Syntax for Calling Procedures
Thus far, you have reviewed the basics of how Sub and
Function procedures are called.

The following text explores variations in calling Sub and
Function procedures.

Using the Call Statement to Call
Sub Procedures
There are two ways to invoke a Sub procedure:

ConvertText intLCase, Text1, Text2, Text3

or

CALL ConvertText(intLCase, Text1, Text2, Text3)

When you use the keyword CALL to invoke a Sub proce-
dure, you must enclose the argument list in parentheses,
whether there is one argument or multiple arguments.

Use Exit Sub/Function Sparingly
Although an Exit Sub/Function
can be handy, use it sparingly,
because overuse can result in more
difficulty at the debugging stage, as
well as code maintenance night-
mares.

W
A

R
N

IN
G

Call Keyword and Parentheses If
you are not passing any arguments,
do not use parentheses with the
CALL keyword:

Call MySub() ‘Wrong
Call MySub ‘Correct

W
A

R
N

IN
G

Putting Extra Parentheses Around
Each Argument Passed By Value
You can always force an argument to a procedure to be
passed by value, regardless of whether the procedure’s
declaration specifies ByVal or takes the default By
Reference. All you have to do is put an extra set of
parentheses around each individual argument that you
want to pass by value. Even though the procedure’s dec-
laration might show that the parameter is passed by ref-
erence, the extra set of parentheses around an argument
will cause the argument to be passed by value instead.

34 002-8 AppE 3/1/99 8:54 AM Page 1154

APPENDIX E VISUAL BASIC BASICS 1155

In the first call to the NextDay procedure in the following
example, notice the extra set of parentheses around the
first parameter, datToday. This specifies that datToday
will be passed by value. The second call does not contain
extra parentheses around its arguments, and so VB will
pass each argument as specified by the procedure.

LISTING E.43

DIFFERENT MEANINGS OF PARENTHESES IN

ARGUMENT LISTS

‘datToday will be passed by Value:
datTomorrow = NextDay((datToday), blnWorkingDay)

‘datToday will be passed by Reference:
datTomorrow = NextDay(datToday, blnWorkDay)

The Sub procedure calls in Listing E.44 would not nor-
mally use parentheses around their arguments. (Notice
that these examples do not include the keyword CALL,
which requires an outer set of parentheses around all of
its arguments.) The first example indicates that the
argument blnWantUnload is to be passed by value
because the argument is surrounded by parentheses.
Observe the Sub procedure call, which passes multiple
arguments. Notice that the argument list itself takes no
parentheses, but the parentheses around the argument,
Text2, indicate that Text2 will be passed by value.

LISTING E.44

ARGUMENTS PASSED BY VALUE AND BY

REFERENCE

‘blnWantUnload will be passed by Value:
CleanUp (blnWantUnload)

‘Text2 will be passed by Value:
ConvertText intUCase, Text1, (Text2)

‘blnWantUnload will be passed as specified by the
➥CleanUp procedure:
CleanUp blnWantUnload

‘Text2 will be passed as specified by ConvertText:
ConvertText intUCase, Text1, Text2

The examples in Listing E.45 display Sub procedure
calls that use the Call keyword to invoke a procedure.
As you know, parentheses must surround argument lists
when the keyword Call is used. However, notice a sec-
ond parenthesis around any argument that will be
passed by value.

LISTING E.45

PASSING ARGUMENTS BY VALUE AND BY

REFERENCE WHEN USING THE CALL
KEYWORD.
‘blnWantUnload will be passed by Value:
CALL CleanUp((blnWantUnload))

‘Text2 will be passed by Value:
CALL ConvertText (intUCase, Text1, (Text2))

‘blnWantUnload will be changed by the CleanUp
➥procedure:
Call CleanUp(blnWantUnload)

‘Text2 will be changed by the ConvertText
➥procedure:
CALL ConvertText (intUCase, Text1, Text2)

Note in the examples of the listing that any parentheses
that would have been required without the ByVal invo-
cation must still be supplied.

Ignoring a Function’s Return Value
You can call a function without using its return value
just by calling it as if it were a Sub procedure rather
than a function.

Assume you have a function, MyFunc, which takes two
parameters. In this instance, the return value of MyFunc
is assigned to a variable called RetVal:

RetVal = MyFunc(MyParam1, MyParam2)

If you don’t plan to use the function’s return value,
however, just call the function in the way you would
call a Sub procedure, omitting a reference to the return
value as well as parentheses around the argument list:

MyFunc MyParam1, MyParam2

34 002-8 AppE 3/1/99 8:54 AM Page 1155

1156 APPENDIX E VISUAL BASIC BASICS

Remember that there is an alternative style with the Call
keyword for calling a Sub procedure. You can also call a
function with this syntax to ignore its return value:

Call MyFunc(MyParam1, MyParam2)

Finally, if you don’t need the return value but need to
make sure an argument is passed by value, just remem-
ber to put the extra parentheses around any arguments
you want to be passed by value. In the following exam-
ples, MyParam1 will be passed by value, and MyParam2 is
passed by reference:

MyFunc (MyParam1), MyParam2
Call MyFunc((MyParam1), MyParam2))

Private Scope
Private procedures can only be called from other pro-
cedures within the same form, standard, or class mod-
ule. If you place the keyword Private before the
procedure name, the compiler recognizes only the pro-
cedure’s name from code that runs from within the
same form, standard, or class module. Listing E.46
gives examples of Private procedure declarations.

LISTING E.46

PRIVATE PROCEDURE DECLARATIONS

‘Sub procedure with private scope
Private Sub MySub(MyParam as Integer)

‘....do something
End Sub

‘Function procedure with private scope
Private Function MyFunc(MyParam1 as Integer) as
➥Long

‘....do something
End Function

The VB Editor gives an initial scope of Private to
Event procedure stubs:

‘Event procedures begin with Private scope.
Private Sub Command1_Click()

Public Scope
Public procedures can be called from anywhere within
the project. If you place the keyword Public before the
procedure name, the compiler recognizes the proce-
dure’s name from anywhere in your application, as
illustrated in Listing E.47.

Return Values and Built-In
Functions This rule works with
built-in VB functions as well. For
example, you can call the MsgBox
function with or without using its
return value:

intChoice =
MsgBox(“Continue?”, vbYesNo)
Call MsgBox(“There are no
customers left”)
MsgBox “There are no
customers left.” n

W
A

R
N

IN
G

Procedure Scope
Previous sections discussed the different types of scope,
or visibility, assigned to a variable within a VB applica-
tion. Recall that a variable’s scope is determined, in
part, by the keyword used to declare it.

Procedures follow scoping rules similar to the scoping
rules for variables. You can use the keywords Private or
Public to indicate the scope of a procedure.

Visual Basic offers two distinct levels of availability or
scope for procedures within an application: Private
(module-level) or Public (application-wide).

34 002-8 AppE 3/1/99 8:54 AM Page 1156

APPENDIX E VISUAL BASIC BASICS 1157

LISTING E.47

PUBLIC PROCEDURES

‘Sub procedure with public scope
Public Sub MySub(MyParam As Integer)
‘....do something
End Sub

‘Function procedure with public scope
Public Function MyFunc(MyParam1 As Integer) As
➥Long
‘....do something
End Function

Although the Public keyword does not need to be
explicitly stated, the default scope for general proce-
dures is Public.

Remember, however, that even if it is Public, you must
call a routine in a form or class module from elsewhere
in your application with the form name or the class
object variable’s name prefixed to the routine name.
When you call a form’s Public routine from elsewhere
in the application, in other words, you must call the
routine as if it were a method of the form:

frmMain.MySub intPara1

Friend scope
Another type of scope, Friend, is useful within COM
component projects. The section titled “Using the
Friend Keyword” in Chapter 12, “Creating a COM
Component That Implements Business Rules or Logic”
discusses the Friend keyword in greater detail.

Control Names and Event
Procedure Names
Visual Basic provides you with an event procedure stub
based on the control’s current name. If you change the
name of the control, VB will provide you with a set of
new event procedure stubs based on the control’s new
name. The code you wrote under the previous name’s
event procedure still exists; however, it is no longer
associated with the control whose name has been
changed.

If you add a command button named Command1 to a
form, write code in its Click event procedure, and then
change Command1’s name to cmdOK, for example, the
event procedure name does not change and would still
be named Sub Command1_Click. Therefore, the proce-
dure would no longer be associated with the command
button.(Sub cmdOK_Click would be the name of the
current Click event procedure, and obviously, this
event procedure contains no code.)

Conversely, if you happen to write a general procedure
and later rename a control in such a way that one of its
event procedure names happens to match the name of
the existing general procedure, that general procedure
becomes an event procedure for the control.

If you write a general procedure whose declaration
looks like this, for example,

Private Sub Bozo_Change()

and then later rename a TextBox control as “Bozo”, VB
associates the Bozo_Change procedure with the TextBox
named “Bozo”.

N
O

T
E Calling General Procedures You may

call general procedures stored in stan-
dard modules with the module name
in front of the routine, but this is not
required.

N
O

T
E Scope in Earlier Versions of VB In

versions of Visual Basic before VB 4,
all routines stored in a form automati-
cally had Private scope and could
not be changed to Public scope.

34 002-8 AppE 3/1/99 8:54 AM Page 1157

1158 APPENDIX E VISUAL BASIC BASICS

PROGRAMMING WITH VB’S
CONTROL STRUCTURES

The backbone of any modern structured programming
language is its implementation of the control structures
of looping (or iteration) and branching (or selection).
These control structures enable the programmer to easily
cause selective or repeated execution of lines of program
code.

The following sections discuss how VB implements
branching and looping control structures.

Branching or Selection
VB offers two basic types of branching constructs:

á The If structure is used most often when you
want to implement one or two alternative execu-
tion routes in your code, or when there are multi-
ple alternatives with disparate conditions.

á The Case structure is used when there are multi-
ple alternatives for the same expression or variable
value.

If
Use the If statement when you want to execute an
action conditionally. The syntax for the If statement is
this:

If [logical condition] then [action]

The If...End If Construct
In the If construct’s simplest form, all the lines that
follow the If statement through the End If statement
will execute only if the condition is True. In case the If
condition is not met, program control moves to the last
line, End If. For example:

If UCase(Left(LastName,2)) = “MC” Then
‘. . . Do some stuff

End If

Else and ElseIf
The second simplest form of the If statement allows a
second set of statements to execute when the condition
is False. In such a situation, you would insert the Else
statement between the If and the End If. Everything
between the Else and the End If will execute only if
the condition is False, as illustrated in Listing E.48.

The Fate of Event Procedure Code
After You Rename a Control When
you rename a control, its event pro-
cedures are no longer associated
with the control. If you rename a
TextBox control named txtFName to
txtCompanyName, the event proce-
dures (txtFName_Change(), for
example) do not get renamed and,
therefore, any code you have written
in the control’s event procedures
are no longer associated with the
control.

W
A

R
N

IN
G

N
O

T
E Finalize Names of Controls Before

Writing Event Procedure Code
Finalize the names of all your controls
and rename them to the desired
names before you put any code in
their event procedures or write any
other code that calls these event pro-
cedures by name.

34 002-8 AppE 3/1/99 8:54 AM Page 1158

APPENDIX E VISUAL BASIC BASICS 1159

LISTING E.48

IF...ELSE...END IF

If UCase(Left(LastName,2)) = “MC” Then
‘. . . Do some stuff

Else
‘. . . Do something different

End If

Finally, if you have several conditions and want to have
something different happen in each case, you can put
as many instances as you need of the ElseIf statement
inside the If construct. Lines containing ElseIf state-
ments must have a condition to evaluate, followed by
the word Then. Everything after the ElseIf up to the
next ElseIf, Else, or End If will execute, provided

á The condition of the ElseIf is True.

á No previous condition in the If construct was
True. In other words, no more than one of the
branches of an If construct will execute each
time the program runs through the If construct.

You can put a final Else condition between the last
ElseIf and the End If. Use a final Else clause if you
need to catch any situation where none of the previous
conditions are True (a “none of the above” condition).

Listing E.49 illustrate the use of ElseIf.

LISTING E.49

USING ELSEIF

If UCase(Left(LastName,2)) = “MC” Then
‘. . .

ElseIf UCase(Left(LastName,2)) = “O’” Then
‘. . .

ElseIf UCase(Left(LastName,3)) = “VAN” Then
‘. . .

ElseIf UCase(Left(LastName,2)) = “DE” Then
‘. . .

Else ‘Handle all other types of last name
‘. . .

End If

In essence, the ElseIf construct enables you to turn
the If construct from a “true/false” evaluation into a
“multiple-choice” evaluation.

The If Construct Within One Line of Code
If there is only one line of code to run between the If
and the End If, you can efficiently and clearly write the
entire construct in one line:

If IsBadIdea Then MsgBox “Bad”

Notice that the one-line construct does not require the
use of End If.

Similarly, if there is also an Else clause with only one
line of code as well, you can include the Else clause on
the same line. As in the preceding example, the End If
is not required:

If IsBadIdea Then MsgBox “Bad” Else MsgBox
“Good”

Case
The Case structure also offers conditional branching, but
with more limited use. It is only practical to use a Case
structure when you want to take different actions based
on different values of the same variable or expression.

N
O

T
E Why the Case Structure? You might

wonder why VB has the Case structure
at all, because it is of more limited
use than the If structure. The answer
is that the Case structure will execute
faster than an If_ElseIf structure
that implements the same logic.

A Case structure begins with the words Select Case,
followed on the same line by the variable or expression
to be evaluated.

34 002-8 AppE 3/1/99 8:54 AM Page 1159

1160 APPENDIX E VISUAL BASIC BASICS

The Case structure ends with a line containing the words
End Select. Between the Select Case and End Select
statements, you can put any number of Case statements.
After each Case statement, place a value for the expression
or variable that is being evaluated. The lines of code fol-
lowing the Case and continuing until the next Case or the
End Select will execute if the Select Case statement’s
expression matches the value provided by the Case.

If none of the Cases are fulfilled, you can put a final
End Case clause between the final Case and the End
Select. This provides a “none-of-the-above” option.

In Listing E.50, the comparison expression is
UCase(Left(ProductID,3). Assuming that the first three
characters of ProductID specify the product’s color, the
following example provides three possible values for
UCase(Left(ProductID,3)) and a catch-all Case Else
clause in case you run into unexpected values.

LISTING E.50

THE CASE SELECT STRUCTURE

Select Case UCase(Left(ProductID,3))
Case “RED”

‘. . .
Case “BLU”

‘. . .
Case “YLW”

‘. . .
Case Else

‘it wasn’t one of the above options
End Select

Enumerating Values in a Case Construct
You can go beyond enumerating one or more simple
values in the Case statement (see Listing E.51):

á You can use the keyword Is before a comparison
operator (<, …, >, , and so on) when evaluat-
ing literals. (Even if you omit the Is when typing,
the VB Editor will automatically include it for
you.)

á You can enumerate possible individual values in a
comma-separated list.

á You can use the keyword To between two values
to designate an inclusive range.

á You can combine any of the three previous options.

LISTING E.51

ENUMERATED VALUES IN CASE CONSTRUCTS

Dim MyStuff As String
MyStuff = UCase(Left(Text1.Text, 1))
Select Case MyStuff

Case Is < “C” ‘A or B
MsgBox “Before C”

Case “D”, “E” ‘D or E
MsgBox “D, E”

Case Is < “K”, “Z”
MsgBox “<K, Z”

Case “K” To “M”
MsgBox “K-M”

Case “N” To “Q”, “S”
MsgBox “N-Q, S”

End Select

Although the Case construct isn’t as flexible as an
If...ElseIf construct, you can make it more pliable
with these evaluation options.

Case Else, or “None of the Above”
Case Else is optional and is inserted as the last Case
statement. It represents a “none of the above” option
where none of the previous Case statements satisfied the
evaluating variable or expression, as illustrated in
Listing E.52.

N
O

T
E Execution of the Case Construct As

with the If construct, no more than
one of the Case construct’s options
will execute within a single pass
through the construct. This means
that, if two Cases are both True, only
the first one will execute.

34 002-8 AppE 3/1/99 8:54 AM Page 1160

APPENDIX E VISUAL BASIC BASICS 1161

LISTING E.52

USING CASE ELSE

Select Case iUserChoice
Case 0

‘take some action
Case 1

‘take some other action
‘other Case statements could go here...
Case Else

MsgBox “N/A”
End Select

You will almost always want to use a Case Else,
because you want to explicitly handle this “none of the
above” situation in your code.

Looping
VB offers the programmer a veritable cornucopia of
looping constructs (at least seven at last count).
Although you could get by with just one looping con-
struct, it is nice to know that there is a looping
construct for every need.

Do While...Loop for a Loop that
Might Never Run
The Do While construct is useful when you want code
to run only while a given condition is True.

The first line of a Do While construct begins with the
words Do While followed by a logical condition (that
is, an expression that evaluates to True or False).

All the lines of code between the Do While and the
Loop statements will execute as long as the condition in
the Do While is True. The loop terminates when the
initial condition evaluates to False. Because the condi-
tion is at the beginning of the Do Loop, it is possible
that program control will never pass through the loop
if the initial condition is evaluated to False. Listing
E.53 gives an example.

LISTING E.53

A DO WHILE...LOOP CONSTRUCT

Do While intOptions > 0
. . .
intOptions = intOptions - 1

Loop

The loop will run if the initial value of intOptions is
12, but will never run if the initial value of intOptions
is –4.

Do...Loop While for a Loop that
Runs at Least Once
If VB only offered the Do While... construct, you
would have to go through some contortions if there
were a loop that always needed to run at least a single
time. You might have to “prime the loop” by artificially
contriving to make the Do While condition True before
the loop began.

For this type of situation, you can just include the con-
dition within the Loop statement at the end of the loop:

Do
. . .
intChoice = MsgBox(“Do another one?”,

vbYesNo)
Loop While intChoice = vbYes

In this way, the condition will not be evaluated for the
first time until the loop has already run once.

Do Until...Loop for a Loop on a
Negative Condition
Many structured programming purists think that hav-
ing to use a negative condition in a loop’s While clause
makes a loop harder to understand. To address this
concern, VB provides the Do Until construct, which
runs as long as the condition specified after the word
Until is not True. That is, the loop terminates as soon
as the condition is evaluated to True, as shown in
Listing E.54.

34 002-8 AppE 3/1/99 8:54 AM Page 1161

1162 APPENDIX E VISUAL BASIC BASICS

LISTING E.54

DO UNTIL...LOOP

Do Until datQuestions.RecordSet.EOF
. . .
datQuestions.RecordSet.MoveNext

Loop

The same example with a negative condition in a Do
While clause would read as in Listing E.55.

LISTING E.55

DO WHILE WITH A NEGATIVE CONDIT ION

Do While NOT datQuestions.RecordSet.EOF
. . .
datQuestions.RecordSet.MoveNext

Loop

Notice that the Do Until... construct is easier to read
and understand.

Do...Loop Until for a Negative
Condition Loop to Run at Least
Once
As with the Do While loop, you can place the Until
condition after the Loop keyword, as illustrated in
Listing E.56.

LISTING E.56

DO...LOOP UNTIL

Do
. . .
strUserResponse = Trim(txtResponse.Text)

Loop Until strUserResponse = “”

This ensures that VB will always run the loop once
before the Do...Loop Until statement gets a chance to
evaluate the condition for the first time.

For...Next to Implement a Counter
Loop
In contrast to the Do_Loop, which iterates based on a
condition, the For_Next loop iterates through the loop
a specified number of times. Therefore, a For_Next loop
requires a counter variable to track the number of loop
iterations.

The programmer must initialize a loop counter variable
(usually an Integer type), which will be incremented
upon each pass through the loop. The structure of the
For statement looks like this:

For lcv = StartValue To StopValue

lcv variable, a common name in VB programming
documentation, stands for “loop counter variable.”
Other customary names for such variables that you will
find in a lot of existing code are i, j, iCount, iCounter,
and so forth. This counter variable tracks the iterations
through the loop. StartValue and StopValue are the
starting and ending values for the loop counter vari-
able. VB will automatically increment the loop counter
variable by one on each successive pass through the
For_Next loop.

The Next statement ends the For loop. You can put the
name of the loop counter variable after the Next state-
ment, as shown in Listing E.57. This improves read-
ability, but is optional.

LISTING E.57

A FOR...NEXT LOOP THAT NAMES THE LOOP

COUNTER IN THE NEXT CLAUSE

Dim lcv as Integer
For lcv = 1 To 10

msgBox “Square of “ & lcv & “ is “ _
& lcv * lcv

Next lcv ‘use of lcv name is optional here

34 002-8 AppE 3/1/99 8:54 AM Page 1162

APPENDIX E VISUAL BASIC BASICS 1163

The start and stop values in the For statement can be
literal values typed directly into your code, as in the
preceding example, or one or both of them can be a
variable or constant:

For intCounter = 1 To intMaX

By default, the increment of the loop counter variable
is 1. If you want to increment by some value other
than 1, you can specify a Step quantity, using the fol-
lowing optional syntax:

For lcv = StartValue To StopValue Step
Increment

The value of Step can represent a negative or even a
fractional number:

For intCounter = 10 To 0 Step –1
txtCountDown.text = Str(intCounter)

Next intCounter

Because VB changes the loop counter variable each
time it encounters the Next statement, the loop
counter variable will increment (or decrement if Step is
a negative value) one more time than there are passes
through the loop. Therefore, in the code of Listing
E.58, the value of intCounter displayed in the final
line will be 11.

LISTING E.58

CODE THAT TESTS THE FINAL VALUE OF A

LOOP COUNTER VARIABLE

Dim intCounter as Integer
For intCounter = 1 To 10

msgBox “Square of “ & intCounter & “ is “ _
& intCounter * intCounter

Next intCounter
MsgBox “lcv = “ & intCounter

For Each...Next to Loop Through
Objects in a Collection or Array
You can traverse all the objects in a collection or array
without knowing either their names or the number of
objects. The For Each_Next construct takes a place-
holder variable, similar to the For_Next loop. In con-
trast to the For_Next loop, however, this placeholder
does not represent a counter, but rather an object of the
type found in the collection. The object points to each
element of the collection as you iterate through the
loop. This enables you to evaluate and manipulate any
of the collection’s elements. The format of the For Each
statement is this:

For Each ObjVarName in CollectionName

Just as you must first declare a variable to represent the
counter in a For_Next loop, so you must first declare a
variable of the appropriate object type to represent the
For Each_Next loop’s placeholder, as in Listing E.59.

LISTING E.59

A FOR EACH...NEXT LOOP

Dim ctrlCurrControl as Control
For Each ctrlCurrControl in Controls

If TypeOf ctrlCurrControl Is TextBox Then
ctrlCurrControl.Text = “”

EndIf
Next ctrlCurrControl

Once again, notice that you can reference the place-
holder’s name after the word Next in the loop’s final
line. As is the case with the For_Next loop, this usage is
optional. See the section titled “Working with
Collections.”

If you wanted to use a For Each loop to traverse an
array, you need to declare a placeholder variable of type
Variant and then loop through the array using that
variable, as shown in Listing E.60.

34 002-8 AppE 3/1/99 8:54 AM Page 1163

1164 APPENDIX E VISUAL BASIC BASICS

LISTING E.60

TRAVERSING AN ARRAY WITH FOR EACH

‘Assume we have an array of String
‘called Names()
Dim varCurrent as Variant
For Each varCurrent in Names

Me.Print varCurrent
EndIf
Next varCurrent

To exit a For_Each or For_Next loop, use the following
statement:

Exit For

As with Exit Do, VB will immediately begin processing
the first line after the For_Next or For_Each loop.

For...Each Loop Control Variables
for Arrays Must Be Variant If you
declare the control variable to loop
through an array as some type
other than Variant, you will gener-
ate a compile error.

Control variables for collections of
objects don’t have to be of type
Variant.

W
A

R
N

IN
G

Terminating a Loop Abruptly
with Exit
You can stop the currently executing loop in its tracks
with an Exit statement. If you are in the middle of one
of the Do loops (Do While/Until_Loop, Do_Loop
While/Until), the statement

Exit Do

will cause VB to go immediately to the first line following
the end of the current loop.

Exit Do Inside While...Wend You
can’t use Exit Do inside the obso-
lete While...Wend loop construct. If
you try to terminate a
While...Wend loop with Exit Do,
you will generate a compiler error.
See the discussion of
While...Wend in the corresponding
section.

W
A

R
N

IN
G

The With...End With
Construct
Although the With_End With construct is not techni-
cally a control structure (it doesn’t redirect flow of exe-
cution), it does affect all the lines of code inside it. This
construct has two advantages—it saves you some typing
and it helps your code to execute faster. With...End
With can result in an enormous speed increase in a
program that uses a lot of object references.

You can use this construct when you need to call sev-
eral methods or properties belonging to the same
object, such as a Form, Control, or other type of object
(for example, an OLE server or a user-defined class).
You begin the construct with this line:

With ObjectName

Then, everything between this line and the End With
can refer to one of the object’s properties without
requiring you to type the object name. Instead of typ-
ing ObjectName.Method/Property, you need only to type
.Method/Property inside the With_End With construct.
You could, for example, replace the code in Listing
E.61 with the code in Listing E.62.

Watch Use of Exit in Looping
Use Exit in looping structures spar-
ingly, because Exit can make your
code harder to follow at mainte-
nance time.W

A
R

N
IN

G

34 002-8 AppE 3/1/99 8:54 AM Page 1164

APPENDIX E VISUAL BASIC BASICS 1165

LISTING E.61

FULL OBJECT REFERENCES IN EVERY LINE

OF CODE

frmMain.Caption = “Hello, World”
frmMain.Top = 0
frmMain.Show

LISTING E.62

USING WITH...END WITH TO REDUCE TYPING

With frmMain
.Caption = “Hello, World”
.Top = 0
.Show

End With

You can nest With constructs within each other.
Therefore, in Listing E.63, you can refer to a Data
Control’s Recordset object using a nested With con-
struct within the With construct for the Data Control:

LISTING E.63

NESTED WITH...END WITH CONSTRUCTS

With Data1
.Caption = “Categories”
.RecordSetType = dbOpenTable
.RecordSource = “Categories”
.Refresh
With Data1.RecordSet

.MoveFirst

.Index = “ID”
End With

End With

Notice that, even though the Recordset object belongs
to the Data Control and appears inside the Data
Control’s With construct, you still had to make full ref-
erence to the Recordset (including the Data Control)
when you started its own nested With construct.

Obsolete Techniques
There are many ways to modify flow-of-control in VB.
Some of them are included for downward compatibility
with earlier versions of BASIC and aren’t recommended
by Microsoft for new development. The two techniques
discussed here are from earlier versions of the BASIC
language—before VB came on the scene.

T
IP

Watch Out for Obsolete
Techniques on the Exams These
obsolete constructs are included in
this book because some of the
examples in the certification exam
might use them.E

X
A

M

The While...Wend Construct
The While...Wend construct is similar to a Do...Loop
with limitations. First, you are limited to placing the
condition at the top of the loop. Second, the
While...Wend construct does not recognize any type of
Exit device. That is, While...Wend constructs do not
enable you to exit the loop early.

In Listing E.64, you can see that the While...Wend con-
struct most closely resembles a Do While...Loop construct.

LISTING E.64

WHILE...WEND

While intOptions > 0
. . .
intOptions = intOptions - 1

Wend

34 002-8 AppE 3/1/99 8:54 AM Page 1165

1166 APPENDIX E VISUAL BASIC BASICS

The GoTo Statement
There was a time in the history of programming when
just about the only control the programmer had over
flow of execution was to evaluate a condition and then
jump to another place in the program based on the
result of the evaluation.

Constructs such as the If construct, the Case construct,
and the various flavors of While and For that we find in
languages like VB arose out of the difficulty program-
mers had in maintaining code with a lot of jumping
back and forth.

As a throwback to this earlier time, VB still allows lim-
ited ability to jump immediately to another line in your
application. You can use the GoTo statement to do this.
Here are the rules for using GoTo:

á You can only jump to a location inside the current
routine.

á You must jump to a named label. A named label
is a line in VB that contains a unique name fol-
lowed by a colon.

The first line in Listing E.65 directs the flow of execu-
tion to the label JumpPoint. The intervening code is not
executed.

LISTING E.65

JUMPING AROUND WITH GOTO

GoTo JumpPoint
‘. . .this code gets skipped

JumpPoint:
‘. . .do some stuff after the jump

Exit...Do and While...Wend If
While...Wend you invoke Exit Do
within a While...Wend construct,
you will generate a compiler error.

W
A

R
N

IN
G

N
O

T
E Use of GoTo to Implement Error
Handlers GoTo is used in VB to con-
struct error handlers. Therefore, a
statement like

On Error GoTo JumpPoint

is a standard approach to construct-
ing VB error handlers.

34 002-8 AppE 3/1/99 8:54 AM Page 1166

Microsoft Corporation. Microsoft® Visual Basic® 6.0
Reference Library. Microsoft Press, 1998. Three-volume
set includes the Language Reference, Controls Reference,
and Component Tools Guide.

Norton, Peter. Peter Norton’s Guide to Visual Basic 6.
Sams Publishing, 1998.

Perry, Greg. Sams Teach Yourself Visual Basic 6 in 21
Days. Sams Publishing, 1998.

Perry, Greg. Sams Teach Yourself Visual Basic 6 in 24
Hours. Sams Publishing, 1998.

Rahmel, Dan. Sams Teach Yourself Database
Programming with Visual Basic 6 in 24 Hours. Sams
Publishing, 1998.

Reselman, Bob. Using Visual Basic 6. Que, 1998.

Sample Applications, Microsoft® Visual Basic® 6.0
Assuming a default VB 6 directory structure, you
should have a Samples directory that contains a num-
ber of subdirectories containing sample applications.

Shea, Brian. Waite Group’s Visual Basic Source Code
Library. Sams Publishing, 1998.

Sherrif, Paul. Paul Sheriff Teaches Visual Basic 6.
Que, 1998.

Siler, Brian and Spotts, Jeff. Special Edition Using Visual
Basic 6. Que, 1998.

Siler, Brian. Visual Basic 6 Companion. Que, 1998.

FA P P E N D I X

Suggested Readings
and Resources

Appelman, Dan. Dan Appelman’s Developing Active
X/COM Components with Visual Basic 6. Que, 1998.

Brierley, Eric. Waite Group’s Visual Basic 6 How-To.
Sams Publishing, 1998.

Cadman, John. Waite Group’s COM/DCOM Primer
Plus. Sams Publishing, 1998.

Conley, John. Sams Teach Yourself OOP with Visual
Basic in 21 Days. Sams Publishing, 1998.

Fronckowiak, John. Sams Teach Yourself OLE DB and
ADO in 21 Days. Sams Publishing, 1997.

Jennings, Roger. Roger Jennings’ Database Developer’s
Guide with Visual Basic 6. Sams Publishing, 1998.

Jerke, Noel. Waite Group’s Visual Basic 6 Client/Server
How-To. Sams Publishing, 1998.

Jung, David. Waite Group’s Visual Basic 6 SuperBible.
Sams Publishing, 1998.

Kurata, Deborah. Doing Objects in Visual Basic 6.
Que, 1998.

Mauer, Lowell. Sams Teach Yourself More Visual Basic 6
in 21 Days. Sams Publishing, 1998.

McManus, Jeffrey. Database Access with Visual Basic.
Que, 1998.

McManus, Jeffrey. Jeffrey McManus’ Database Access
with Visual Basic 6. Sams Publishing, 1998.

Microsoft Corporation. Microsoft® Visual Basic® 6.0
Programmer’s Guide. Microsoft Press, 1998.

35 002-8 AppF 3/1/99 8:56 AM Page 1167 (Black plate)

www.cgvb.com. Carl and Gary’s Visual Basic Web Page. A
one-stop resource on the Web for VB developers.
Contains lots of information as well as links to many
other VB resources on the Web, including the various
VB-related sites under microsoft.com.

www.microsoft.com. Search this site for the MSDN
Library (which contains a complete reference to VB 6
and the Visual Studio 6.0) and the latest information
and downloads on ADO, ActiveX, COM, and other
VB-related standards and tools.

www.microsoft.com/workshop/author/htmlhelp/default

.asp. You can obtain the latest version of the HTML
Help Workshop here as well as links to other useful
information about HTML Help.

Smith, Curtis. Sams Teach Yourself Database
Programming with Visual Basic 6 in 21 Days. Sams
Publishing, 1998.

Spenik, Mark. Visual Basic 6 Interactive Course. Waite
Group Press, 1998.

Thayer, Rob. Visual Basic 6 Unleashed. Sams
Publishing, 1998.

Vaughn, William R. Hitchhiker’s Guide to Visual Basic
and SQL Server, Sixth Edition. Microsoft Press. 1998.

Webb, Jeff. Microsoft® Visual Basic® 6.0 Developer’s
Workshop, Fifth Edition. Microsoft Press, 1998.

Winemiller, Eric. Waite Group’s Visual Basic 6 Database
How-To. Sams Publishing, 1998.

35 002-8 AppF 3/1/99 8:56 AM Page 1168 (Black plate)

Index

A
accelerator keys, see access keys
access keys, 82

TextBox control, 98-99
accessing Object Browser, 453
Action menu commands, Export, 770
actions, ADO Data Control Recordset, 328
Activate event, 239-246
active context, Watch expressions, 852
Active Document

applications
creating, 690-691
debugging, 722-724
testing in VB environment, 722-724
.vbd file, 706-707

compiling, 724
components, 686
container applications

behavior of, 692
document navigation, 727-728
executing, 687-688
Microsoft Internet Explorer, 687
Microsoft Office Binder, 687
navigation code, 718-719

containers, 693
custom events, 704
custom methods, 705
custom properties, 705-706
data preservation events, 707-708
distributing, 724
DLL documents, 691-692
events, 694-698
exam objectives, 683, 685

EXE documents, 691-692
Help menu, 714
HTML Package and Deployment Wizard, 725-730
Hyperlink objects, 716-717
implementation overview, 688-689
menus, 712-714
methods, 697-712
Microsoft’s future intentions, 688
modeless forms, 715-716
multiple UserDocument objects, 719-722
persistent properties, writing, 728-729
properties, asynchronous downloading, 708-709
Properties bag, 707-708
scrolling, 698-701
services, 686
UserDocument objects, 689
ViewPort, 701-704
Web pages, 725-730

active learning, study strategies, 1,040
Active Server Pages (ASP), dynamic Web pages,

1,017-1,018
ActiveX

Data Objects, see ADO
DLLs, 903-905

setup programs, 747-749
Document Container (COM client), 448
extension of OLE standard, 514-515
Microsoft COM specifications, 445
objects, 513
OLE precursor, 449
services, 450

ActiveX controls
Alarm method, 625
author, 615
CanPropertyChange method, 647

36 002-8 index 3/1/99 8:57 AM Page 1169

1170 INDEX

component class features, 612
constituent controls, 613

building from, 639
delegated methods, 641

creating, 670
Fast Facts, 1,023-1,025

creation process, 616
currency amount entry example, 667-668
custom events, 625
custom methods, 624
data source controls, 647-650
Data Sources, 673-675
data-aware, 645
data-bound fields, 645-646
debugging, 661-670

breakpoints, 911
debugging via project groups, 907-909
declaring events, 626
default user interface event, 626-627
design-time features, 615
developer, 615
error trapping, 906
FoundOne event, 626
ImageList overview, 127
Initialize event, 631
InitProperties event, 631-634
licensing, 171-172, 613
ListView, 139-140
maintenance, 614
Microsoft Windows Common Controls

Library 6.0, 128
.ocx file extension, 128
OCX files, 613
overview, 612
as project elements, 613
properties, 627-636, 671-672
Property Bag, 634-638
Property Pages, 652-661, 672
RaiseEvent statement, 626
ReadProperties event, 631
referencing, 170-171
retrieving persistent property values, 638

runtime features, 615
siting instances on containers, 628
StatusBar, 153
Terminate event, 632
testing, 661-670
threads, managing, 542
toolbar, 147-148
ToolBox

adding, 128
TreeView, 134
user-drawn, 614

Paint event, 623
UserControl container, 616-620
WriteProperties event, 632

adaptive-form exams, 1,042-1,046
Add Class Module command (Project menu), 521
Add File dialog box, 54
Add-ins, Package and Deployment Wizard, 747
Add method

Controls Collection, 162-163, 195-197
dependent collection class, 536
ImageList control, 131
ListView control, 142-143
TreeView control, 135-136

Add Procedure dialog box, 1,145
Add User dialog box, 51
Add Users and Groups to Role dialog box, 783
adding

Active controls to ToolBox, 128
Active Documents to Web pages, 729-730
ActiveX controls, 1,017
Class modules, 521
components to MTS packages, 775-777, 1,027
controls

Controls Collection, 168-169
via control arrays, 160-162, 193-194
via Controls Collection, 162-163, 195-197

controls to forms, 91-92
graphics, 130
MTS components to packages, 788
pop-up menus to applications, 85-89

36 002-8 index 3/1/99 8:57 AM Page 1170

INDEX 1171

projects to project groups, 900, 910
records

ADO Data Control setup, 325-326
Recordsets, 342-343

registered components, 776-777
VCM to Visual Basic toolbar, 553-554

AddNew method, adding Records to Recordsets, 342
adDoAddNew value (EOFAction property), 323
Administrator role, System package (MTS), 744
administrators, Visual SourceSafe, 45-51
ADO (ActiveX Data Objects), 305

cursors, 400, 403
Data Control, 318, 329-330

Connection object, 330-351
manipulating, 1,029
Recordsets, 352-356

data-access models, 378-394
data-binding tools, 308-317
Errors collection, 357
object model, 306-307
objects, 407
OLE DB data providers, 305

ADO Errors collection, handling, 1,031
adReason parameter

WillChangeRecord event, 350
WillChangeRecordset event, 351
WillMove event, 349

adStatus As ADODB.EventStatusEnum parameter
(BeginTransComplete transaction method), 408

adStatus parameter
EndofRecordset event, 348
WillChangeField event, 350
WillChangeRecord event, 350

AdStavEOF value (EOFAction property), 323
adUseServer value (CursorLocation property), 401
advanced optimization, native code, 937-939
advantages of P-code, 927
Alarm method, ActiveX controls, 625
algorithms, testing in conditional blocks, 954
alignment property, 102
Allow Unrounded Floating-Point Operations

option, 940

AllowCustomize property (ToolBar control), 152-153
Ambient object, 621-623
AmbientChanged event, 621
ampersand (&), 98-99
ampersand, double (&&), 103
answering simulation questions, 1,047
apartment-model threading, 541-542
appearance properties of menus, 83
Appearance property, 102

ToolBar control, 150-151
appearances of menus, 84-85
applications

Active Document
creating, 690-691
debugging, 722-724
DLL document, 691-692
EXE document, 691-692
existing applications, 690
multiple UserDocument objects, 719-722
testing in VB environment, 722-724
UserDocument objects, 689
.vbd file, 706-707

client, 451-452
conditional compilation, 1,033
deploying, 987-999

methods, 1,036-1,037
Package and Deployment Wizard, 1,035

developing, 18-19
VB Enterprise Development Model, 20-28

DHTML, 818-825
existing, 690
IIS WebClass, 799-817
loan processing case study, 465-465
MDI, 248-249
menus, 89
multitier, 15
n-tier, 27-32
online user Help, 265-269

Helpfile property, 270
HTML Help, 276-292
identifying files at design time, 269
identifying files at runtime, 270
WinHelp, 267-268

36 002-8 index 3/1/99 8:57 AM Page 1171

1172 INDEX

pop-up menus, 85-89
removing from projects, 985
returning records to, 396-399
see also menus

ApplyChanges event, ActiveX controls, 657
archive files, 969
archiving Visual SourceSafe databases, 48-49
arguments

AsyncRead method, 709-710
AsyncReadComplete method, 711-712
Button, 87
Find method (locating records), 346
passing to General procedures, 1,146-1,155
Shift, 87

Arrange property (ListView control), 145
array arguments, 1,152-1,153
arrays, 1,139

astrAlphabet, 860
astrName, 846
bounds, 1,140
dynamic, 1,139
elements, 1,142
menu controls, 89
multidimensional, 1,140-1,141
static, 1,139
Watch expressions, 860

arrows (Menu Editor), 83
Asc() function, data type conversion, 1,134
ASP (Active Server Pages), 800-804
Assert method, Debug object, 871
assertion failures, 872
assigning roles to MTS components, 784-792
assignment loops, debugging, 847-848
assume No Aliasing option, native code, 937
astrAlphabet array, debugging, 860
astrName array, debugging, 846
asynchronous

callbacks, 573-574
downloading, 709-712
processing, 1,020

AsyncRead method (Active Document), arguments,
709-710

AsyncReadComplete method (Active Document),
arguments, 711-712

attributes, DHTML Web pages, 823-824
author, ActiveX controls, 615
authorization checking, MTS components, 785-786
authorization tracking, role-based security, 754
automatic data type conversion, 1,132-1,134
automatic program redeployment, 995
AutoRedraw property 242
AutoSize property, 103

StatusBar control, 156
availability

load balancing design implications, 33
logical design impact on physical design, 28

B
BackColor property, 100
Background Compilation switch, projects, 941
BackStyle property, 102
basic optimizations, native code, 929
BAT files, setup packages, 974
BeginTrans method, database transactions, 405
BeginTransComplete event, ADO Connection

object, 333
BeginTransComplete method, 407
bidirectional text display, VB programs, 982
binding

ADO, 313-314
controls to ADO Data Control Recordset, 323-325
object variables, 456-458

binding and naming services, COM, 449
bindings, Data Sources to ActiveX controls, 673-674
BOFAction property, ADO Data Control Setup,

322-323
Bookmark property, Recordsets, 347-348
Boolean data types, 1,129-1,130
BorderStyle property, 102
bounds, specifying, 1,140
Branch dialog box, 64
branching (controls), 1,158-1,160

36 002-8 index 3/1/99 8:57 AM Page 1172

INDEX 1173

Break in Class Modules command, error handling, 480
Break mode, 854-863

see also Watch expressions
Break On All Errors command, error handling, 480
Break on Errors settings, debugging ActiveX

controls, 912
Break On Unhandled Errors command, error

handling, 481
Break When Value Changes Watch expression, 851
breakpoints

debugging ActiveX controls, 906-911
debugging programs, 855

browsers, testing ActiveX controls, 662
bugs in code

preventing, 846
see also debugging

building client applications, 451-452
projects, 902

business objects, 21-22
COM components, 518

business rules, 518-519
business-logic rules, 1,022-1,023
business-logic tier (COM components), 518-519
Button, 86-87

as Integer parameter, 107
ButtonClick event (ToolBar control), 151-152
buttons, 92-105
Buttons Collection (ToolBar control), 149-150
ButtonWidth property (ToolBar control), 149
Byte data types, 1,129

C
Cab files (cabinet files), 969
Call Stack window, tracing procedures, 888
Call statements, calling Sub procedures, 1,154
callback

objects, 577-594
procedures, 1,020

calling
MTS components from VB clients, 768-769
MTS objects, 780

procedures, 1,147
Sub procedures, 1,154-1,156

Cancel parameters, 243-245
Cancel property, 99
CancelAsyncRead method, 710
CancelDisplay parameter, ADO Data Control Error

event, 329
canceling Recordsets, 341
CancelUpdate method, ADO Data Control
Recordset, 327

CanPropertyChange method, ActiveX controls, 647
Caption property, 99, 103
captions, menus, 82
Case Else (Case statements), 1,160-1,161
Case statements, 1,159-1,161
case studies

data entry forms, 225-226
Displaying Customer Sales Information, 825-826
forms, 250-253
loan processing application, 465-466
Sales-Order Entry System, 34-35

CausesValidation property, 219-220
CBool function, data type conversion, 1,134-1,135
CD-ROM

applications, 1,036
contents, 1,107
electronic version of text, 1,107
program deployment, 999
Top Score test engine, 1,107-1,115
program deployment, 999

CDbl function, data type conversion, 1,135
CDs, deploying programs, 990
centralization (maintainability), 24
certification requirements, 1,099-1,106
Fields parameter (WillChangeField event), 350
Change events, 104-109

field-level validation 220
TextBox control, 642

ChangeFieldComplete event, 351
character cases, 213
checking

files in Visual SourceSafe projects, 56-57
variable data types, 1,131-1,132

36 002-8 index 3/1/99 8:57 AM Page 1173

1174 INDEX

Child property (TreeView control), 137
children (TreeView control), 134
Children property (TreeView control), 138
chm extension, HTML Help files, 267
Choose Project to Archive dialog box, 48
choosing ADO data-access models, 383-384
Chr() function, data type conversion, 1,134
Classes, 520-541
Clear method

Err object, 485, 501
ListBox control, 641

Click events, 83, 105-109
client applications

asynchronous call notifications, 573-574
callback objects, 573-577
COM components, 451-452
errors, 549-552
in process server components (COM), 516
Interface class, 567-572
out-of-process server components (COM), 515

client specific features, conditional compilation, 955
client-side cursors, 401
clients

ActiveX Document Container, 448
COM, 448
configuring

DCOM, 986
with MTS components, 768-772

DCOM, 1,036
MTS client packages, 770
MTS components

calling, 768-769
configuring, 789-790
package installation/upgrades, 769-770

MTS setup packages, creating, 789
sending HTML text directly to programming

WebClasses, 805-807
CLng function, data type conversion, 1,135
Close on the History dialog box, 63
closing

Break mode, 859
project groups, 901

codes
Click event procedures of menus, 83
CommandButton control, 99
debugging, 855-859
dynamic menus, 90
error handling, 492-501
forcing errors in code, 499
in controls, 103-110
in event procedures, 104-105
menu appearances, 84
MouseUp event procedure, 87
pop-up menus, 85-88
properties within, 94-95
runtime menu items, 90-91
simulating errors in code, 499
tokenizing, 924
see also listings; programs

coding, 697-712
container applications, merging, 714
Collapse event (TreeView control), 139
collections, 307, 1,142
ColumnClick event (ListView control), 147
ColumnHeaders Collection (ListView control), 146
COM (Component Object Model), 445-472

Class modules, 520
classes, 544-546
components, 514-519
error results, 590-591
exam, 509-512
GlobalSingleUse instancing, 547-548
IDispatch interface, 585-586
in process server, 515-516
information, 513
instancing, 590
invoking, 1,019-1,020
IUknown interface, 585-586
messages, 595
MultiUse instancing, 548
object model, 519-520
out-of-process server, 515-516
procedures, 517-518
programming, 513-514

36 002-8 index 3/1/99 8:57 AM Page 1174

INDEX 1175

publishing, 591-592
registering, 579-595
scalability, 584-585
SingleUse instancing, 546-547
threading model, 590
threads, 541-542
types, 583-584
unregistering, 579-595
user interfaces, 581
VB code, 1,026
VCM, 559-561
VCM component functions, 552
vtable binding, 585-586

CommandButton control, 105
command buttons, 92-103
Command objects, ADO object model, 307

adding to Data Environment Designer, 309-312
initializing, 334-335
Recordsets, 335-351

CommandButtons, 99-104
Properties, 96-98

commands
Action menu, 770
Debug menu, 858-859
Debug.Print, 889
Project menu

Add Class Module, 521
References, 452

scripting (COM automation), 448
CommitTrans method, database transactions, 405
CommitTransComplete event, ADO Connection

object, 333
Compile on Demand option, 941
compiled

languages, 920
programs, 921

compilers, 919-926
compiling

Active Document, 724
to native code, 931-940
to P-code, 926-927

projects, 902
background compilation, 941
conditional compilation, 942
on demand, 941
with Class modules, 1,027-1,029

Complete events, 351
Component Object Model, see COM
Component wizard (MTS), adding, 776-777
components, 445

ActiveX controls, 612
adding to packages, 746
characteristics, 445
DCOM, 986
designing for n-tier applications, 29-32
events, 463-472
Object Library, 452
objects, 460-462
standalone applications, 451

components (MTS)
authorization checking, 785-786
clients, 789-790
developing, 772-773
in-process, 768
installing from packages, 769-770
multiple interfaces, 785
out-of-process, 768
packages, 775-788
roles, 784-792
transaction properties, 777-780
transactional options, 790-791
updating from packages, 769-770

Components dialog box, 308
composite controls, 613
conceptual design, 15, 20

developing, 1,007
Development model, 20-21

conditional blocks, 954
conditional compilation, 1,033

client specific features, 955
projects, 942

conditional compiler blocks, 952-954
conditional flow control directives, 943

36 002-8 index 3/1/99 8:57 AM Page 1175

1176 INDEX

configuring
client computers, 1,011
clients, 789-790
DCOM, 1,036

on client/server computers, 986
dependent class, 534
MTS

for server computer, 1,010
from VB clients, 768-772

ConnectComplete event, ADO Connection object, 333
connection objects, 331-334

ADO, 309-312
ADO object model, 307

Const preprocessor directive (#Const), 948
constants, vbObjectError, 486
constituent controls, 613, 639-643
Contain relationships (business objects), 22
container applications

Active Document
behavior of, 692
testing applications, 723-724

documents, 716-717
examples, 687
executing, 687-688
Microsoft Internet Explorer, 687
object models, 718

container objects, see forms
containers, detecting, 693
content, DHTML Web pages, 823-824
contents file, HTML Help Workshop, 288-289
context options, Watch expressions, 852
context-sensitive help, 271-276
context-sensitive menus, 80-89
context-sensitive Topic files, 290
ContinuousScroll property (Active Document), 700-701
control arrays

controls, 160-162, 193-194
labels, 161-162

control containers, Ambient object, 621
controlling instancing in COM components, 590
controls

ActiveX, 450
creating, 670
see also ActiveX controls

ADO Data Control, 318, 329-349
branching, 1,158-1,161
Change events, 109
Click events, 105-106
code assigned, 103-110
CommandButton, 99-105
composite controls, 613
constituent, 639
constituent controls, 613
context-sensitive Help, 271-276
control arrays, 160-162, 193-194
Controls Collection, 168-169
data source, 647-650
DblClick events, 106
Default event procedures, 104
enabling based on input, 222-224
event procedure naming, 1,157-1,158
forms, 91-92
GotFocus events, 110
GoTo statements, 1,166
intrinsic, 164-165
Keystroke events, 110
Labels, 102-106
ListBox, 641
looping, 1,161-1,164
LostFocus events, 110
Mouse events, 108-109
MouseDown events, 106-108
MouseMove events, 109
MouseUp events, 106-108
names, 104-105
non-intrinsic, 165-167
properties, 94
referencing, 170-171
TextBox, 98-106
users, 914
While...Wend constructs, 1,165
with pop-up menus, 88-89
With...End With constructs, 1,164-1,165

Controls Collection
controls, 168-169
forms, 158-159

resetting fields, 190

36 002-8 index 3/1/99 8:57 AM Page 1176

INDEX 1177

methods, Add, 162-163, 195-197
ProgID, 163-164

Controls Collections, licensing, 171-172
contstants, 244
converting

existing applications, 690
variable data types, 1,132-1,136

core exams, 1,103
Count property

dependent collection class, 535
Forms Collection, 180

CPUs, machine code, 921
Creatable objects, 460
CREATE PROCEDURE query, stored procedures,

385-387
Create Project dialog box, 54
CreateObject, 801
CreateObject function, 458-460
creating

Active Document applications, 690-691
Active documents, 1,025
ActiveX controls, 1,023-1,025
callback procedures, 1,020
client setup packages, 789
COM components, 517-518
dialog boxes, 1,012-1,014
dynamic Web pages, 1,017-1,018
forms, 186
Interface class, 563-564
MTS client packages, 770
MTS components, 772-773

transactional options, 790-791
MTS packages, 1,027
objects, 469-470
roles for MTS packages, 791-792

MTS security, 782-783
server component applications, 517-518
StatusBar control, 189
toolbars, 188-189
Web pages, DHTML Page Designer, 1,018-1,019

cRecords parameter (WillChangeRecord event), 350
Criterion argument, Find method, 346

CSng function, data type conversion, 1,135
CTL files, ActiveX controls, 613
currency amount entry example control, 667-668
Currency data type, 1,126
current system states, usage scenarios, Development

model conceptual design, 20
cursors

ADO data-access, 400-403
executing statements without, 394, 396
options, 414-415

custom controls
building from constituent controls, 639
CanPropertyChange method, 647
constituent controls, 641
currency amount entry control, 667-668
data source controls, 647-650
data-aware, 645
Default user interface event, 626-627
events, 625
Initialize event, 631
InitProperties event, 631-634
methods, 624
properties, 627-636
Property Bag, 634
ReadProperties event, 631
retrieving persistent property values, 638
siting instances on containers, 628
Terminate event, 632
user-drawn, 623
WriteProperties event, 632
see also ActiveX controls

custom events
Active Document, 704
ActiveX controls, 625
Class modules, 528
WebItems, 814-815

Custom installation, MTS, 743
custom methods, 705

ActiveX controls, 624
custom properties

Active Document, 705-706
ActiveX controls, 627-636
Class modules, 524

36 002-8 index 3/1/99 8:57 AM Page 1177

1178 INDEX

Customize Toolbar dialog box, 152-153
customizing, 984-985
CVar() function, data type conversion, 1,135

D
data

locking, 413-414
structured storage services, 449
types, 1,125-1,130, 1,146
variables, 1,117

arrays, 1,139-1,142
checking data types, 1,131-1,132
converting data types, 1,132-1,136
scope, declaring and defining, 1,117-1,124
strings, 1,136-1,138

data access components, 1,009
data binding, 1,019
Data control (ADO), 318

programming, 329-356
setting up, 319-328
versus Data Environments, 318-319

data cursors, ADO object model, 306
Data Environment Designer, 308-317
data input forms

exam objectives, 125-126
reset fields, 158-159

Controls Collection, 190
Data Link Properties dialog box, 320
data source controls, 647-650
data sources, 674-675, 1,029-1,030
data-access tier (COM components), 518-519
data-aware ActiveX controls, 645
data-binding tools (ADO), 308-317
data-bound fields, ActiveX controls, 645-646
databases

error handling, 1,031
stored procedures, 384-399
transactions, 404-407

recoverability of, 1,031
Visual SourceSafe, 45-51

DataChange property 224
DataField property, ActiveX controls, 645-646
DataFormat property 224
DataSource property, ActiveX controls, 645-646
Date data types, 1,128-1,129
Date/Time functions, 1,128-1,129
DateTime project, 905
DblClick events, 106-109
DBMSs, 404-414
DCOM (Distributed Component Object Model), 986

implementing, 998
registering, 1,035

DDF files, building CAB files, 975
DeActivate event, versus LostFocus event, 246
DeActivate event, 240
debug code, conditional compiler blocks, 952-954
Debug menu, 857-859
Debug object, 865-874
debug status messages, 865-869
Debug.Assert method, saving breakpoints between

sessions, 871
Debug.Print command, 889
debugging, 846

ActiveX controls, 661-662, 670
breakpoints, 911
via project groups, 907-912
what to look for, 666-667

ActiveX DLLs via project groups, 903-905
applications (Active Document), 722-724
assignment loops, 847-848
astrAlphabet array, 860
astrName array, 846
breakpoints, 871
code, 855-859
display loops, 847
displaying data values, 869, 871
procedures, 888
project groups, 906
projects, 849-850
VB code, 1,026
Watch expressions, 881-882

36 002-8 index 3/1/99 8:57 AM Page 1178

INDEX 1179

Decimal subtype (Variant data type), 1,130-1,131
declarative security (MTS), 784
declaring

arrays, 1,139
Class objects, 538-539
compiler constants, 948-951
data types, 1,146
events, 528-529, 626
intrinsic controls, 164-165
non-intrinsic controls, 165-167
objects, 455-456
variable scope, 1,117-1,124

defaults
lower bounds, 1,140
properties, 94
user interface events, 626-627
values, 632

defining
Callback objects, 574-575
custom methods, 705
menus, 712
methods, 532-533
object variables, 468
pop-up menus, 85-86
properties, 532-533
variable scope, 1,117-1,124
Watch variable, 1,034-1,035

delegated
events, 642
methods, 641
properties, 630

Delete function, 876
Delete method, 343
DELETE statement, executing with stored procedures, 393
deleting

controls, 160-162, 193-194
records, 343
Watch expressions, 850

delivering programs to clients, 987-999
DEP files (dependency files), 969, 981-984
dependency, ADO object model, 306
dependency files, 748, 978-981

dependent classes, 533-537
dependent objects, 460
deploying applications, 1,035-1,037

CD method, 990
CD-ROM method, 999
floppy disk method, 988-998
network method, 990
updates, 994
Web method, 992-999

deriving
logical from conceptual designs (Development model),

21-22
physical from logical designs (Development model),

22-23
descending For…Each loops, 183-184
Description parameter, ADO Data Control Error

event, 328
Description property, Err object, 483
design

conceptual, 15, 20
logical, 20-22
physical, 22-28
specifications, 225-226, 253
time, 84

design time, 94
ActiveX controls, 615
templates, 89

designing
components for n-tier applications, 29-32
data access components, 1,009
menus, 712-713
MTS components, 1,026
properties, 1,009

desktop applications
error handling, 1,021-1,022
online help, 1,020-1,021
Visual Basic installation/configuration, 1,010

detecting
containers, 693
object variables, 463

developers, ActiveX controls, 615
developing conceptual design, 1,007

36 002-8 index 3/1/99 8:57 AM Page 1179

1180 INDEX

Development Model (VB Enterprise), 20-28
DHTML (Dynamic HTML), 818-825

Page Designer, 1,018-1,019
dialog boxes

Add File, 54
Add Procedure, 1,145
Add User, 51
Add Users and Groups to Role, 783
Branch, 64
Choose Project to Archive, 48
Close on the History, 63
Components, 308
Create Project, 54
creating, 1,012-1,014
Customize Toolbar, 152-153
Data Link Properties, 320
exam objectives, 125-126
Export Package, 770
File Browse, 808
Font property, 97
History of Project, 62
Label, 58
Menu Editor, 81
Project Components, 128
Project History Options, 62
Project Properties, 269, 805
Property Pages, 320

ToolBar control, 148
Use of ImageList control, 129

PropertyPages, 322
RecordSource, 322
References, 453
Save, 806
Share, 63
Share From, 63

directives
flow control (pseudocode), 923
preprocessor, 943-948

disconnect event, ADO Connection object, 334
disconnected Recordsets, 352-353
display loops, debugging, 846

displaying
Active document information, 1,022
current variable values, 878-879
data, 1,019
Immediate window, 864
information (TreeView control), 134
modeless forms, 715-716
pop-up menus, 88
ViewPort properties, 702-703

DisplayName property, Ambient object, 622
distributed applications, 1,021-1,022
distributing Active Documents, 724
DLL documents (Active Document), selection criteria,

691-692
DLL files, VB programs, 925
Do Until loops, 1,161-1,162
docucentric operating systems, Microsoft Active

Document future, 688
Document Container (ActiveX), 448
documents

ActiveX, 450
container applications, 716-717

Draw method (ImageList control), 132
dynamic

arrays, 1,139-1,142
controls, 160-162, 193-194
cursors, 404, 1,031
events, 816-817
load balancing, 33
menus, 80, 90
Recordsets, 354-355
Web pages, 1,017-1,018

Dynamic HTML, see DHTML
dynamically modifying menu appearances, 84-85

E
early binding

IDE support, 457
Microsoft Excel support, 458
object variables, 456

early bound variables, 468-469

36 002-8 index 3/1/99 8:57 AM Page 1180

INDEX 1181

editing
canceling bound control changes, 327
existing records, 326-327
Package and Deployment scripts, 969
Property Pages, 653
Watch expressions, 850

efficiency, logical design impact on physical design, 24
ElapsedTime() function, 957
elective exams

MCSE certification, 1,102
MCSE+Internet certification, 1,103

elements
arrays, 1,142
DHTML Web pages, 824-825

Else and ElseIf construct, 1,158-1,159
Else preprocessor directive (#Else), 943-945
empty packages, creating with MTS Explorer, 752
Enabled property, 96
enabling

authorization checking, 785-786
controls, 222-224
VCM, 553-554

encapsulation (maintainability), 25
End If preprocessor directive (#End If), 943-945
EndofRecordset event, 348

ADO Data Control, 329
EnsureVisible method (TreeView control), 136-137
EnterFocus event (Active Document), 695
Enterprise Application Model, 18-19

VB Enterprise Development Model, 20-28
EntryText property, constituent controls, 643
enumerating values (Case statements), 1,160
EOFAction property, ADO Data Control Setup,

322-323
equi joins, 1,032
Err object, 481

Clear method, 485, 501
properties, 482-484
Raise method, 485-486

Error event, 328
Error statement, error handling, 499
error tracking, user controls, 914
error trapping, debugging ActiveX controls, 906

errors, 590-591
Errors collection

ADO, 357
Command ADO object, 307

establishing source-code version control, 1,009-1,010
event procedures

controls, 103-110
default for controls, 104
naming, 1,157-1,158
private variables in (code listing), 1,124

events
Active Document, 700-708
ActiveX controls, 625-633, 657
ADO, 317

Connection object, 332-333
Data Control, 328-329

AmbientChanged, 621
built-in, 530-531
Change, 104-109
Class modules, 528-529
Class objects

handling, 540-541
raising, 529-530

Click, 104-109
components, 1,009
data source controls, 648
DblClick, 106-109
DHTML, 821
EnterFocus (Active Document), 695
ExitFocus (Active Document), 698
field-level validation, 218-222
forms, 239-249
GotFocus, 110
handling from COM components, 463-472
Hide (Active Document), 698
Initialize (Active Document), 694
InitProperties (Active Document), 695
Keystroke, 110, 216-217
ListView control, 146-147
LostFocus, 110
mouse, 106-109
n-tier application components, 31-32

36 002-8 index 3/1/99 8:57 AM Page 1181

1182 INDEX

procedures, 86-87
ReadProperties (Active Document), 696
Recordset, 348-351
Show (Active Document), 695
Terminate (Active Document), 698
TextBox control, 642
ToolBar control, 151-152
TreeView control, 139, 139
WebItem, 814-817
WithEvents keyword, 464-465, 471-472
WriteProperties (Active Document), 697

exams
core, 1,103
electives, 1,102
formats, 1,041-1,046
objectives

Active Document, 683, 685
COM components, 447, 509-510
data input forms, 125-126
MTS applications, 765

pre-exam tips, 1,045
question types, 1,044-1,047
study tips, 1,039-1,041
taking, 1,046

EXE applications, adding, 521
EXE document (Active Document) selection criteria,

691-692
EXE files, P-code, 924
Execute Direct Model

ADO data-access, 379, 383
data sources, 1,029-1,030

ExecuteComplete event, ADO Connection object, 334
executing

container applications, 687-688
procedures, 875-876

exercises, 228-233
existing

applications, 690
packages, 755-757

Exit Function (terminating procedures), 1,153-1,154
Exit statements, terminating loops, 1,164
Exit Sub (terminating procedures), 1,153

ExitFocus event (Active Document), 698
exiting

Break mode, 859
project groups, 901

Expand event (TreeView control), 139
Expanded property (TreeView control), 138
Explorer

Visual SourceSafe, 51-65
Visual SourceSafe (workstations), 46

Export Package dialog box, 770
exporting packages, 755-757
exposed objects, COM components, 451
Expression not defined in context message, 852
expressions

preprocessor, 945
Watch, see Watch expressions

Extender object, 619-623
extensibility, 26
externally

classes (creatable), 544-546
objects (creatable), 513

extracting information from Date variables
(Date/Time functions), 1,128

F
fast code optimization, native code, 929-930
Favor Pentium Pro option, 932
feature sets, conditional compilation, 955
FieldChangeComplete event (ADO Data Control), 329
fields

contents, 337-339
validation, 219-222
validation, 217

Fields parameter (WillChangeField event), 350
File Browse dialog box, 808
file delete function, 876
file I/O test, Optimize project, 934
File menu, 90
FileName classings, 459

36 002-8 index 3/1/99 8:57 AM Page 1182

INDEX 1183

files
CAB (cabinet), 969
checking in/out, 56-57
CTL, 613
DDF, 975
DEP, 969, 981
HTML, 976
HTML Help, 276-291
INF, 977
OBJ extension, 921
OCX, 613
Optimize.VBP, 932
PDM, 969
SETUP.EXE, 978
SETUP.LST, 979-980
VBG extension, 900
VBR, 987
Visual SourceSafe projects, 54

Find method, 346
finding COM components, 559-561
FindItem method (ListView control), 144
FirstSibling property (TreeView control), 137
fixed-form exams, 1,042-1,046
Flash Cards application, 1,113-1,115
floppy disks

applications, 1,036
program deployment, 988, 998

flow control directives
conditional, 943
pseudocode, 923

focus, Activate event 242
folders, Visual SourceSafe projects, 53-55
Font property, 96-97
For Each loops, 182-184

Controls Collection, 158
For Each…Next loops, 1,163-1,164
For Next loops, 181-184

Controls Collection, 157
forcing errors in code, 499
Format function, 1,135-1,136
formats, MCP exams, 1,041-1,046

forms
case studies

design specs, 225-226
Load event procedures, 250-253

context-sensitive Help, 271-275
controls, 91-94
creating, 186
data processing, 1,015-1,017
debugging, 852
events, 239-249
hiding, 176-177
keystroke events, 212-217
loaded status, 182-183
loading, 173-174, 190-192
managing, 581-583
methods, 247-250
reset fields, 158-159

Controls Collection, 190
showing, 176-177
statements, 247-248
storage, 177-179
unloading, 173-174, 190-192

Forms Collection, 183-184
Forms Collection

contents, 179-180
forms, 179-184
item numbers, 180-181
loaded status, 182-183
looping techniques, 181-182
properties, 180

Forward-Only cursor, 403, 1,031
For_Next loops, 1,162-1,163
FoundOne event, 626
Friend keyword, 533
Friend scope, 1,157
.FRM file (forms storage), 177-179
FullPath property (TreeView control), 138
functions

checking variable data types, 1,131-1,132
CreateObject, 458-459

object creation, 469-470
data type conversion, 1,134-1,136
Date data type, 1,128-1,129

36 002-8 index 3/1/99 8:57 AM Page 1183

1184 INDEX

Delete, 876
ElapsedTime(), 957
error-handling example, 496-499
Error(), 499
file delete, 876
General procedure, 1,145-1,152
GetObject, 458-460

object references, 470
GetProcessTimes(), 958
GetTickCount(), 957
Lbound(), 939
Len(), 869
return values, 1,155-1,156
Spc(), 867
string manipulation, 1,136-1,138
Tab(), 867
Timer(), 957
TypeName, 693

G
General procedures (Sub procedures), 1,144-1,145
Generalize relationships (business objects), 22
GetDataMember event, 648
GetObject function, 458-460
GetProcessTimes() function, 958
GetTickCount() function, 957
GetVisibleCount method (TreeView control), 136-137
global scope, 884
global variables, 885
GlobalSingleUse instancing, 547-548
GotFocus event, 239

in controls, 110
debugging, 880
field-level validation, 221-222
versus Activate event, 246

Goto 0 clause, 489
GoTo statements (controls), 1,166
graphics, 129-133

H
handling

errors, 549-552
events, 463-472

in Class objects, 540-541
Height property, 97
help, online user, 265-269

context-sensitive, 271-276
HelpFile property, 270
HTML Help, 267-292
identifying files at design time, 269
identifying files at runtime, 270
WinHelp, 267-268

Help menu, merging, 714
HelpContext

ID property, 280-285
parameter, 329
property, 484

Helpfile
parameters, 328
properties, 270, 484

Hide event (Active Document), 698
Hide method, 247-250
Hide statement (forms), 176-177
HideSelection property, 100
hiding forms, 176-177
hierarchy

of error handling, 494
menus, 82

History of Project dialog box, 62
hlp extensions, WinHelp files, 268
host pages, ASP, 804
HScrollSmallChange property (Active Document), 700
HTML (Hypertext Markup Language), 799-810

DHTML applications, 818-825
files, 976
Help files, 276-292
file structures, 276-277
Help Workshop, 277-292

36 002-8 index 3/1/99 8:57 AM Page 1184

INDEX 1185

extensive help source files, 280-285
Index file, 286
Package and Deployment Wizard, 725-730
Project header file, 279-280
WhatsThis source files, 289-292

Hyperlink object, Internet-aware applications, 716-717
Hypertext Markup Language, see HTML

I
icons

ListView control, 140
property (ListView control), 144

identifying
business objects (development model logical

designs), 22
Help files, 268-270

Identity setting, Role-based security, 754
IDispatch interface, COM components, 585-586
If preprocessor directive (#If), 943-945
If statement, branching, 1,158-1,159
If…End If construct, 1,158
ignoring errors in code, 501
IIS WebClass applications, 799-817
ImageList control

forms, 186
graphics, 129-130
ListImages Collection, 130-131
overview, 127
properties, 133
Property Pages dialog box, 129

ImageWidth property (ImageList control), 133
Immediate window, 864-880
Immediate windows, opening, 864
implementing

Active Document applications, 688-689
basic operations, 187-188
business logic rules in COM components, 588-589
business rules, 518-519
business-logic rules in COM components,

1,022-1,023

callbacks
in Class objects, 529-530
objects, 575-577, 592-594

Class modules with COM components, 520
COM components in client applications, 451-452
custom events in Class modules, 528
error-handling desktop/distributed applications,

1,021-1,022
Interface class, 565-572
load balancing, 1,036
navigational design, 1,011-1,012
object model, 519-520
online help, 1,020-1,021
polymorphism, 561-563
properties, 524-525

implicit loading, 249
importing packages, 755-757
in process

components (MTS), 768
server components (COM), 515-516

forms, 582-583
threads, 542

Index
files, 286
property, 89-90, 142

INF files, 977
information, displaying, 134
Initialize event

Class modules, 530-531
custom controls, 631-634

Initialize event (Active Document), 240, 694
initializing object variables, 468
InitProperties event, 631-634

Active Document, 695
inline error handling, 489, 500
input forms, 1,015-1,017
input validation 209-210
Insert menu, creating General procedures, 1,144-1,145
INSERT statement, executing with stored

procedures, 391
installing

MTS components, 741-743
from packages, 769-770

36 002-8 index 3/1/99 8:57 AM Page 1185

1186 INDEX

VB programs, 983
Visual Basic for desktop/distributed applications, 1,010
Visual SourceSafe, 46

instances, releasing, 463
instancing

COM components, 584-585
controlling in COM components, 590
externally creatable classes, 546

Instancing property, 544-546
instantiating

Class objects, 538
object variables, 463
objects, 455-459
projects, 902

Instr() function, string manipulation, 1,137
integration, 26
interfaces

class, 563-572
MTS components, 785

Internet
browser-aware applications, 716-717
deploying programs, 992

Internet Explorer, 662
Internet Package, 748
Internet setup packages, 969-976, 996
interpreted languages, 920
interpreted programs, 921-922
Initialize event, 239
intrinsic controls, declaring, 164-165
InvisibleAtRunTime property, UserControl

container, 620
invoking COM components, 1,019-1,020
IsArray() function, checking variable data types, 1,131
IsMissing() function, passing arguments to General

procedures, 1,151-1,152
IsNumeric() function, checking variable data types,

1,131
Item method (dependent collection class), wrapper

method, writing, 537
item numbers, referencing, 180-181
ItemClick event (ListView control), 146
IUknown interface, COM components, 585-586

J-K
JOIN clauses, connecting tables, 412-413
joins, 1,032

key combinations, assigning, 83
key events, debugging, 880
Key property (ListView control), 142
KeyAscii parameter, 212-213
KeyCode parameter, 214
KeyDown event, 214-216
KeyPress event, 212-213
KeyPreview property, 216-217
keys

access, 82
Controls Collection (license), 171-172
testing in Shift parameter, 87

Keyset cursor, 404, 1,031
keystroke events

in controls, 110
enabling with KeyPreview property, 216-217
KeyDown and KeyUp, 214-216
KeyPress, 212-213

KeyUp event, 214-216
keywords

Date data type, 1,128
ParamArray (array arguments), 1,152-1,153
Private, 882

L
Label control, 104-106
Label dialog box, 58
labeling Visual SourceSafe projects, 58
labels

access keys, 98-99
control arrays, 161-162
properties, 92-103

LastDLLError property, Err object, 484
LastSibling property (TreeView control), 137

36 002-8 index 3/1/99 8:57 AM Page 1186

INDEX 1187

late binding, 456-458
late bound variables versus early bound variables,

468-469
Lbound() function, 939
Left function, string manipulation, 1,136
Left property, 97
Len function, string manipulation, 1,137
Len() function, Debug object, 869
levels of menus, 82
Library packages, MTS components, 773
licensing

ActiveX controls, 171-172, 613
composite controls, 614

limiting
users, MTS packages, 781
Watch expressions, 885

LineStyle property (TreeView control), 138
ListBox control, Clear method, 641
ListImages Collection (ImageList control), 130-133
listings

ADO data-access models, 380-383
Alarm method, ActiveX controls, 625
ApplyChanges event, 657
arguments, 1,152-1,155
ASP file, 800-802
calling CanPropertyChange method, 647
calling PropertyChanged method, 637
Case statements, 1,160
Change event, TextBox control, 642
checking container property changes, 621
controls

GoTo statement, 1,166
populating from copy buffer, 339

cursors, 394-395
customized Start event in new WebClass, 807
Data Environment Designer, 316
database transactions, 406
date and time functions (Date data type), 1,129
Decimal subtype (Variant data type), 1,130
delegating Clear method of ListBox, 642
design-time writeable property example, 622
EditProperty event procedure, 660

ElseIf statements, 1,159
Exit Sub, 1,153-1,154
file delete function, 876
functions

CBool, 1,134
CByte, 1,135
Format, 1,136
Instr, 1,137
IsMissing(), 1,151-1,152
Len, 1,137
Parsing, 1,138
TypeName(), 1,131

General procedure functions, 1,146-1,147
GetDataMember event procedure, 649
Immediate window data display, 870
implementing custom control properties, 630
initializing delegated properties, 644
initializing properties via InitProperties event

procedure, 633
Internet setup package, HTML code, 977
local variables, 1,120-1,123
loops, 1,161-1,163
managing persistent delegated properties, 644
MoveNext/MovePrevious methods, 345
numeric data types, 1,132
On Error Resume Next, ignoring errors via, 501
On Error Resume Next statement, 500
parts of typical dependency file, 982
passing General arguments, 1,155
private variables, 1,124
procedures

General, 1,144
Private scope, 1,156
Public scope, 1,157

ProcessTag event procedure, 811
Property Let/Get procedures for delegated

properties, 644
property value persistence via WriteProperties, 636
public variables, 1,124
records, 345
Recordsets

adding and saving records, 342
ADO, 336

36 002-8 index 3/1/99 8:57 AM Page 1187

1188 INDEX

canceling user changes, 341
CursorType property, 403
deleting records, 343
disconnected, 353-354
dynamic, 355
Find method, 347
persistent, 356
SQL statements, 409
updating records, 341

redrawing UserControl graphics via Paint event, 624
resizing constituent controls, 640
restoring persistent property values, 638
SelectionChanged event procedure, 656
SETUP.LST file example, 980
Standard HTML code, 810
static variables, 1,120-1,123
stored procedures, 392-399
String data, 1,127

type, 1,133
variable scopes, declaring, 1,119
WebClass Start code, 815
WebClass Start event procedure fragment

(imbedding WebItem references), 812
WebItem dynamic events, 817
While…Wend construct, 1,165

ListItems Collection (ListView control), 141
ListView control, 139-147
literals, 946-947
load balancing, 16

implementing, 1,036
servers, 32-33

Load event, 239-252
Load statement, 89

forms, 174
versus Show method, 247-248

loading
forms, 173-174, 190-192

from memory, 249
graphics, 130
labels, 161-162

loan processing application case study, 465
local scope, Watch expressions, 882

local variables, 881
declaring scope, 1,120, 1,122
Watch expressions, 886

LocaleID property, Ambient object, 621
Locals window, 878-879

modifying program values at runtime, 889
locating

ProgID Controls Collection, 163-164
records, 346

locations, 400-402
Locked property, 101
locking data, 413-414
logging errors, 491
logical design, 15, 20-28
loop counters, local variables as (code listing), 1,122
looping, 1,161-1,164

Controls Collection, 157-158
Forms Collection, 181-182

loops, 847-848
LostFocus event, 240

in controls, 110
debugging, 880
field-level validation, 221-222
versus DeActivate event, 246

M
machine code, 920-921
macros, setup program install paths, 973
main project, 902-910
maintainability, 24-25
maintenance

ActiveX controls, 614
user (Visual SourceSafe Administrator), 51

managing
Active Document events, 695-698
forms, 581-583
threads, 541-544

manipulating
Callback objects, 577-579
Class objects, 539

36 002-8 index 3/1/99 8:57 AM Page 1188

INDEX 1189

data, 1,019
data sources, 1,029-1,030
objects, 461-462
String data types, 1,136-1,138

manual program redeployment, 995
mapping

files, 283-290
users, 783-784

MaxLength property, 101, 224
MCP (Microsoft Certified Professional), 1099

exams, 1,041-1,047
MCP+Internet (Microsoft Certified

Professional+Internet), 1,099
MCP+Site Building certification requirements, 1,101
MCP+Site Building (Microsoft Certified

Professional+Site Building), 1,099
MCSD (Microsoft Certified Solution Developer), 1,100
MCSE (Microsoft Certified Systems Engineer), 1,099
MCSE+Internet (Microsoft Certified Systems

Engineer+Internet), 1,100
MCT (Microsoft Certified Trainer), 1,100
MDI applications, 248-249
memory forms, 176-177

loading forms from, 249
menu bars, 80
Menu Editor, 80-83
menus, 81-90

Active Document, 712-714
design considerations, 716

merging
file versions, 65
Help menus with container applications, 714

messages, 595
meta-learning, 1,041
methods, 276

Active Document, 709-712
ActiveX controls

Alarm, 625
CanPropertyChange, 647

Class modules, 523-524
Class objects, 539
classifications, 532-533

constituent controls, 641
context-sensitive Help, 274
Controls Collection, 162-163, 195-197
database transaction, 405-407
Debug.Assert, 871
forms, 247-250
ImageList control, 131-133
ListBox control, 641
ListView control, 142-144
n-tier application components, 31
objects, 461-462
PopupMenu, 85-86, 88
Property Bag, 634-638
ReadProperty (Active Document), 696
ToolBar control, 151
TreeView control, 135-137
ViewPort, 704
WriteProperty (Active Document), 697

Microsoft
Active Document future, 688
ActiveX

development, 514
OLE precursor, 449

COM specifications in ActiveX standard, 445
Excel, 458
Internet Explorer, 687
Office Binder, 687
Office Suite COM components, 451
OLE development, 514

Microsoft Training and Certification Web site, 1,100
Microsoft Transaction Server, see MTS
Microsoft Windows Common Controls Library 6.0, 128
mid function, 1,136-1,137
minimal installation, MTS, 742
MidWidth property (Active Document), 699-700
menu prefix (menus), 82
modeless forms, 715-716
models

ADO (ActiveX Data Objects), 306-307
ADO data-access, 378-398
n-tier encapsulation, 25
VB Enterprise Development, 20-28

36 002-8 index 3/1/99 8:57 AM Page 1189

1190 INDEX

modifying menu appearances, 84-85
module scope, Watch expressions, 883
module variables, 882

Watch expressions, 886
modules, debugging, 853
monikers, naming and binding services (COM), 449
monitoring array values, see Watch expressions
mouse

Button parameter, 86
buttons, 86-87
Click events in controls, 105-106
DblClick events in controls, 106
Mouse events in controls, 108-109
MouseDown events in controls, 106-108
MouseMove events in controls, 109
MouseUp events in controls, 106-108

Mouse button, 105
mouse events

in controls, 108-109
debugging, 880

MouseDown event procedures, testing, 106-108
MouseUp event procedures, 86-87, 106-108

testing, 107
Move method, navigating Recordsets, 344
MoveComplete event, 351

ADO Data Control, 329
moving applications, 27-28
MTS (Microsoft Transaction Server), 739-754, 1,010

client packages, 770, 789
components

authorization checking, 785-786
calling from VB clients, 768-769
client computer configuration, 1,011
client configuration, 789-790
configuring from VB clients, 768-772
designing, 1,026
developing, 772-773
in-process, 768
Library packages, 773
multiple interfaces, 785
out-of-process, 768
package additions, 788

package installation, 769-770
role assignments, 784-785, 792
Server packages, 773
transaction properties, 777-780
transactional options, 790

exam objectives, 765
Explorer

packages, 750-757
functions, 765

objects, 780
packages

component additions, 775-777
roles, 792
runtime environment, 773-775
security, 781-784
server computers, 1,010
stateful objects, 774

multidimensional arrays, 1,140-1,141
MultiLine property, 101
multiple arguments, 1,149
multiple instances, 533-534
multiple project setup, 904-905
multiple UserDocument objects, Active Document,

719-722
multitier applications, 15

data access components, 1,009
see also n-tier

MultiUse instancing, COM components, 548

N
n-tier

applications, 27-32
models, 25

Name property, 104
Class modules, 521-522
CommandButtons, 95-96

named arguments, passing to General procedures,
1,150-1,151

names of controls, changing, 104-105
naming

binding service, 449
event procedures, 1,157-1,158

36 002-8 index 3/1/99 8:57 AM Page 1190

INDEX 1191

menus, 82
packages with MTS Explorer, 752-753

native code
compiling, 928-940
differences from P-code, 920
machine code, 921

native-language compiler, 919
navigating

between DHTML pages, 821-822
container applications, 718-719
documents, 716-728
object models, 718
Recordsets, 344-345
user services, 1,011-1,012

NegotiatePosition property (Active Document),
713-714

nested database transactions, 406-407
networks

applications, 1,036
deploying programs, 990-999

New keyword, objects, 455-458
no optimization, native code, 931
NodeClick event (TreeView control), 139
nodes (TreeView control), 134-136
Nodes property (TreeView control), 138
non-intrinsic controls, 165-167
nonstring data types, string concatenation, 1,133-1,134
Now keyword, Date data type, 1,128
Number property, Err object, 482
numeric data types

automatic string value conversion, 1,132-1,133
Currency, 1,126
Optimize project, 936

O
OBJ file extension, 921
Object Browser, 452-455

COM components, 513
object files, compiled programs, 921
Object Library, 452

object models
COM components, 519-520
container applications, 718

ObjectEvent procedure, declaring, 165-167
objects

ADO (ActiveX Data Objects), 305
binding to Data Environment objects, 313-314
Command, 334-351
Connection, 307-312, 330-334
cursors, 400-404
Data Control, 318-356
data-access models, 378-398
data-binding tools, 308-317
Errors collection, 357
object model, 306-307
OLE DB data providers, 305
Recordset, 307

Ambient, 621-623
business

COM components, 518
development model logical designs, 21-22
identifying, 22

callbacks, 573-574
collections, 533-534
COM components, 453-455
component classes, 455-456
creatable, 460
creating CreateObject function, 469-470
Debug, 865
declarations, 455-456
declaring, 538-539
Dependent, 460
dependent class, 534
dependent collection class, 534-535
Err, 481
events, 540-541
exposed, 451
Extender, 623
GlobalSingleUse instancing, 547-548
hierarchy, 460-461, 513
instances, 463
instantiating, 538

CreateObject function, 458-459

36 002-8 index 3/1/99 8:57 AM Page 1191

1192 INDEX

late bound variables, 468-469
management service, 449
methods, 461-462, 539
MTS

calling, 780
context, 774

multiple instances, 533-534
Parent class, 537
persistence, 449
polymorphism, 561-563
properties, 461-462, 539
Public, 460
Public Not Creatable, 460
Recordsets, 352-356
reference counting, 449
references

Object Library, 452
obtaining with GetObject function, 470

sharing, 548
SingleUse instancing, 546-547
variables, 456-468
WebClass (IIS), 803-811

obtaining object references, 470
OCX files

ActiveX controls, 613
file extension (ActiveX controls), 128

ODBC Resource Dispenser, 774-775
OLE (Object Linking and Embedding), 449

ActiveX development, 514-515
OLE DB, data providers, 305
On Error Resume Next statement, 500
On Error statement, 489-495
online help

applications, 265-287
context-sensitive, 271-275
desktop/distributed applications, 1,020-1,021

operating systems, Microsoft Active Document
concept, 688

operators, 946
Optimize project, 932-936

Timer() function, 957
optimizing

compiler, 919
native code, 929-940

Option Base statement, array default lower
bounds, 1,140

Option Pack, 741-742
optional arguments, passing to General procedures,

1,151-1,152
Order By clauses, SQL Select statements, 411
out-of-process server components, 515-516

forms, 581
server classes, 549
threads, 542-544

outer joins, 1,032
outlines, 1,040
Overlay method (ImageList control), 132-133
overview of ActiveX controls, 612
Own relationships (business objects), 22

P
P-code, 919-927
Package and Deployment Wizard, 966-978

ActiveX DLL setup programs, 747-749
packages

Internet setup, 996
limiting usage, 781
MTS, 739-757

adding components, 788
role-based security, 1,027

role creation, 791-792
standard setup, 996
System security, 744

Page Designer (DHTML), 818-825
Paint event, user-drawn ActiveX controls, 623
Panels Collection (StatusBar control), 153-156
ParamArray keyword, passing to General procedures,

1,152-1,153
parameters

ADO Data Control events, 328
BeginTransComplete transaction method, 407
Button, 86
Button as Integer, 107
events, 348-351

36 002-8 index 3/1/99 8:57 AM Page 1192

INDEX 1193

KeyPress event, 212-213
Process Tag event procedure, 811
QueryUnload event, 243-245
Shift testing keys, 87
Shift as Integer, 107

Parameters collection (Command ADO object), 307
Parent class, object collection, 533-534, 537
Parent property (TreeView control), 137
parsing string manipulation example, 1,137-1,138
passing error result code client applications, 550-551
PasswordChar property, 101
PathSeparator property (TreeView control), 138
pConnection As ADODB.Connection parameter, 408
PDM files, 969
performance

load balancing design implications, 33
logical design impact on physical design, 24

pError As ADODB.Error parameter, 408
persistence

ActiveX control properties, 631-636, 671-672
compiler constants, 951
control properties, 629
data source controls, 650

persistent properties, 706-729
persistent Recordsets, 356
physical design, 20

deriving, 1,008
Development model, 22-28

physical keystrokes, detecting, 216
Picture Box control versus newer ToolBar control,

147-148
Picture property (StatusBar control), 156
pinning earlier versions of files, 61-64
polymorphism, 563-567
pop-level menus, 81
pop-up menus, 80-89
PopupMenu method, 88
positioning menus, 713-714
practice exams, Top Score test engine (CD-ROM),

1,107-1,112
pre-exam preparation tips, 1,045

pre-testing study strategies, 1,041
predefined compiler constants, 947-948
preferences, compiler settings, 926
prefixes, programming Web classes, 811
preparation, exams, 1,039-1,047
Prepare/Execute Model, 1,030
preprocessor

directives, 943-948
expressions, 945

Print method, 866, 874
Private compiler constants, 951
private instancing, 545
Private keyword

methods, 532
module variables, 882

Private scope, Sub procedures, 1,156
private variables, declaring scope, 1,123-1,124
procedure-level variables, see local variables
procedures, 1,143

ADO, 317
calling passing arguments to General procedures, 1,147
debugging

Call Stack window, 888
Watch expressions, 853

error handling, 487
events

assigning code to controls, 103-110
changing control names, 104-105
naming, 1,157-1,158

executing Immediate window, 875-876
menus, 85
Mouse event, 105
MouseUp events, 86-87
properties, 525
Property, 629
stored, 384-399
Sub, 1,143-1,157
testing Immediate window, 875-876

processing form data, 1,015-1,017
processors, machine code, 921
ProcessTag event procedure code list, 811

36 002-8 index 3/1/99 8:57 AM Page 1193

1194 INDEX

profiles, user, 20
ProgID, locating, 163-164
programmatic security (MTS), 784
programming

ADO Data Control, 329-351
versus Data Environments, 318-319

COM components, 513-514
Web classes, 804-811
WebItems, 812-817
within Data Environment Designer, 314-317

programs
compiled, 921
debugging, 855-859
deploying, 987-999
error handling, 479-501
forcing errors in code, 499
interpreted, 921-922
removing from projects, 985
simulating errors in code, 499

Project Components dialog box, 128
Project Explorer, setting startup project, 903
project groups, 899-912
Project History Options dialog box, 62
Project menu commands

Add Class Module, 521
References, 452

Project Properties dialog box, 269, 805
declaring compiler constants, 950

projects
ActiveX controls, 670

UserControl container, 616-620
adding or removing from project groups, 900
adding to project groups, 910
Background Compilation switch, 941
building, 902
class modules, 1,027-1,029
Compile on Demand option, 941
compiling, 902

conditional compilation, 942
native code, 928-940
to P-code, 926-927

DateTime, multiple project setup, 905
DCOM components, registering, 986

debugging, Watch expressions, 849-850
implementing DCOM, 998
including ActiveX controls, 613
multiple setup, 904-905
Setup1, 985
startup, 902-903
testing ActiveX controls, 663-667
Visual SourceSafe, 46-64

properties
Active Document, 699-714
ActiveX controls

connecting to Property Pages, 658
connecting to standard Property Pages, 661
custom, 627-628
DataField, 645-646
Default values, 632
delegated, 630
editing complex properties, 660
flagging changes, 656
persistence, 629-636, 671-672
saving changes, 657

ADO Data Control setup, 322-323
Alignment, 102
AutoRedraw, 242
AutoSize, 103
BackColor, 100
BorderStyle, 102
Cancel, 99
Caption, 99-103
Class objects, 539
classifications, 532-533
CommandButtons, 92-103
components, 1,009
constituent controls, 643
context-sensitive Help, 271-275
controls, 94
data source controls, 648
Default, 100
Err object, 482-484
field-level validation, 219-220
form controls, 94
Forms Collection, 180

36 002-8 index 3/1/99 8:57 AM Page 1194

INDEX 1195

HelpFile, 270
HideSelection, 100
ImageList control, 133
Index, 89-90
instancing COM component classes, 544-545
keystroke event, 216-217
Label control, 102-103
Labels, 96-103
ListView control, 142-146
Locked, 101
menus, 83
modifying Immediate window, 875
MultiLine, 101
n-tier application components, 30-31
Name, 104

Class modules, 521-522
objects, 461-462
PasswordChar, 101
procedures, 525
Property Let/Get procedure, 526-528
public variables, 524-525
Recordset, 347-348
ScrollBars, 101
SelLength, 102
StatusBar control, 154-156
Style, 100
Text, 102
text boxes, 92-103
ToolBar control, 148-153
TreeView control, 137-138
UseMaskColor control, 133
UseMnemonic, 103
UserDocument.Parent, 693
UserMnemonic, 98
Validation, 224
Value, 100
ViewPort, 701-702
visible menus, 85
within code, 94-95
WordWrap, 103

Properties collection (Command ADO object), 307
Properties window, 93

Property Bag, 634-638
Property Get procedure, 630

implementing in Class modules, 524-525
Property Let procedure, 630
Property Let/Get procedure, 526-528
Property Let/Set procedure, 524
Property Pages, ActiveX controls, 652-672
Property Pages dialog box, 320

ImageList control, 129
ToolBar control, 148

Property procedures, defining custom control
properties, 629

Property Set procedure, 630
PropertyChanged method, 634-636
PropertyPage designer, 652
PropertyPages dialog box, 322
proposed system states, usage scenarios, 21
providers, 305
pseudocode, 923
Public

but Not creatable objects, 460
compiler constants, 951-953
keywords, 532
objects, 460
methods, 523-524
scope, 1,156-1,157
variables

declaring scope, 1,124
defining custom control properties, 629
properties, 524-525

publishing
Active Document Web pages, 725-730
COM components, 555-559

Q-R
queries

data values, 874
stored procedures, 385-387

QueryUnload event, 240-248
question types, MCP exams, 1,044-1,047

36 002-8 index 3/1/99 8:57 AM Page 1195

1196 INDEX

Quick Watch, displaying expression values, 863
quitting

Break mode, 859
project groups, 901

Raise method, Err object, 485-486
RaiseEvent statement, ActiveX controls, 626
raising

events, 528-530
hard errors, 551-552

read allowances, Property Let/Get procedure, 526-527
reading record contents into controls, 339
ReadProperties event

Active Document, 696
custom controls, 631
method, 634-638

Real Speed tests, Optimize project, 932-933
recognizing terms, study tips, 1,040
RecordChangeComplete event (ADO Data

Control), 329
records

adding ADO Data Control Setup, 325-326
existing, 326-327
locating, 346
Recordsets, 342-343
returning to applications, 396-399
updating Recordsets, 340
user changes, 341
writing controls to, 340

RecordsetChangeComplete event (ADO Data
Control), 329

Recordsets, 323-328
ADO Command objects, 335-348
cursors, 400,-404
disconnected, 352-353
dynamic, 354-355
persistent, 356
SQL statements, 408-413

RecordSource dialog box, 322
reference counting objects, COM, 449
references

COM components, 452
dialog box, 453
Object Library, 452
objects, 470

References command (Project menu), 452
referencing

controls, 170-171
item numbers, 180-181

Regedit utility, ProgID, 163-164
registered components, MTS Component wizard,

776-777
registering

COM components, 579-581
DCOM components, 986, 1,035

registers, optimizing, 938
releasing objects, 463
remote support files (VBR), 987
Remove Array Bounds Checks option, native code, 939
Remove Floating-Point Error Checks option,

native code, 940
Remove Integer Overflow Checks option,

native code, 939
Remove method

Controls Collection, 162-163, 195-197
dependent collection class, 536-537
ImageList control, 131
ListView control, 142-143
ToolBar control, 151
TreeView control, 135-136

Remove Safe Pentium FDIV Checks option,
native code, 940

removing
controls, 168-169
projects from project groups, 900
runtime menu items, 91

renaming packages with MTS Explorer, 752-753
repository databases, VCMs, 553
requirements

case studies
data entry forms, 225
form Load event procedures, 252

certification, 1,099-1,100
resetting data entry fields, Controls Collection,

158-159, 190
Resize event, 639
resizing

arrays, 1,141-1,142
constituent controls, 639

36 002-8 index 3/1/99 8:57 AM Page 1196

INDEX 1197

Resource Dispenser functions, 774-775
Response object, 801
restoring Visual SourceSafe databases with

Administrator, 48-49
Resume Next clause, On Error statement, 489
return values

function, 1,155-1,156
General procedure functions, 1,146

returning error results, 590-591
reusing COM components, 559-561
right function, string manipulation, 1,136
right joins, 1,032
right-mouse menus, 80-89
role-based security, 753-754

MTS, 781
packages, 1,027

roles, MTS, 782-792
RollbackTrans method, 405
RollbackTransComplete event, 333
Root property (TreeView control), 138
round-robin threading, 543
routines, 487-490
runtime, 86-89

environment (MTS), 774-775
features, 615
menus, 89-91

S
Save dialog box, 806
saving

project groups, 901
property changes, 657

scalability, 27-33
Scope parameter, ADO Data Control Error event, 328
scope

compiler constants, 951
Sub procedures, 1,156-1,157
variable, 1,117-1,124
Watch expressions, 881-890

scripting command (COM automation), 448

scripts, Package and Deployment, 969
Scroll event (Active Document), 700-703
ScrollBars property, 101

Active Document, 699-700
scrolling Active Documents, 698-701
searchDirection argument, Find method, 346
searching

COM component information, 453, 455
Controls Collection, 157

security
logical design impact on physical design, 28
MTS, 783-786
packages, 753-754

Select statements (SQL), 409-413
SelectedControls collection, ActiveX control Property

Pages, 654-655
selecting

COM components, 583-584
threading model, 1,026

selection, 1,158-1,160
SelectionChanged event, ActiveX control Property

Pages, 655
SelLength property, 102
SelText property, 101
sending

messages, 595
user messages, 581

SendTags parameter (SendTags event procedure), 811
separator bars in menus, 83
server-side cursors, 402, 1,031
servers

Callback objects, manipulating, 577-579
classes, 549
component applications, 517-518
configuring DCOM, 986
DCOM, 1,036
errors, 549
load balancing, 32-33
MTS configuration, 1,010

service classes, COM components, 544-545
Set Next command (Debug menu), 859
Set Next Statement command (Debug menu), 858

36 002-8 index 3/1/99 8:57 AM Page 1197

1198 INDEX

settings
custom properties, 148
references, 452
return values, 1,146
threading model, 590
transaction properties, 777-780
Watch expressions, 1,033

setting up ADO Data Controls, 319-329
Setup & Deployment wizard, COM components,

579-581
setup packages, 966-996
SETUP.EXE

installing VB applications, 983
setup routines, 978

SETUP.LST file, 979-984
Setup1 project, 985
SetViewPort method (Active Document), 704
Share From dialog box, 63
Shared Property Manager (ODBC Resource

Dispenser), 775
sharing, objects, 548
Shift arguments, 87
Shift as Integer parameter, 107
Shift parameter, 214
shifted keystrokes, 215
shortcut key combinations, 83
Show event (Active Document), 695
Show method, 247-250
Show Next Statement command (Debug menu), 859
Show statement (forms), 176-177
showing forms, 176-177
ShowWhatsThis method, 276
siblings (TreeView control), 134
signpost debug messages, 866
SimpleText property (StatusBar control), 154
simulating errors in code, 499
simulation questions, 1,044-1,047
Simulator application, 1,115
SingleUse instancing, 546-547
siting control instances on containers, 628
sizing graphics, 129

SkipRows argument, Find method, 346
small code optimization, native code, 931
Smallcon property (ListView control), 144
Sorted property (TreeView control), 138
SortKey property (ListView control), 145-146
source code, see listings
Source parameter, ADO Data Control Error event, 328
Source property, Err object, 483
source-codes, 1,009-1,010

branching Visual SourceSafe projects, 60-61
sharing Visual SourceSafe projects, 59
version control, 45-65

Spc() function, Debug object, 867
specifications

case studies, 253
data entry forms, 225-226

speed, logical design impact on physical design, 24
SQL statements, 390-408

writing data joins, 1,032
writing for data retrieval, 1,031

stacks, passing arguments to General procedures, 1,147
standalone ActiveX controls, 613
standard Property Pages, ActiveX controls, 661
standard setup packages, 969-996
standards, stored procedures, 385
Start argument, Find method, 346
Start events, custom (programming WebClasses), 807
starting Pack and Deployment wizard, 968
startup code, compiled programs, 921
Startup objects, loading, 173-174
startup projects, 902-910
stateful objects (MTS), 774
statements

form, 247-248
Load, 89
SQL, 408-413
stored procedures, 390-396
Unload, 89

static
arrays, 1,139
cursors, 403, 1,031
load balancing, 32
variables, 1,120-1,123

StatusBar control

36 002-8 index 3/1/99 8:57 AM Page 1198

INDEX 1199

creating, 189
functions, 153
overview, 127
Panels Collection, 153-156
Properties, 153-156

Step Into command (Debug menu), 857
Step Out command (Debug menu), 858
Step Over command (Debug menu), 857
Step to Cursor command (Debug menu), 858
stepping through code, 856

debugging ActiveX controls, 907
stopping asynchronous downloads (CancelAsyncRead

method), 710
stored procedures, 384-399
storing

forms, 177-179
information in Date variables (Date/Time functions),

1,128-1,129
multiple instances, 533-534
properties, 526

String data types, 1,126-1,127
automatic numeric value conversion, 1,133

string manipulation test, 934
structures

Controls, 1,158-1,166
HTML Help files, 276-277
looping, 1,161-1,164
While…Wend constructs, 1,165
With…End With constructs, 1,164-1,165

Study Cards application, 1,112-1,113
studying

strategies, 512
tips, 1,039-1,041

Style property, 100
StatusBar control, 153-156
ToolBar control, 150

Styles, DHTML Web page elements, 824-825
sub-level menus, 81
sub-menus, 81-82
Sub procedures, 1,143

callings, 1,154-1,156
Event, 1,143-1,144
General, 1,144-1,153
scope, 1,156-1,157

SubItems property (ListView control), 146

subobjects, object hierarchy, 460-461
subroutines (procedures), 1,143

event naming, 1,157-1,158
Sub, 1,143-1,157

substitution tags, 809-811
suggested reading, 1,167-1,168
Support folder, 974
Symbolic Debug Info option, 932
syntax

compiler constants, 949
preprocessor directives, 943
properties within code, 94

T
Tab Stop property, Labels, 98
Tab() function, Debug object, 867
TabIndex property, 98
tables, 412-413
TabStop properties, 98
TagContents parameter (ProcessTag event

procedure), 811
taking exams, 1,046
templates

design-time menus, 89
HTML, 804-809
Index property, 89

Terminate events, 240-246
Active Document, 698
class modules, 530-531
custom controls, 632

terminating
General procedures, 1,153-1,154
loops, 1,164

terminology, 81-82
terms, 1,040
test projects, 663-667
testing

ActiveX controls, 661-670
applications (Active Document), 722-724
procedures, 875-876
Shift mask in MouseDown or MouseUp event

procedures, 107
text, HTML, 805-807

36 002-8 index 3/1/99 8:57 AM Page 1199

1200 INDEX

text boxes, 92-103
Text property, 102
TextBoxes, 96-99
threading COM components, 584-585
threads, 541-543

models
configuration, 590
selecting, 1,026

tier integrity, running processes without cursors, 396
timeliness, logical design impact on physical design, 24
Timer() function, 957
tokenizing code, 924
ToolBar controls, 148-152
toolbars, creating, 188-189
Toolbox, ActiveX controls

adding, 128
ToolBoxBitMap property, ActiveX controls, 619
Tools menu, Menu Editor, 82
ToolTipText property, context-sensitive Help, 272-273
Top property, 97
Top Score test engine, 1,109-1,115
top-level menus, 81-82
Topic files, 281-290
Topic IDs, 283-290
transaction properties, 777-791
TransactionLevelAsLong parameter, 407
transactions, database, 404-406

ADO Connection object, 407
BeginTrans method, 405
BeginTransComplete method, 407
CommitTrans method, 405
nested, 406-407
RollbackTrans method, 405

trappable errors, 492
trapping errors, 906
TreeView control

basic operations, 187-188
children, 134
events, 139
information hierarchy, 134
methods, 135-137
nodes, 134-136
properties, 137-138

TypeName function, 693

checking variable data types, 1,131-1,132
typing General procedures (in Code window), 1,145

U
Ubound() function, 939
Unload events, 240-248
Unload statements, 89, 247-248
unloading, forms, 173-192
UnloadMode parameter, 244
unregistering, 579-595
UPDATE statement, 392
updates to programs, deploying, 994
updating

applications, 1,037
MTS components, 769-770
records, 340

Use Connection String source connection option,
ADO Data Control setup, 320

Use relationships (business objects), 22
UseMaskColor property (ImageList control), 133
UseMnemonic property, 103
user-defined types, 861
user-drawn ActiveX controls, 614-623
user-interface tier (COM components), 518-519
UserControl container, 616-634
UserDocument objects

configuring (Active Document applications), 689
multiple, 719-722

UserDocument.Parent property, 693
UserMnemonic property, 98
UserMode property, 622
users

mapping, 783-784
messages, sending (COM components), 581, 595
MTS packages, 781
online help, 265-292
performance issues, 24
profiles, 20
records changes, 341
roles, 792

36 002-8 index 3/1/99 8:57 AM Page 1200

INDEX 1201

setup and maintenance administrator, 51
validating input 209-210

utilities, SETUP.EXE, 983

V
Validate event, 218-219
validating

field-levels, 218-222
properties, 224
user input, 209-210, 1,015

Value property, 100
values, Watch expressions, 859
variables, 1,117

arrays, 1,139-1,142
Boolean types, 1,129-1,130
collections, 1,142
data types, 1,125-1,136
displaying current values, 878-879
local, 881
module, 882
objects, 456-468
scope, 1,117-1,124
strings, 1,136-1,138
Watch expressions, 881-886

Variant data types, 1,130-1,131
variants, preprocessor constants, 954
VBObjectExtender, non-intrinsic controls, 165-167
VBP file extension, 900
VBR files, remote support files, 987
VBScript, 801
VCM (Visual Component Manager), 552-561
verifying loaded forms, 182-183
version control, source-code, 45-65

establishing, 1,009-1,010
version numbers, Visual SourceSafe projects, 58
ViewPort, 701-704
View property (ListView control), 142
viewing information, 513
views, runtime, 86

visibility, forms, 249-250
Visible property

CommandButtons, 96
Labels, 96

Visual Basic toolbar, adding, 553-554
Visual Component Manager, 1,029
Visual SourceSafe, 45-65
VScrollSmallChange property (Active Document), 700
vtable binding (COM components), 585-586

W
Watch expressions, 850-851

active context, 852
arrays, 860
debugging code, 849-850
deleting, 850
scope, 881-890
setting, 1,033
user-defined types, 861
variables, 885
viewing values, 859

Watch variables, scope of, 1,034-1,035
Watch windows, viewing Watch expression values, 859
Web applications, deploying, 1,036
Web browsers, displaying, 1,022
Web pages

Active Document, 725-730
ASP (Active Server Pages), 799
DHTML, 818-825

Page Designer, 1,018-1,019
dynamic, 1,017-1,018
HTML (Hypertext Markup Language), 799
IIS WebClass applications, 799-817

Web sites, 1,168
WebClass applications, 799-817
WebItems, 804-817
WhatsThis source files, HTML Help Workshop,

289-292
WhatsThisHelp files, 291-292

36 002-8 index 3/1/99 8:57 AM Page 1201

1202 INDEX

Where clauses, SQL Select statements, 410-412
While…Wend constructs, 1,165
Width property, 97
WillChangeField event

ADO Data Control, 329
Recordsets, 349-350

WillChangeRecord events, 329-350
WillConnect event, ADO Connection object, 332
WillExecute event, ADO Connection object, 332-333
WillMove event

ADO Data Control, 329
Recordsets, 349

Win16
compiler constant, 947
threads, 541-542

Win32
compiler constant, 947
threads, 541-542

windows
Code, 103-104
Immediate, 864
Locals, see Locals window
menu bars, 80
Properties, 93
Watch, 848, 859

Windows NT 3.51, MCSE certification, 1,101
Windows NT 4.0, MCSE certification, 1,101-1,102
Windows Registry

COM components, 513
controls, 163-164

WinHelp files, 267-268

With…End With constructs, 1,164-1,165
WithEvents keyword

intrinsic controls, 164-165
limitations, 464-465

WordWrap property, 103
working copies, 57
working folders, 55
workloads, see load balancing
workstations, Visual SourceSafe Explorer, 46
wrapper method, writing, 535-537
wrapper routines, 570-572
write allowances, 526
WriteProperties events, 632

Active Document, 697
method, 634-636

writing
Active Document application, 718-719
controls to records, 340
persistent properties, 728-729
SQL statements, 1,031-1,032

WWW (World Wide Web), deploying programs, 992
see also Web pages

X-Z
X as Single parameter, 107

Y as Single parameter, 107

36 002-8 index 3/1/99 8:57 AM Page 1202

NEW RIDERS CERTIF ICAT ION TITLES

MCSE Training Guide:
Networking Essentials,
Second Edition

1-56205-919-X,
$49.99, 9/98

MCSE Training Guide:
Windows NT Server 4,
Second Edition

1-56205-916-5,
$49.99, 9/98

MCSE Training Guide:
Windows NT Server 4
Enterprise, Second
Edition

1-56205-917-3,
$49.99, 9/98

MCSE Training Guide:
Windows NT
Workstation 4,
Second Edition

1-56205-918-1,
$49.99, 9/98

MCSE Training Guide:
Windows 98

1-56205-890-8,
$49.99, Q2/99

MCSE Training Guide:
TCP/IP, Second
Edition

1-56205-920-3,
$49.99, 10/98

MCSE Training Guide:
SQL Server 7
Administration

0-7357-0003-6,
$49.99, Q2/99

MCSE Training Guide:
SQL Server 7 Database
Design

0-7357-0004-4,
$49.99, Q2/99

MCSD Training Guide:
Solution Architectures

0-7357-0026-5,
$49.99, Q2/99

MCSD Training Guide:
Visual Basic 6, Exams

0-7357-0002-8,
$59.99, Q3/99

A+ Certification
Training Guide

1-56205-896-7,
$49.99, Q4/99

TRAINING GUIDES
FIRST ED I T IONS

MCSE Training Guide: Systems Management
Server 1.2, 1-56205-748-0

MCSE Training Guide: SQL Server 6.5
Administration, 1-56205-726-X

MCSE Training Guide: SQL Server 6.5
Design and Implementation, 1-56205-830-4

MCSE Training Guide: Windows 95, 70-064
Exam, 1-56205-880-0

MCSE Training Guide: Exchange Server 5,
1-56205-824-X

MCSE Training Guide: Internet Explorer 4,
1-56205-889-4

MCSE Training Guide: Microsoft Exchange
Server 5.5, 1-56205-899-1

MCSE Training Guide: IIS 4, 1-56205-823-1

MCSD Training Guide: Visual Basic 5,
1-56205-850-9

MCSD Training Guide: Microsoft Access,
1-56205-771-5

TRAINING GUIDES
NE X T G EN ER AT I O N TRA IN I N G

37 002-8 BM-new 3/1/99 8:58 AM Page 1203

NEW RIDERS CERTIF ICAT ION TITLES

FAST TRACKS

The Accelerated Path to
Certification Success

Fast Tracks provide an easy way to
review the key elements of each
certification technology without
being bogged down with elementary-
level information.

These guides are perfect for when
you already have real-world, hands-
on experience. They’re the ideal
enhancement to training courses,
test simulators, and comprehensive
training guides.

No fluff—imply what you really
need to pass the exam!

MCSE Fast Track:
Networking Essentials
1-56205-939-4,
$19.99, 9/98

MCSE Fast Track:
Windows 98
0-7357-0016-8,
$19.99, 12/98

MCSE Fast Track:
TCP/IP
1-56205-937-8,
$19.99, 9/98

MCSE Fast Track:
Windows NT Server 4
1-56205-935-1,
$19.99, 9/98

MCSE Fast Track: Windows
NT Server 4 Enterprise
1-56205-940-8,
$19.99, 9/98

MCSE Fast Track: Windows
NT Workstation 4
1-56205-938-6,
$19.99, 9/98

A+ Fast Track
0-7357-0028-1,
$29.99, 3/99

MCSE Fast Track: Internet
Information Server 4
1-56205-936-X,
$19.99, 9/98

MCSE Fast Track: SQL
Server 7 Administration
0-7357-0041-9,
$19.99, Q2/98

MCSE Fast Track: SQL
Server 7 Database Design
0-7357-0040-0,
$19.99, Q2/98

MCSD Fast Track: Visual
Basic 6, Exam 70-175
0-7357-0018-4,
$19.99, 12/98

MCSD Fast Track: Visual
Basic 6, Exam 70-176
0-7357-0019-2,
$19.99, 12/98

MCSD Fast Track:
Solution Architectures
0-7357-0029-X,
$19.99, Q2/99

37 002-8 BM-new 3/1/99 8:59 AM Page 1204

TESTPREPS
PRACT I C E , CHECK , PASS !

Questions. Questions. And more ques-
tions. That’s what you’ll find in our
New Riders TestPreps. They’re great
practice books when you reach the
final stage of studying for the exam.
We recommend them as supplements
to our Training Guides.

What makes these study tools unique is
that the questions are the primary
focus of each book. All the text in
these books support and explain the
answers to the questions.

✓ Scenario-based questions
challenge your experience.

✓ Multiple-choice questions
prep you for the exam.

✓ Fact-based questions test your
product knowledge.

✓ Exam strategies assist you in
test preparation.

✓ Complete yet concise
explanations of answers make
for better retention.

✓ Two practice exams prepare
you for the real thing.

✓ Fast Facts offer you everything
you need to review in the testing
center parking lot.

Practice, practice, practice—pass
with New Riders TestPreps!

MCSE TestPrep:
Networking Essentials,
Second Edition

0-7357-0010-9,
$19.99, 12/98

MCSE TestPrep:
Windows 98

1-56205-922-X,
$19.99, 11/98

MCSE TestPrep:
Windows 95, Second
Edition

0-7357-0011-7,
$29.99, 12/98

MCSE TestPrep:
Windows NT Server 4,
Second Edition

0-7357-0012-5,
$19.99, 12/98

MCSE TestPrep:
Windows NT Server 4
Enterprise, Second
Edition

0-7357-0009-5,
$19.99, 11/98

MCSE TestPrep:
Windows NT
Workstation 4,
Second Edition

0-7357-0008-7,
$19.99, 11/98

MCSE TestPrep:
TCP/IP, Second
Edition

0-7357-0025-7,
$19.99, 12/98

A+ Certification
TestPrep

1-56205-892-4,
$19.99, 12/98

MCSD TestPrep:
Visual Basic 6 Exams

0-7357-0032X,
$29.99, 1/99

TEST PREPS
FIRST EDITIONS

MCSE TestPrep: SQL Server 6.5
Administration, 0-7897-1597-X

MCSE TestPrep: SQL Server 6.5 Design and
Implementation, 1-56205-915-7

MCSE TestPrep: Windows 95 70-64 Exam,
0-7897-1609-7

MCSE TestPrep: Internet Explorer 4,
0-7897-1654-2

MCSE TestPrep: Exchange Server 5.5,
0-7897-1611-9

MCSE TestPrep: IIS 4.0, 0-7897-1610-0

NEW RIDERS CERTIF ICAT ION TITLES

37 002-8 BM-new 3/1/99 8:59 AM Page 1205

H O W T O C O N TA C T U S

IF YOU NEED T H E LAT EST U PDAT ES ON A
T I T LE THAT YO U ’VE PU R C H ASED :
1) Visit our Web site at www.newriders.com.

2) Click on the Product Support link, and enter your
book’s ISBN number, which is located on the back
cover in the bottom right-hand corner.

3) There you’ll find available updates for your title.

I F YOU AR E H AV I N G TECHN I C AL
PROBLE MS W IT H THE BOOK O R
T H E CD TH AT I S I N C LUDED :
1) Check the book’s information page on our Web site
according to the instructions listed above, or

2) Email us at support@mcp.com, or

3) Fax us at (317) 817-7488 attn: Tech Support.

I F YOU HAVE C O MMEN TS ABOUT ANY OF
O U R CE RT I F I C AT I O N PRO D U C TS THAT ARE
N O N -SUPPORT R ELAT ED :
1) Email us at certification@mcp.com, or

2) Write to us at New Riders, 201 W. 103rd St.,
Indianapolis, IN 46290-1097, or

3) Fax us at (317) 581-4663.

I F YOU AR E O U TS IDE T H E U N I T ED STATES
A N D NE ED TO F IND A D ISTR I B U TOR IN
YOU R AREA :
Please contact our international department at
international@mcp.com.

I F YOU W ISH TO PREV IEW ANY OF OUR
CERT I F ICAT ION BOOKS FOR CL AS S ROOM
US E :
Email us at pr@mcp.com. Your message should include
your name, title, training company or school, depart-
ment, address, phone number, office days/hours, text in
use, and enrollment. Send these details along with your
request for desk/examination copies and/or additional
information.

37 002-8 BM-new 3/1/99 8:59 AM Page 1206

W E W A N T T O K N O W W H AT YO U T H I N K

Which certification exams have you already passed? ________

Which certification exams do you plan to take? ___________

What influenced your purchase of this book?
❑ Recommendation ❑ Cover Design
❑ Table of Contents ❑ Index
❑ Magazine Review ❑ Advertisement
❑ Reputation of New Riders ❑ Author Name

How would you rate the contents of this book?
❑ Excellent ❑ Very Good
❑ Good ❑ Fair
❑ Below Average ❑ Poor

To better serve you, we would like your opinion on the content and quality of this book. Please complete this card
and mail it to us or fax it to 317-581-4663.

Name ___

Address __

City _______________________ State ________ Zip __

Phone______________________ Email Address ___

Occupation___

What other types of certification products will you buy/have
you bought to help you prepare for the exam?
❑ Quick reference books ❑ Testing software
❑ Study guides ❑ Other

What do you like most about this book? Check all that apply.
❑ Content ❑ Writing Style
❑ Accuracy ❑ Examples
❑ Listings ❑ Design
❑ Index ❑ Page Count
❑ Price ❑ Illustrations

What do you like least about this book? Check all that apply.
❑ Content ❑ Writing Style
❑ Accuracy ❑ Examples
❑ Listings ❑ Design
❑ Index ❑ Page Count
❑ Price ❑ Illustrations

What would be a useful follow-up book to this one for you?__
Where did you purchase this book? ___
Can you name a similar book that you like better than this one, or one that is as good? Why?________________________________
__
__

How many New Riders books do you own? __
What are your favorite certification or general computer book titles? ___
__

What other titles would you like to see us develop?___
__

Any comments for us? ___
__
__

MCSD TRA IN ING GU IDE : V I SUAL BAS IC 6 EXAMS 0 -7 3 5 7 -0 0 0 2 - 8

37 002-8 BM-new 3/1/99 8:59 AM Page 1207

By opening this package, you are agreeing to be bound by the following agreement:

Some of the software included with this product may be copyrighted, in which case all rights are reserved by the
respective copyright holder. You are licensed to use software copyrighted by the publisher and its licensors on a sin-
gle computer. You may copy and/or modify the software as needed to facilitate your use of it on a single computer.
Making copies of the software for any other purpose is a violation of the United States copyright laws.

This software is sold as is without warranty of any kind, either expressed or implied, including but not limited to
the implied warranties of merchantability and fitness for a particular purpose. Neither the publisher nor its dealers
or distributors assumes any liability for any alleged or actual damages arising from the use of this program. (Some
states do not allow for the exclusion of implied warranties, so the exclusion may not apply to you.)

002-8 IBC 3/1/99 10:36 AM Page 1

The Score Report displays your score for each objective cate-
gory, helping you to define which objectives you need to study
more. It also shows you what score you need to pass and
your total score.

Study Cards allow you to test yourself
and receive immediate feedback and an
answer explanation. Link to the text for

more in-depth explanations.

Practice Exams simulate the actual Microsoft exams. Option
buttons and check boxes indicate whether there is one or more
than one correct answer. All test questions are presented ran-
domly to create a unique exam each time you practice—the
ideal way to prepare.

The Item Review shows you the
answers you’ve already selected and

the questions you need to revisit before
grading the exam.

NEW RIDERS TOP SCORE TEST SIMULATION SOFTWARE SUITE

002-8 IBC 3/1/99 10:36 AM Page 2

To use New Riders Top Score
software to its fullest potential:

. Take a Practice Exam to become familiar
with the exam format and to identify your
strong and weak points. Print out the Score
Report as a reference for the topics you need
to study more.

. Use Study Cards for in-depth practice on
specific objectives. Select an answer, check
yourself immediately, and find out why the
correct answer is right. You can also link
back to the appropriate text within the
Training Guide for further explanation.

. When you feel like you’re ready for the actu-
al exam, try the Flash Cards program first.
You can’t view the possible answers, so you
need to know everything by memory. If you
need a refresher, click on the Feedback but-
ton to see the correct answer or link directly
to the relevant chapter within the Training
Guide.

. Finally, before you take the exam, check
yourself again with a Top Score Practice
Exam. You’ll be able to see what areas you
may need to review again before the test.

Customizable—Take
an entire exam or

select only the
objectives and num-
ber of questions you

want to study.

Flash Cards don’t give you the answers—you must answer
each question in your own words.

Minimum System Requirements:

486/66 or higher, Pentium recommended

Windows 95 or Windows NT 4 (or later)

16MB RAM

1MB hard disk space

CD-ROM drive

256-color VGA/Super VGA video adapter

Now Included!
Practice exam-style interactive testing with the new
Windows NT Workstation 4 Simulator! Step through
basic tasks in Windows NT with the new simulator creat-
ed for New Riders. Practice with beginner-, intermediate-,
and advanced-level tasks. Test yourself without jeopar-
dizing a live system.

002-8 IBC 3/1/99 10:36 AM Page 3

002-8 IBC 3/1/99 10:36 AM Page 4

VISUAL BASIC 6
Exams

MCSD

T R A I N I N G G U I D E

Exams: 70-175
and 70-176

Howard Hawhee, Senior Author
Corby Jordan

Richard Hundhausen
Felipe Martins

Thomas Moore

00 002-8 FM 3/1/99 7:40 AM Page i

MCSD Training Guide: Visual Basic 6 Exams
Copyright® 1999 by New Riders Publishing

All rights reserved. No part of this book shall be reproduced, stored in
a retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with respect to the
use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of the information
contained herein.

International Standard Book Number: 0-7357-0002-8

Library of Congress Catalog Card Number: 98-83085

Printed in the United States of America

First Printing: March, 1999

03 02 01 00 99 7 6 5 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. New Riders cannot
attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accu-
rate as possible, but no warranty or fitness is implied. The information
provided is on an “as is” basis. The authors and the publisher shall have
neither liability nor responsibility to any person or entity with respect
to any loss or damages arising from the information contained in this
book or from the use of the CD or programs accompanying it.

Microsoft is a registered trademark of Microsoft Corporation in the
United States and other countries. New Riders is an independent enti-
ty from Microsoft Corporation, and not affiliated with Microsoft
Corporation in any manner. This publication may be used in assisting
students to prepare for a Microsoft Certified Professional Exam.
Neither Microsoft Corporation, its designated review company, nor
New Riders warrants that use of this publication will ensure passing
the relevant Exam.

EXECUTIVE EDITOR
Mary Foote

ACQUISITIONS EDITOR
Nancy Maragioglio

DEVELOPMENT EDITORS
Chris Zahn
Chris Morris

MANAGING EDITOR
Sarah Kearns

PROJECT EDITOR
Clint McCarty

COPY EDITORS
Keith Cline
Linda Neher

INDEXER
Chris Wilcox

TECHNICAL EDITORS
Mandeep Binning
Duncan Mackenzie
David Shapton

SOFTWARE DEVELOPMENT
SPECIALIST

Jack Belbot

PROOFREADERS
John Rahm
Sheri Replin

PRODUCTION
Cheryl Lynch
Jeanette McKay

00 002-8 FM 3/1/99 7:40 AM Page ii

00 002-8 FM 3/1/99 7:40 AM Page iii

Contents at a Glance

Introduction ..01

Part I Visual Basic 6 Exam Concepts

1 Developing the Conceptual and Logical Design and Deriving the
Physical Design ..15

2 Establishing the Development Environment..43

3 Implementing Navigational Design..77

4 Creating Data Input Forms and Dialog Boxes ..125

5 Writing Code that Validates User Input ..209

6 Writing Code that Processes Data Entered on a Form..237

7 Implementing Online User Assistance in a Distributed Application265

8 Creating Data Services: Part I ..303

9 Creating Data Services: Part II ..375

10 Instantiating and Invoking a COM Component ..445

11 Implementing Error-Handling Features in an Application..477

12 Creating a COM Component that Implements Business Rules or Logic509

13 Creating ActiveX Controls ..609

14 Creating an Active Document..683

15 Understanding the MTS Development Environment ..735

16 Developing MTS Applications ..765

17 Internet Programming with IIS/Webclass and DHTML Applications797

18 Using VB’s Debug/Watch Facilities ..843

19 Implementing Project Groups to Support the Development and
Debugging Process ..897

20 Compiling a VB Application..917

21 Using the Package and Deployment Wizard to Create a Setup Program..................963

00 002-8 FM 3/1/99 7:40 AM Page iv

PART II Final Review

Fast Facts ..1,007

Study and Exam Prep Tips ..1,039

Practice Exams ..1,049

Part III Appendixes

A Glossary ..1,087

B Overview of the Certification Process ..1,099

C What’s On the CD-ROM..1,107

D Using the Top Score Software ..1,109

E Visual Basic Basics ..1,117

F Suggested Readings and Resources ..1,167

Index ..1,169

00 002-8 FM 3/1/99 7:40 AM Page v

00 002-8 FM 3/1/99 7:40 AM Page vi

Table of Contents

PART I: Visual Basic 6 Exam Concepts

1 Developing the Conceptual and Logical Design and
Deriving the Physical Design 15

Introduction .. 18

Overview of Microsoft Application Development Concepts .. 18

The VB Enterprise Development Model .. 20
The Conceptual Design .. 20
Deriving the Logical Design From the Conceptual Design 21
Deriving the Physical Design From the Logical Design .. 22
Assessing the Logical Design’s Impact on the Physical Design 23

Designing VB Data-Access Components for a Multitier Application 29

Designing Properties, Methods, and Events of Components .. 30
Designing Properties of Components .. 30
Designing Methods of Components .. 31
Designing Events of Components .. 31

Implementing Load Balancing .. 32
Review Questions .. 37
Exam Questions .. 37
Answers to Review Questions .. 39
Answers to Exam Questions .. 40

2 Establishing the Development Environment 43

Introduction .. 45

Implementing Source-Code Control with Visual SourceSafe .. 45
The Nature of a Visual SourceSafe Project .. 46
The Visual SourceSafe Database .. 46
Visual SourceSafe Administrator .. 47

00 002-8 FM 3/1/99 7:40 AM Page vii

viii MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

Visual SourceSafe Explorer .. 51

Installing and Configuring VB for Developing Desktop and
Distributed Applications .. 65

Exercises .. 68
Review Questions .. 72
Exam Questions .. 72
Answers to Review Questions .. 74
Answers to Exam Questions .. 74

3 Implementing Navigational Design 77

Introduction .. 80

Understanding Menu Basics .. 81
Knowing Menu Terminology .. 81
Using the Menu Editor .. 82
Attaching Code to a Menu Item’s Click Event Procedure .. 83

Dynamically Modifying the Appearance of a Menu .. 84

Adding a Pop-Up Menu to an Application .. 85
Defining the Pop-Up Menu .. 85
Determining the Mouse Button .. 86
Displaying the Pop-Up Menu .. 88
Controls With Pop-Up Menus .. 88

Creating an Application That Adds and Deletes Menus at Runtime 89
Creating Runtime Menu Items .. 89
Code for Runtime Menu Items .. 90
Removing Runtime Menu Items .. 91

Adding Controls to Forms .. 91

Setting Properties for CommandButtons, TextBoxes, and Labels 92
Referring to a Property Within Code .. 94
Important Common Properties of CommandButtons, TextBoxes,

and Labels .. 95
Important Properties of the CommandButton Control .. 99
Important Properties of the TextBox Control .. 100
Important Properties of the Label Control .. 102

00 002-8 FM 3/1/99 7:40 AM Page viii

CONTENTS ix

Assigning Code to a Control to Respond to an Event .. 103
Changing a Control Name After You Assign Code to the Event

Procedure .. 104
The Click Event .. 105
The DblClick Event .. 106
MouseUp and MouseDown .. 106
Mouse Events Compared With Click and DblClick .. 108
MouseMove .. 109
The Change Event ..109
Other Events Commonly Used for Input Validation .. 110
Exercises .. 111
Review Questions .. 119
Exam Questions .. 119
Answers to Review Questions .. 121
Answers to Exam Questions .. 123

4 Creating Data Input Forms and Dialog Boxes 125

Introduction .. 127

Adding an ActiveX Control to the ToolBox .. 128

Using ActiveX Controls to Create Data Input Forms and Dialog Boxes 129
Using the ImageList Control .. 129
Using the TreeView Control .. 134
Using the ListView Control .. 139
Using the ToolBar Control .. 147
Using the StatusBar Control .. 153
Using the Controls Collection .. 157
Techniques for Adding and Deleting Controls Dynamically 160
More on Creating Data Input Forms and Dialog Boxes .. 172
Using the Forms Collection .. 179
Exercises .. 186
Review Questions .. 197
Exam Questions .. 198
Answers to Review Questions .. 203
Answers to Exam Questions .. 204

00 002-8 FM 3/1/99 7:40 AM Page ix

x MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

5 Writing Code that Validates User Input 209

Keystroke Events at Field and Form Level .. 212
The KeyPress Event .. 212
The KeyUp and KeyDown Events .. 214
KeyPress Versus KeyUp and KeyDown .. 216
Enabling Two-Tier Validation With the Form’s KeyPreview Property 216

Field-Level Validation Techniques .. 217
The Validate Event and CausesValidation Property .. 218
The Validate Event .. 218
The CausesValidation Property .. 219
The Change Event and Click Events .. 220
An Obsolete Technique: Validation With GotFocus and LostFocus

Events .. 221

Enabling Controls Based on Input .. 222

Miscellaneous Properties for Validation .. 224
MaxLength .. 224
Data-Bound Properties .. 224
Exercises .. 228
Review Questions .. 233
Exam Questions .. 233
Answers to Review Questions .. 235
Answers to Exam Questions .. 235

6 Writing Code that Processes Data Entered on a Form 237

Introduction .. 239

Relative Timing of Form Events .. 239

Initialize, Load, and Activate Events .. 240
The Initialize Event .. 240
The Load Event and the Activate Event .. 241

DeActivate, Unload, QueryUnload, and Terminate Events .. 243
The DeActivate Event .. 243
The QueryUnload Event .. 243
The Unload Event .. 245
The Terminate Event .. 246

00 002-8 FM 3/1/99 7:41 AM Page x

CONTENTS xi

Activate/DeActivate Versus GotFocus/LostFocus Events .. 246

Show/Hide Methods Versus Load/Unload Statements .. 247

Using the Unload and QueryUnload Events in an MDI Application 248

Form Methods and Their Effect on Form Events .. 249
Implicitly Loading a Form .. 249
Show and Hide .. 249

Manipulating a Form From Another Form’s Load Event Procedure 250
Exercises .. 255
Review Questions .. 259
Exam Questions .. 259
Answers to Review Questions .. 261
Answers to Exam Questions .. 262

7 Implementing Online User Assistance in a Distributed
Application 265

Two Types of Help Files .. 267
HTML Help Files .. 267
WinHelp Files .. 267

Referencing Help Through the HelpFile Property of an Application 268
Setting Help Files at Design Time .. 269
Setting Help Files at Runtime .. 270

Context-Sensitive Help for Forms and Controls .. 271
Context-Sensitive Help With the HelpContextID Property 271
Adding ToolTips to an Application .. 272
Providing WhatsThisHelp in an Application .. 273

Creating HTML Help .. 276
HTML Help Source File Structures .. 276

Creating and Compiling an HTML Help File Project With HTML
Help Workshop .. 277

Exercises .. 294
Review Questions .. 299
Exam Questions .. 299
Answers to Review Questions .. 301
Answers to Exam Questions .. 301

00 002-8 FM 3/1/99 7:41 AM Page xi

xii MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

8 Creating Data Services: Part I 303

Introduction .. 305

Overview of OLE DB and ADO .. 305
ADO and the ADO Object Model .. 306

Programming With Automated Data-Binding Tools .. 308
Managing ADO Objects With the Data Environment Designer 308

Accessing Data With ADO and the ADO Data Control .. 317
Using the ADO Data Control .. 318
Programming With ADO .. 329

Using the ADO Errors Collection .. 357
Exercises .. 359
Review Questions .. 368
Exam Questions .. 368
Answers to Review Questions .. 371
Answers to Exam Questions .. 371

9 Creating Data Services: Part II 375

Introduction .. 378

ADO Data-Access Models .. 378
Accessing Data With the Execute Direct Model .. 379
Accessing Data With the Prepare/Execute Model .. 380
Accessing Data With the Stored Procedures Model .. 382
How to Choose a Data-Access Model .. 383

Using Stored Procedures .. 384
Creating Stored Procedures .. 385
Using the Parameters Collection to Manipulate and Evaluate

Parameters for Stored Procedures .. 388
Using Stored Procedures to Execute Statements on a Database 390
Using Stored Procedures to Return Records to an Application 396

Using Cursors .. 400
Using Cursor Locations .. 400
Using Cursor Types .. 402

Managing Database Transactions .. 404

00 002-8 FM 3/1/99 7:41 AM Page xii

CONTENTS xiii

Writing SQL Statements .. 408
Writing SQL Statements that Retrieve and Modify Data 409
Writing SQL Statements that Use Joins to Combine Data from

Multiple Tables ..411

Using Locking Strategies to Ensure Data Integrity .. 413

Choosing Cursor Options .. 414
Exercises .. 417
Review Questions .. 436
Exam Questions .. 436
Answers to Review Questions .. 440
Answers to Exam Questions .. 441

10 Instantiating and Invoking a COM Component 445

Introduction .. 448

COM, Automation, and ActiveX .. 449

Creating a Visual Basic Client Application that Uses a COM
Component .. 451

Setting a Reference to a COM Component .. 452
Using the Object Browser to Find Out About a COM Component’s

Object Model .. 453
Using the New Keyword to Declare and Instantiate a Class Object

from a COM Component .. 455
Late and Early Binding of Object Variables .. 456
Using the CreateObject and GetObject Functions to Instantiate

Objects .. 458
Using a Component Server’s Object Model .. 460
Manipulating the Component’s Methods and Properties 461
Releasing an Instance of an Object .. 463
Detecting Whether a Variable Is Instantiated .. 463

Handling Events from a COM Component .. 463
Exercises .. 468
Review Questions .. 472
Exam Questions .. 472
Answers to Review Questions .. 474
Answers to Exam Questions .. 474

00 002-8 FM 3/1/99 7:41 AM Page xiii

xiv MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

11 Implementing Error-Handling Features in an Application 477

Introduction .. 479

Setting Error-Handling Options .. 479
Setting Break on All Errors .. 480
Setting Break in Class Modules .. 480
Setting Break on Unhandled Errors .. 481

Using the Err Object .. 481
Properties of the Err Object .. 482
Methods of the Err Object .. 485
Using the vbObjectError Constant .. 486

Handling Errors in Code .. 487
Using the On Error Statement .. 487
Inline Error Handling .. 489
Error-Handling Routines .. 490
Trappable Errors .. 492

Using the Error-Handling Hierarchy .. 494

Common Error-Handling Routines .. 496

Using the Error Function .. 499

Using the Error Statement .. 499

Inline Error Handling .. 500
Exercises .. 503
Review Questions .. 505
Exam Questions .. 505
Answers to Review Questions .. 507
Answers to Exam Questions .. 507

12 Creating a COM Component that Implements Business
Rules or Logic 509

Introduction .. 513

Overview of COM Component Programming .. 513
The COM Specification and the ActiveX Standard .. 514
Comparing In-Process and Out-of-Process Server Components 515

Steps in Creating a COM Component .. 517

00 002-8 FM 3/1/99 7:41 AM Page xiv

CONTENTS xv

Implementing Business Rules With COM Components .. 518

Implementing an Object Model With a COM Component 519

Implementing COM Components Through Class Modules 520
The Uses of Class Modules .. 520
Starting a Class Module in a Standard EXE Project .. 521
The Class Module Name Property .. 521
Implementing Custom Methods in Class Modules .. 523
Implementing Custom Properties in Class Modules .. 524
Implementing Custom Events in Class Modules .. 528
Built-In Events of Class Modules .. 530
Using Public, Private, and Friend .. 532
Storing Multiple Instances of an Object in a Collection .. 533
Declaring and Using a Class Module Object in Your Application 538

Managing Threads in a COM Component .. 541
Managing Threads in ActiveX Controls and In-Process Components 542
Managing Threading in Out-of-Process Components .. 542

The Instancing Property of COM Component Classes .. 544
Using Private Instancing for Service Classes .. 545
Using PublicNotCreatable Instancing for Dependent Classes 545
Instancing Property Settings for Externally Creatable Classes 546
Deciding Between SingleUse and MultiUse Server Classes 549

Handling Errors in the Server and the Client .. 549
Passing a Result Code to the Client .. 550
Raising an Error to Pass Back to the Client .. 551

Managing Components With Visual Component Manager .. 552
Storing VCM Information in Repository Databases .. 553
Making VCM Available in the VB IDE .. 553
Publishing Components With VCM .. 555
Finding and Reusing Components With VCM .. 559

Using Interfaces to Implement Polymorphism .. 561
Steps to Implement an Interface Class .. 563

Providing Asynchronous Callbacks .. 572
Providing an Interface for the Callback Object .. 574
Implementing the Callback Object in the Client .. 575
Manipulating the Callback Object in the Server .. 577

00 002-8 FM 3/1/99 7:41 AM Page xv

xvi MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

Registering and Unregistering a COM Component .. 579
Registering/Unregistering an Out-of-Process Component 579
Registering/Unregistering an In-Process Component .. 580

Sending Messages to the User from a COM Component .. 581
Managing Forms in an Out-Of-Process Server Component 581
Managing Forms in an In-Process Server Component .. 582

Choosing the Right COM Component Type .. 583

Implementing Scalability Through Instancing and Threading Models 584

Under-the-Hood Information About COM Components .. 585
Exercises .. 588
Review Questions .. 595
Exam Questions .. 596
Answers to Review Questions .. 603
Answers to Exam Questions .. 604

13 Creating ActiveX Controls 609

Introduction .. 612

Overview of ActiveX Control Concepts .. 612
ActiveX Controls as ActiveX Components .. 612
Creating ActiveX Controls from Constituent Controls .. 613
Creating User-Drawn ActiveX Controls .. 614

The Lifetime of an ActiveX Control .. 614
Control Authors and Developers .. 615

Special Considerations for ActiveX Control Development .. 615

Steps to Creating an ActiveX Control that Expose Properties 616
The UserControl Object .. 616
Implementing User-Drawn Graphic Features .. 623
Implementing Custom Methods .. 624
Implementing Custom Events .. 625
Implementing Custom Properties .. 627
Implementing Property Persistence .. 631
Implementing Constituent Controls .. 639

Creating Data-Aware ActiveX Controls .. 645
Enabling the Data-Binding Capabilities of an ActiveX Control 645
Creating an ActiveX Control that Is a Data Source .. 647

00 002-8 FM 3/1/99 7:41 AM Page xvi

CONTENTS xvii

Create and Enable Property Pages for ActiveX Controls .. 652
Creating the PropertyPage Object’s Visual Interface .. 653
Determining Which Controls Are Selected for Editing With the
SelectedControls Collection .. 654

Using the SelectionChanged Event to Detect When the Developer
Begins to Edit Properties .. 655

Flagging Property Changes With the Changed Property .. 656
Saving Property Changes With the ApplyChanges Event .. 657
Connecting a Custom Control to a Property Page .. 658
Connecting a Single Complex Property to a Property Page 658
Detecting Which Complex Property Is Being Edited With the
EditProperty Event .. 660

Connecting a Property to a Standard VB Property Page .. 661

Testing and Debugging Your ActiveX Control .. 661
Testing Your ActiveX Control With Existing Container Applications 662
Testing and Debugging Your ActiveX Control in a Test Project 663
What to Look for When Testing Your ActiveX Control .. 666
Exercises .. 670
Review Questions .. 676
Exam Questions .. 676
Answers to Review Questions .. 679
Answers to Exam Questions .. 680

14 Creating an Active Document 683

Introduction .. 686

Overview and Definition of Active Documents .. 687

Steps to Implementing an Active Document .. 688

Setting Up the UserDocument .. 689
Converting an Existing Project to an Active Document .. 690
Creating an Active Document Project .. 690
Choosing Between an Active Document EXE and an Active

Document DLL .. 691

Running Your Active Document in a Container Application 692
Detecting the Type of Container With the TypeName Function

and UserDocument.Parent .. 693

00 002-8 FM 3/1/99 7:41 AM Page xvii

xviii MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

Managing the Events in Your Active Document’s Lifetime .. 694
Initialize Event .. 694
InitProperties Event .. 695
EnterFocus Event .. 695
Show Event .. 695
The ReadProperties Event and ReadProperty Method .. 696
The WriteProperties Event and the WriteProperty Method 697
ExitFocus Event .. 698
Hide Event .. 698
Terminate Event .. 698

Managing Active Document Scrolling .. 698
The Scrollbars Property and MinHeight and MinWidth Properties 699
The HScrollSmallChange and VScrollSmallChange Properties 700
The Scroll Event Procedure and the ContinuousScroll Property 700

Managing The Active Document’s ViewPort .. 701
The ViewPort Coordinate Properties .. 701
SetViewPort Method .. 704

Defining Your Active Document’s Custom Members .. 704
Methods .. 705
Properties .. 705

Data and Property Persistence in Active Documents .. 706
Saving Information in the .vbd File .. 706
Data Preservation Events and the Properties Bag .. 707

Asynchronous Download of Information .. 708
Starting the Download With the AsyncRead Method .. 709
Stopping the Download With the CancelAsyncRead Method 710
Reacting to the Download Completion With the
AsyncReadComplete Event .. 711

Defining Your Active Document’s Menus .. 712
Design Considerations for Active Document Menus .. 712
Negotiating With the Container’s Menus .. 713
Merging Your Help Menu With the Container’s Help Menu 714

Limitations of Modeless Forms in an Active Document Project 715

00 002-8 FM 3/1/99 7:41 AM Page xviii

CONTENTS xix

Navigating Between Documents in the Container Application 716
Using the Hyperlink Object With Internet-Aware Containers 716
Navigating the Container App’s Object Model .. 718
Writing an Application to Handle Different Containers’

Navigation Styles .. 718
Creating an ActiveX Project With Multiple UserDocument

Objects .. 719

Testing Your Active Document in the VB Design Environment 722

Compiling and Distributing Your Active Document .. 724

Using Your Active Document on a Web Page .. 725
Exercises .. 727
Review Questions .. 730
Exam Questions .. 730
Answers to Review Questions .. 732
Answers to Exam Questions .. 733

15 Understanding the MTS Development Environment 735

Introduction .. 738

Basic MTS Concepts .. 738
Overview of MTS .. 738
MTS Packages and Their Relationship to COM Components 739

Setting Up MTS .. 741
Configuring a Server to Run MTS .. 741
Installing MTS .. 741

Setting Up Security on the System Package .. 744

Working With MTS Packages .. 746
The Package and Deployment Wizard .. 746
Creating a Package by Using the MTS Explorer .. 750
Assigning Names to Packages .. 752
Assign Security to Packages .. 753
Exporting and Importing Existing Packages .. 755
Exercises .. 759
Review Questions .. 761
Exam Questions .. 761
Answers to Review Questions .. 763
Answers to Exam Questions .. 763

00 002-8 FM 3/1/99 7:41 AM Page xix

xx MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

16 Developing MTS Applications 765

Introduction .. 768

Calling MTS Components from Visual Basic Clients .. 768
Creating Packages That Install or Update MTS Components on a

Client .. 769
Configuring a Client Computer to Use an MTS Component 771

Developing MTS Components With Visual Basic .. 772
Understanding the MTS Runtime Environment .. 773
Adding Components to an MTS Package .. 775
Using Transactions .. 777

Understanding MTS Client Development .. 780

Understanding MTS Security .. 781
Using Role-Based Security to Limit Use of an MTS Package to

Specific Users .. 781
Creating and Adding Users to Roles .. 782
Assigning Roles to Components or Component Interfaces 784
Setting Security Properties of Components .. 785
Exercises .. 788
Review Questions .. 792
Exam Questions .. 793
Answers to Review Questions .. 795
Answers to Exam Questions .. 795

17 Internet Programming With IIS/WebClass and DHTML
Applications 797

Introduction .. 799

WebClass Applications .. 799
Creating a Simple ASP Page .. 800
IIS (WebClass Designer) Applications in VB .. 803

DHTML Applications .. 818
Creating a Web Page With the DHTML Page Designer .. 818
Modifying a DHTML Web Page and Positioning Elements 819
Exercises .. 827
Review Questions .. 838
Exam Questions .. 838

00 002-8 FM 3/1/99 7:41 AM Page xx

CONTENTS xxi

Answers to Review Questions .. 840
Answers to Exam Questions .. 840

18 Using VB’s Debug/Watch Facilities 843

Introduction .. 846

Preventing Bugs .. 846

Using Watch Expressions and Contexts .. 848
Creating a Watch Expression .. 849
Types of Watch Expression .. 850
Watch Contexts .. 852

Using Break Mode .. 854
Entering Break Mode Manually .. 854
Stepping Through Your Code .. 855
Using the Watch Window .. 859
Entering Break Mode Dynamically .. 861

Using Quick Watch .. 863

Watching on Demand .. 864

Immediate Window and the Debug Object .. 864
Displaying the Debug Window .. 864
Displaying Messages Programmatically With the Debug Object 865

Using the Print Method .. 866
Formatting Debug.Print Messages .. 867
Displaying Data Values .. 869

Using the Debug.Assert Method .. 871

Interacting with the Immediate Window .. 873
Querying or Modifying Data Values .. 874
Testing and Executing VB Procedures .. 875

Using the Locals Window .. 877

Using the Immediate Window in Place of Breakpoints .. 880
Using the MouseDown and KeyDown Events .. 880
Using the GotFocus and LostFocus Events .. 880

Levels of Scope .. 881
Local Scope .. 882
Module Scope .. 883
Global Scope .. 884

00 002-8 FM 3/1/99 7:41 AM Page xxi

xxii MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

Scope Considerations .. 885
Striving to Narrow the Scope .. 885
Performance Concerns .. 886
Exercises .. 888
Review Questions .. 891
Exam Questions .. 891
Answers to Review Questions .. 894
Answers to Exam Questions .. 894

19 Implementing Project Groups to Support the Development
and Debugging Process 897

Introduction .. 899

Understanding Project Groups .. 899
Creating Project Groups .. 900
Building Multiple Projects .. 902

Using Project Groups to Debug an ActiveX DLL .. 903
Setting Up a Sample Group .. 903
Debugging Features in Project Groups .. 906

Using Project Groups to Debug an ActiveX Control .. 907
Exercises .. 910
Review Questions .. 914
Exam Questions .. 914
Answers to Review Questions .. 915
Answers to Exam Questions .. 916

20 Compiling a VB Application 917

Introduction .. 919

P-Code Versus Native Code .. 920
Native Code .. 920
P-Code .. 924

Understanding When and How to Optimize .. 925
Compiling to P-Code .. 926
Compiling to Native Code .. 928
Using Compile On Demand .. 941

00 002-8 FM 3/1/99 7:41 AM Page xxii

CONTENTS xxiii

Understanding Conditional Compilation .. 942
Preprocessor Directives .. 943
Types of Expressions .. 945
Compiler Constants .. 947
Applications and Styles .. 952
Exercises .. 957
Review Questions .. 959
Exam Questions .. 959
Answers to Review Questions .. 961
Answers to Exam Questions .. 961

21 Using the Package and Deployment Wizard to Create a
Setup Program 963

Introduction .. 966

Using Package and Deployment Wizard to Create a Setup Program 966
Preparing to Run Package and Deployment Wizard .. 967
Starting Package and Deployment Wizard and Choosing the Type

of Package .. 968
Choosing the Type of Setup Package .. 969
Creating a Standard Setup Package .. 970
Creating an Internet Setup Package .. 975
Creating a Dependency File .. 977

Standard Files Used in a Microsoft Setup .. 978
Setup File Information in SETUP.LST .. 979
Dependency Information in DEP Files .. 981
SETUP.EXE and Package and Deployment Wizard’s Custom Setup 983

Customizing a Standard Setup .. 984
Customizing SETUP.LST and Your Application’s DEP File 984
Customizing the Standard VB Setup Project .. 985
Implementing Application Removal .. 985

Registering a Component that Implements DCOM and Configuring
DCOM .. 986

Deploying Your Application .. 987
Deploying to Floppy Disks .. 988
Deploying to a Network Directory or to CDs .. 990

00 002-8 FM 3/1/99 7:41 AM Page xxiii

xxiv MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

Deploying to the Web .. 992
Deploying Updates to Your Application .. 994
Exercises .. 996
Review Questions .. 1,000
Exam Questions .. 1,000
Answers to Review Questions .. 1,002
Answers to Exam Questions .. 1,002

PART II: Final Review

Fast Facts 1,007

Developing the Conceptual and Logical Design..1,007

Deriving the Physical Design .. 1,008

Establishing the Development Environment .. 1,009

Creating User Services .. 1,011

Creating and Managing COM Components .. 1,022

Creating Data Services .. 1,029

Testing the Solution .. 1,032

Deploying an Application .. 1,035

Maintaining and Supporting an Application .. 1,036

Study and Exam Prep Tips 1,039

Study Tips .. 1,040
Study Strategies .. 1,040
Pre-Testing Yourself .. 1,041

Exam Prep Tips .. 1,041
The MCP Exam .. 1,041
Exam Format .. 1,042
New Question Types .. 1,044
Putting It All Together .. 1,045

Final Considerations .. 1,047

00 002-8 FM 3/1/99 7:41 AM Page xxiv

CONTENTS xxv

Practice Exams 1,049

Exam 1: Developing Distributed Applications (70-175) .. 1,050
Answers to Exam Questions .. 1,062

Exam 2: Developing Desktop Applications (70-176) .. 1,068
Answers to Exam Questions .. 1,080

Part III Appendixes

A Glossary 1,087

B Overview of the Certification Process 1,099

Types of Certification .. 1,099

Certification Requirements .. 1,100
How to Become a Microsoft Certified Professional .. 1,100
How to Become a Microsoft Certified Professional+Internet 1,100
How to Become a Microsoft Certified Professional+Site Building 1,101
How to Become a Microsoft Certified Systems Engineer 1,101
How to Become a Microsoft Certified Systems Engineer+Internet 1,103
How to Become a Microsoft Certified Solution Developer 1,103
Becoming a Microsoft Certified Trainer .. 1,105

C What’s On the CD-ROM 1,107

Top Score .. 1,107

Exclusive Electronic Version of Text .. 1,107

Copyright Information and Disclaimer .. 1,107

D Using the Top Score Software 1,109

Getting Started .. 1,109

Instructions on Using the Top Score Software .. 1,109
Using Top Score Practice Exams .. 1,110
Using Top Score Study Cards .. 1,112

00 002-8 FM 3/1/99 7:41 AM Page xxv

xxvi MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

Using Top Score Flash Cards .. 1,113
Using Top Score Simulator .. 1,115

Summary .. 1,116

E Visual Basic Basics 1,117

Programming With Variables in VB .. 1,117
Declaring and Defining the Scope of a Variable .. 1,117
Using the Appropriate Declaration Statement .. 1,121
Understanding Visual Basic’s Standard Simple Data Types 1,125
Checking the Data Type of a Variable .. 1,131
Converting Between Data Types .. 1,132
Common String-Manipulation Functions .. 1,136
Using Arrays .. 1,139
Working with Collections .. 1,142

Programming With Sub and Function Procedures .. 1,143
Sub Procedures .. 1,143
Functions .. 1,145
Passing Arguments to General Procedures .. 1,146
Using Exit Sub or Exit Function to Abruptly Terminate a Procedure 1,153
Syntax for Calling Procedures .. 1,154
Procedure Scope .. 1,156
Control Names and Event Procedure Names .. 1,157

Programming With VB’s Control Structures .. 1,158
Branching or Selection .. 1,158
Looping .. 1,161
Terminating a Loop Abruptly With Exit .. 1,164
The With...End With Construct .. 1,164
Obsolete Techniques .. 1,165

F Suggested Readings and Resources 1,167

Index 1,169

00 002-8 FM 3/1/99 7:41 AM Page xxvi

00 002-8 FM 3/1/99 7:41 AM Page xxvii

xxviii MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

About the Authors

Howard Hawhee is a Microsoft Certified Professional
(MCP). He has broad experience in the world of PC
development and training. He has served numerous
corporate clients as a developer, consultant, and
instructor over the past fourteen years and has never
stopped having fun using and explaining Visual Basic.

He currently works for Solomon Technology Center
(formerly ClearView Software, now a business unit of
Solomon Software, Inc.), an organization devoted to
customizing and supporting the Solomon IV account-
ing software package with Visual Basic.

He can be reached through New Riders Publishing.

Corby Jordan has been in the technology industry for
7 years, working with such companies as Intel,
Autodesk and Boeing. As a Microsoft Certified Trainer
(MCT), he has trained hundreds of professionals seek-
ing to become MCSEs and MCSDs. He is currently
working as the IT Lead Project Manager at IRSC, with
a focus on developing multi-tier applications. He lives
in southern California with his wife Michele, and his
three kids, Caitlin, Sophia and Symeon.

Richard Hundhausen, Microsoft Certified Trainer and
Microsoft Certified Solution Developer (MCT,
MCSD), is an independent trainer and consultant spe-
cializing in Microsoft Visual Studio and SQL Server
development. His primary focus is delivering
Microsoft certified courses aimed at preparing students
to become Microsoft Certified Solution Developers.
He has worked with computer systems for 15 years
and currently lives in Stuttgart, Germany with his
devoted wife Kristen and their two sled dogs, Shanee
and Dawson. Send him email at atomicity@msn.com.

Felipe Martins is a Microsoft Certified Trainer and
Microsoft Certified Solution Developer (MCT and
MCSD) who has been working with VB since version
3.0 building software in the manufacturing, healthcare,
and aerospace industries. He currently works for
ImagiNET Resources Corp. as a Senior Solutions
Developer. ImagiNET Resources Corp supplies clients
with leading edge business solutions by employing
highly skilled and experienced people who are experts
at using Microsoft technologies. Besides training and
software development, Felipe enjoys his family life, a
good game of Quake, and a strong cup of coffee. Felipe
Martins can be reached at fmartins@imaginets.com.

Thomas Moore is a Microsoft Certified Trainer,
Microsoft Certified Solution Developer, and a
Microsoft Certified Systems Engineer (MCT, MCSD,
MCSE). He has been a computer programmer since
1981. He is knowledgeable in many programming lan-
guages including COBOL, Pascal, Visual Basic, C,
Fortran, and RPG. He has development experience on
many platforms from the PC to supercomputers.
Thomas also has extensive database development expe-
rience including CICS, dBase, and Microsoft SQL
Server. He has performed training for government
agencies in Canada and US and has extensive experi-
ence as a LAN manager (7 years).

Thomas has conducted technical training for 15 years
at both private and public colleges as well as in the pro-
fession context (ATEC). His computer curricula back-
ground includes lesson, exam, and case study develop-
ment as well as creation of other classroom materials.

00 002-8 FM 3/1/99 7:41 AM Page xxviii

00 002-8 FM 3/1/99 7:41 AM Page xxix

xxx MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

ABOUT THE TECHNICAL
EDITORS

Duncan Mackenzie is a Microsoft Certified Trainer and
Microsoft Certified Solution Developer (MCT,
MCSD). He has worked on a wide variety of projects,
including ASP-based Web sites, E-Commerce imple-
mentations and many different types of Visual Basic
applications. He is currently working as an indepen-
dent consultant and can be reached through New
Riders Publishing or his own Web site at
http://www.dmconsulting.mb.ca.

Mandeep Binning is a Microsoft Certified Solution
Developer (MCSD), who holds Associate of Science
and Associate of Arts degrees. He began Basic program-
ming and working with computers in 1982 and has
been a professional programmer and solutions consul-
tant since 1993. He enjoys his work doing custom
programming for clients—particularly using Visual
Basic, Microsoft Office, and SQL—and running his
company, Flying Mouse Programming.

Some of his most recent projects have included:

á Creating the SPSS Report Parser and Unbundler
for automating a data retrieval system

á Designing and developing reporting systems for
SQL databases

á Connecting mainframe data sources to PC
desktops

á Full sales and order processing system imple-
mented with Access

In addition, he has just begun publishing the Flying
Mouse Newsletter. Located in Vancouver, BC, Flying
Mouse has clients throughout North America. You may
contact Mandeep at mbinning@smartt.com.

David Shapton is a Microsoft Certified Trainer and
Microsoft Certified Solution Developer (MCT,
MCSD). He has over 14 years experience in systems
development and training and is currently associated
with LearnQuest/ExecuTrain in Ottawa as a technical
trainer and consultant. David holds a bachelor’s degree
from McMaster University. Most of his professional life
is now spent in the classroom teaching Microsoft devel-
oper courses, but he still enjoys getting involved in
development and writing projects. He lives outside
Ottawa with his wife, Shauna and their children,
Krista, Olivia and Mitchell.

00 002-8 FM 3/1/99 7:41 AM Page xxx

SECTION HERE xxxi

Dedication

To all those who’ve given their support during the writing of this book.

Acknowledgments

Thanks are due to the following people and organiza-
tions for their support during this project:

To Nancy Maragioglio and Chris Zahn at New Riders
Publishing, who made this book possible.

To the very understanding management of Solomon
Technology Center (Bobby Priestley, Dave Stritzinger,
Jim Stritzinger), who kindly gave me enough slack to
get this book written.

To the employees of ClearView Software, Dallas, for
their understanding and suggestions as VB experts and
veteran Certified Exam takers.

And finally, to the patient and knowledgeable technical
editors on this book, Duncan Mackenzie and Mandeep
Binning, two VB experts with a great deal of patience
and ability to focus on detail.

00 002-8 FM 3/1/99 7:41 AM Page xxxi

xxxii MCSD TRAINING GUIDE: VISUAL BASIC 6 EXAMS

Tell Us What You
Think!

As the reader of this book, you are our most important
critic and commentator. We value your opinion and
want to know what we’re doing right, what we could do
better, what areas you’d like to see us publish in, and any
other words of wisdom you’re willing to pass our way.

As the Executive Editor for the Certification team at
New Riders Publishing, I welcome your comments. You
can fax, email, or write me directly to let me know what
you did or didn’t like about this book—as well as what
we can do to make our books stronger.

Please note that I cannot help you with technical prob-
lems related to the topic of this book, and that due to
the high volume of mail I receive, I might not be able
to reply to every message.

When you write, please be sure to include this book’s
title and author, as well as your name and phone or fax
number. I will carefully review your comments and
share them with the author and editors who worked on
the book.

Fax: 317-581-4663

Email: certification@mcp.com

Mail: Mary Foote
Executive Editor
Certification
New Riders Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

00 002-8 FM 3/1/99 7:41 AM Page xxxii

Apply Your Knowledge
Among the many new features New Riders has incorporated into its second edition Training
Guides, you will find extensive review and self-evaluation options. The end of each chapter
includes a section titled “Apply Your Knowledge,” which contains exercises, open-ended review
questions, and multiple-choice questions that mimic the style of questions you will see on the
exam. See “How to Use This Book“ for a visual demonstration and explanation of the other
features designed to benefit the learning process and maximize your study time.

Review Questions: These open-ended short-answer questions allow you to
quickly assess your comprehension of what you just read in the chapter.
Instead of allowing you to choose from a list of options, these questions
require you to state the correct answers in your own words. Although you will
not experience these kinds of questions on the exam, these questions will
indeed test the level of your comprehension of key concepts.

Exercises: These activities provide an opportunity
for you to master specific hands-on tasks. Our
goal is to increase your proficiency with the prod-
uct or technology. You must be able to conduct
these tasks in order to pass the exam.

002-8 IFC 3/1/99 9:05 AM Page 2

Exam Questions: These questions reflect the kinds of multiple-choice ques-
tions that appear on the Microsoft exams. Use them to become familiar with
the exam question formats and to help you determine what you know and what
you need to review or study more.

Suggested Readings and Resources: The very
last element in each chapter is a list of additional
resources you can use if you wish to go above
and beyond certification-level material or if you
need to spend more time on a particular subject
that you are having trouble understanding.

Answers and Explanations: For each of the
Review and Exam questions, you will find thor-
ough explanations located at the end of the sec-
tion.

002-8 IFC 3/1/99 9:05 AM Page 3

	MCSD VIisual Basic 6 Exams
	Contents at a Glance
	Table of Contents
	About the Authors
	About the Techinical Editors
	Dedication
	Acknowledgments
	Tell Us What You
	Apply Your Knowledge
	Introduction
	How this book helps you
	Microsoft Visual Basic 6.0 Exam
	Part I
	Chapter 1 Developing the Conceptual and Logical Design and Deriving the Physical Design
	Chapter 2 Establishing the Development Environment
	Chapter 3 Implementing Navigational Design
	Chapter 4 Creating Data Input Forms and Dialog Boxes
	Chapter 5 Writing Code that Validates User Input
	Chapter 6 Writing Code that Processes Data Entered on a Form
	Chapter 7 Implementing Online User Assistance in a Distributed Application
	Chapter 8 Creating Data Services: Part I
	Chapter 9 Creating Data Services: Part II
	Chapter 10 Instantiating and Invoking a COM Component
	Chapter 11 Implementing Error-Handling Features in an Application
	Chapter 12 Creating a COM Component that Implements Business Rules or Logic
	Chapter 13 Creating AcitveX Controls
	Chapter 14 Creating an Active Document
	Chapter 15 Understanding the MTS Development Environment
	Chapter 16 Developing MTS Applications
	Chapter 17 Internet Programming With IIS/WebClass and DHTML Applications
	Chapter 18 Using VB's Debug/Watch Facilities
	Chapter 19 Implementing Project Groups to Support the Development and Debugging Process
	Chapter 20 Compiling A VB Application
	Chapter 21 Using the Package and Deployment Wizard to Create a Setup Program

	Part II
	Fast Facts
	Study and Exam Prep Tips
	Practice Exams

	Part III
	Appendix A Glossary
	Appendix B Overview of the Certification Process
	Appendix C What's On the CD-ROM
	Appendix D Using the Top Score Software
	Appendix E Visual Basic Basics
	Appendix F Suggested Readings and Resources

	Index
	Training Guides
	New Riders Top Score Test Simulation Software Suite

